Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 210: 108617, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608504

RESUMEN

Considering the importance of Salvia nemorosa L. in the pharmaceutical and food industries, and also beneficial approaches of arbuscular mycorrhizal fungi (AMF) symbiosis and the use of bioelicitors such as chitosan to improve secondary metabolites, the aim of this study was to evaluate the performance of chitosan on the symbiosis of AMF and the effect of both on the biochemical and phytochemical performance of this plant and finally introduced the best treatment. Two factors were considered for the factorial experiment: AMF with four levels (non-inoculated plants, Funneliformis mosseae, Rhizophagus intraradices and the combination of both), and chitosan with six levels (0, 50, 100, 200, 400 mg L-1 and 1% acetic acid). Four months after treatments, the aerial part and root length, the levels of lipid peroxidation, H2O2, phenylalanine ammonia lyase (PAL) activity, total phenol and flavonoid contents and the main secondary metabolites (rosmarinic acid and quercetin) in the leaves and roots were determined. The flowering stage was observed in R. intraradices treatments and the highest percentage of colonization (78.87%) was observed in the treatment of F. mosseae × 400 mg L-1 chitosan. Furthermore, simultaneous application of chitosan and AMF were more effective than their separate application to induce phenolic compounds accumulation, PAL activity and reduce oxidative compounds. The cluster and principal component analysis based on the measured variables indicated that the treatments could be classified into three clusters. It seems that different treatments in different tissues have different effects. However, in an overview, it can be concluded that 400 mg L-1 chitosan and F. mosseae × R. intraradices showed better results in single and simultaneous applications. The results of this research can be considered in the optimization of this medicinal plant under normal conditions and experiments related to abiotic stresses in the future.


Asunto(s)
Quitosano , Peroxidación de Lípido , Micorrizas , Fenoles , Salvia , Quitosano/farmacología , Micorrizas/fisiología , Peroxidación de Lípido/efectos de los fármacos , Fenoles/metabolismo , Salvia/metabolismo , Salvia/efectos de los fármacos , Salvia/crecimiento & desarrollo , Fenilanina Amoníaco-Liasa/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Glomeromycota/fisiología , Glomeromycota/efectos de los fármacos
2.
Microb Cell Fact ; 22(1): 46, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890537

RESUMEN

BACKGROUND: Resveratrol is a commercially available stilbenoid widely used as dietary supplements, functional food ingredients, and cosmetic ingredients due to its diverse physiological activities. The production of resveratrol in microorganisms provides an ideal source that reduces the cost of resveratrol, but the titer in Saccharomyces cerevisiae was still much lower than that in other hosts. RESULTS: To achieve enhanced production of resveratrol in S. cerevisiae, we constructed a biosynthetic pathway via combining phenylalanine and tyrosine pathways by introducing a bi-functional phenylalanine/tyrosine ammonia lyase from Rhodotorula toruloides. The combination of phenylalanine pathway with tyrosine pathway led to a 462% improvement of resveratrol production in yeast extract peptone dextrose (YPD) medium with 4% glucose, suggesting an alternative strategy for producing p-coumaric acid-derived compounds. Then the strains were further modified by integrating multi-copy biosynthetic pathway genes, improving metabolic flux to aromatic amino acids and malonyl-CoA, and deleting by-pathway genes, which resulted in 1155.0 mg/L resveratrol in shake flasks when cultured in YPD medium. Finally, a non-auxotrophic strain was tailored for resveratrol production in minimal medium without exogenous amino acid addition, and the highest resveratrol titer (4.1 g/L) ever reported was achieved in S. cerevisiae to our knowledge. CONCLUSIONS: This study demonstrates the advantage of employing a bi-functional phenylalanine/tyrosine ammonia lyase in the biosynthetic pathway of resveratrol, suggesting an effective alternative in the production of p-coumaric acid-derived compounds. Moreover, the enhanced production of resveratrol in S. cerevisiae lays a foundation for constructing cell factories for various stilbenoids.


Asunto(s)
Saccharomyces cerevisiae , Tirosina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Resveratrol/metabolismo , Tirosina/metabolismo , Fenilalanina/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Ingeniería Metabólica/métodos
3.
Food Res Int ; 164: 112449, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738009

RESUMEN

In this study, the browning degrees of fresh-cut potatoes of different cultivars were investigated. Fresh-cut potatoes of the 'Huangjin' cultivar exhibited a higher browning index and sensory quality deterioration over time compared with 'Minshu' potatoes. 'Huangjin' exhibited a higher activity of browning-related enzymes such as polyphenol oxidase, tyrosinase, peroxidase, phenylalanine ammonia-lyase, phospholipase D (PLD), and lipoxygenase (LOX) than 'Minshu'. Furthermore, 'Minshu' exhibited lower H2O2 and malonaldehyde (MDA) contents, lower membrane lipid degradation and peroxidation, and delayed browning, attributable to its low PLD and LOX activities. The ultrastructure of 'Minshu' cells remained intact 7 h after cutting, while that of 'Huangjin' cells was severely damaged, and 'Minshu' cells exhibited more Golgi complexes and black particles than 'Huangjin' cells. Moreover, 'Huangjin' cells exhibited numerous multivesicular bodies, which were nonexistent in 'Minshu' cells. The results show that 'Minshu' potatoes feature a lower browning-related enzyme activity than 'Huangjin', and a tough cell structure to resist post-cut browning.


Asunto(s)
Antioxidantes , Solanum tuberosum , Solanum tuberosum/química , Peróxido de Hidrógeno , Peroxidasa/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Catecol Oxidasa/metabolismo
4.
J Sci Food Agric ; 103(4): 2014-2022, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36221181

RESUMEN

BACKGROUND: Tartary buckwheat is rich in flavonoids. The application of physical processing technology and exogenous materials treatment can effectively promote grain germination and the accumulation of bioactive secondary metabolites. The content of four flavonoids, the activities of key enzymes (phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), flavonol synthase (FLS)) and the expression of key enzyme genes (FtPAL, FtCHI, FtFLS1, FtFLS2) in Tartary buckwheat sprouts treated with microwave and l-phenylalanine (l-Phe) were investigated, and the relationship between them was analyzed to explore the mechanism of promoting flavonoid accumulation, and to provide a theoretical basis for the development of functional Tartary buckwheat sprout food. RESULTS: Germination can promote the synthesis of flavonoids. The contents of chlorogenic acid and rutin in 7-day sprouts increased by 13 420.63% and 225.12% compared with seeds, respectively. Under the best treatment condition T3 (microwave 250 W, 90 s, 2.9 mmol L-1 L-Phe), the specific activities of PAL, CHI and FLS in 5-day-old sprouts increased by 47.84%, 53.04% and 28.02% compared with control check (CK), respectively; and the expression of FtPAL, FtCHI and FtFlS1 increased by 39.84%, 24.78% and 33.72% compared with CK, respectively. Correlation analysis showed that the content of flavonoids in Tartary buckwheat sprouts was significantly positively correlated with the specific activities of key enzymes (P < 0.01) and dynamically correlated with genes related to the synthesis of three enzymes. CONCLUSION: It suggested that microwave and l-Phe treatment may promote the synthesis of flavonoids by promoting the expression of key enzymes genes in phenylpropane metabolism and controlling the activity of key enzymes in phenylpropane metabolism. © 2022 Society of Chemical Industry.


Asunto(s)
Fagopyrum , Flavonoides , Flavonoides/metabolismo , Fagopyrum/química , Fenilalanina , Microondas , Rutina , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo
5.
Planta ; 257(1): 13, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522558

RESUMEN

MAIN CONCLUSION: Screening for resistance in 40 potato genotypes to Rhizoctonia solani AG-3PT-stem-canker, antioxidant enzymes activity as well as total phenol compounds were documented. Rhizoctonia solani AG-3PT-stem-canker is one of the most devastating diseases that leads to severe economic losses in potatoes, Solanum tuberosum globally. Crop management and eugenic practices, especially the use of resistance can be effective in reducing the disease incidence. However, the information about potato-R. Solani interaction is still limited. This study explored screening for resistance in forty potato genotypes to R. solani, analyzing biomass growth parameters (BGPs), as well as antioxidant enzymes activity of which peroxidase/peroxide-reductases (POXs), superoxide dismutase (SOD), polyphenol oxidase (PPO), catalase (CAT), phenylalanine ammonia-lyase (PAL), ß-1,3-glucanase (GLU) and total phenol compounds (TPCs) were taken into account. In addition, we analyzed up-regulation of two gene markers (PR-1 and Osmotin), using reverse transcription quantitative PCR (RT-qPCR). For which, the resistant 'Savalan', partially resistant 'Agria', partially susceptible 'Sagita' and susceptible 'Pashandi' were selected to explore the trails in their roots and leaves over the time courses of 1, 2 and 3-weeks post inoculation (wpi) following inoculation. Cluster analysis divided potatoes into four distinct groups, based on disease severity scales (0-100%) significance. The BGPs, shoot and root length, fresh and dry weight, and root volume were also significantly higher in infected potatoes compared to non-inoculated controls. Antioxidant enzymes activity also indicated the highest increased levels for POX (fourfold at 3wpi), CAT (1.5-fold at 3wpi), SOD (6.8-fold at 1wpi), and PAL (2.7-fold at 3wpi) in the resistant genotype, 'Savalan', whereas the highest activity was recorded in TPC (twofold at 1 wpi), PPO (threefold at 3wpi), and GLU (2.3-fold at 1wpi) in partially resistant genotypes. Although the defense-related enzymatic activities were sharply elevated in the resistant and partially resistant genotypes following inoculation, no significant correlations were between the activity trends of the related enzymes. The two related gene markers also showed comprehensive transcriptional responses up to 3.4-fold, predominantly in resistant genotypes. Surprisingly, the PR-1 gene marker, basically resistant to Wilting agent Verticillium dahlia was overexpressed in resistant 'Savalan' and 'Agria' against R. solani AG3-PT. Similar results were obtained on Osmotin gene marker resistant to late-blight P. infestans, and early-blight Alternaria solani that similarly modulates immunity against R. solani. Furthermore, there was a significant correlation between resistance, enzyme activity, and gene expression in the aforesaid cultivars. Studying the physiological metabolic pathways of antioxidant enzymes activity appears to be an important direction in research to elucidate resistance to R. solani in potatoes.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistencia a la Enfermedad/genética , Antioxidantes , Enfermedades de las Plantas , Rhizoctonia/fisiología , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Catecol Oxidasa/metabolismo , Superóxido Dismutasa , Fenoles , Mecanismos de Defensa
6.
Food Res Int ; 161: 111884, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192997

RESUMEN

This work focuses on understanding the action of a novel seaweed extract with anti-browning functionality in fresh-cut apples. Organic fresh-cut apples were coated by immersion in an aqueous Codium tomentosum seaweed extract (0.5 % w/v), packaged under ambient atmospheric conditions in plastic bags, and stored at 4 ˚C for 15 days. Browning-related enzymatic activities, as well as targeted gene expression related to superficial browning, were monitored immediately after coating and followed at five-day intervals, until a final storage period of 15 days. Gene expression was particularly affected one hour after coating application (day 0), with no expression registered for peroxidase (mdPOD) and phenylalanine ammonia-lyase (mdPAL) genes in the coated samples. A reduction in polyphenol oxidase expression levels was also observed. After 15 days of storage, the coated samples developed lower browning levels and presented distinctly lower activities of polyphenol oxidase and peroxidase - the oxidative enzymes predominantly involved in enzymatic browning. The observed post-coating suppression of mdPAL and mdPOD expression, and reduction in mdPPO expression, suggest that the seaweed C. tomentosum extract delays the activation of these genes, and decreases enzymatic activity, which in turn accounts for the coating's anti-browning effect.


Asunto(s)
Malus , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Malus/metabolismo , Peroxidasa/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Extractos Vegetales/farmacología , Plásticos
7.
Chemosphere ; 308(Pt 3): 136561, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36155022

RESUMEN

Invasive plants could play an important role in the restoration of tailings, but their invasiveness limits their practical application. In this study, the phytoremediation potentials and invasive risks of an exotic invasive plant (Xanthium strumarium, LT), a native plant (X. sibiricum, CR), and combinations of inoculations (EG, with CR as the scion and LT as the rootstock; SG, with CR as both the scion and rootstock) were evaluated on Cd/Cu/Ni tailings. LT rootstock has a stronger nutrient and metal transport capacity, compared with CR. EG not only had higher biomass and Cd/Cu/Ni accumulation, but also abundant rhizosphere microbial communities. Hydroponic and common garden experiments showed that the growth and metal enrichment characteristics of EG are not inherited by plant offspring, which reduces the risk of the biological diffusion in the process of using exotic species. Transcriptome analysis shows that a large number of differentially-expressed genes in EG leaves and roots are involved in phenylpropanoid biosynthesis, secondary metabolite generation, and signal transduction. The genes induced in EG leaves, including cyclic nucleotide-gated ion channel, calcium-binding protein, and WRKY transcription factor, were found to be differentially expressed compared to CR. The genes induced in EG roots, included phenylalanine ammonia-lyase, cinnamoyl-CoA reductase, caffeoyl-CoA O-methyltransferase, and beta-glucosidase. We speculate that lignin and glucosinolates play an important role in the metal accumulation and transportation of EG. The results demonstrate that grafting with LT not only improved CR tolerance and accumulation of Cd, Cu, and Ni, but also created a beneficial microbial environment for plants in tailings. More importantly, grafting with LT did not enhance the invasiveness of CR. Our results provide an example of the safe use of invasive plants in the restoration of Cd/Cu/Ni tailings.


Asunto(s)
Celulasas , Metales Pesados , Contaminantes del Suelo , Xanthium , Biodegradación Ambiental , Cadmio/análisis , Proteínas de Unión al Calcio/metabolismo , Celulasas/metabolismo , Cobre/metabolismo , Cobre/toxicidad , Glucosinolatos/metabolismo , Canales Iónicos/metabolismo , Lignina/metabolismo , Metales Pesados/análisis , Níquel/metabolismo , Nucleótidos Cíclicos/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/análisis , Factores de Transcripción/metabolismo
8.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142369

RESUMEN

How nitrogen (N) supply affects the induced defense of plants remains poorly understood. Here, we investigated the impacts of N supply on the defense induced in maize (Zea mays) against the fall armyworm (Spodoptera frugiperda). In the absence of herbivore attack or exogenous jasmonic acid (JA) application, N supply increased plant biomass and enhanced maize nutrient (soluble sugar and amino acid) contents and leaf area fed by S. frugiperda (the feeding leaf area of S. frugiperda larvae in maize supplemented with 52.2 and 156.6 mg/kg of N was 4.08 and 3.83 times that of the control, respectively). When coupled with herbivore attack or JA application, maize supplemented with 52.2 mg/kg of N showed an increased susceptibility to pests, while the maize supplemented with 156.6 mg/kg of N showed an improved defense against pests. The changes in the levels of nutrients, and the emissions of volatile organic compounds (VOCs) caused by N supply could explain the above opposite induced defense in maize. Compared with herbivore attack treatment, JA application enhanced the insect resistance in maize supplemented with 156.6 mg/kg of N more intensely, mainly reflecting a smaller feeding leaf area, which was due to indole emission and two upregulated defensive genes, MPI (maize proteinase inhibitor) and PAL (phenylalanine ammonia-lyase). Hence, the optimal N level and appropriate JA application can enhance plant-induced defense against pests.


Asunto(s)
Compuestos Orgánicos Volátiles , Zea mays , Aminoácidos/metabolismo , Animales , Ciclopentanos , Herbivoria , Indoles/metabolismo , Larva , Nitrógeno/metabolismo , Oxilipinas , Péptido Hidrolasas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Spodoptera , Azúcares/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Zea mays/genética
9.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743276

RESUMEN

Phenylalanine ammonia-lyase is one of the most widely studied enzymes in the plant kingdom. It is a crucial pathway from primary metabolism to significant secondary phenylpropanoid metabolism in plants, and plays an essential role in plant growth, development, and stress defense. Although PAL has been studied in many actual plants, only one report has been reported on potato, one of the five primary staple foods in the world. In this study, 14 StPAL genes were identified in potato for the first time using a genome-wide bioinformatics analysis, and the expression patterns of these genes were further investigated using qRT-PCR. The results showed that the expressions of StPAL1, StPAL6, StPAL8, StPAL12, and StPAL13 were significantly up-regulated under drought and high temperature stress, indicating that they may be involved in the stress defense of potato against high temperature and drought. The expressions of StPAL1, StPAL2, and StPAL6 were significantly up-regulated after MeJa hormone treatment, indicating that these genes are involved in potato chemical defense mechanisms. These three stresses significantly inhibited the expression of StPAL7, StPAL10, and StPAL11, again proving that PAL is a multifunctional gene family, which may give plants resistance to multiple and different stresses. In the future, people may improve critical agronomic traits of crops by introducing other PAL genes. This study aims to deepen the understanding of the versatility of the PAL gene family and provide a valuable reference for further genetic improvement of the potato.


Asunto(s)
Fenilanina Amoníaco-Liasa , Solanum tuberosum , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Humanos , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Solanum tuberosum/metabolismo
10.
Protein J ; 41(3): 414-423, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35713742

RESUMEN

Phenylalanine ammonia lyase (PAL) catalyzes the deamination of phenylalanine to cinnamic acid and ammonia. It plays a crucial role in the formation of secondary metabolites through the phenylpropanoid pathway. Recently there has been growing interest in exploring the biochemical properties of PAL for its clinical and commercial applications. PAL as a key component has been used in metabolic engineering and synthetic biology. Due to its high substrate specificity and catalytic efficacy, PAL has opened a new area of interest in the biomedical field. PAL has been frequently used in the enzyme replacement therapy of phenylketonuria, cancer treatment and microbial production of l-phe the precursor of noncalorific sweetener aspartame (Methyl L-α-aspartyl-l-phenylalaninate), antimicrobial and health supplements. PAL occurs in few plants, fungi, bacteria, and cyanobacteria. The present investigation is a preliminary study in which an attempt has been made for the isolation, partial purification, and biochemical characterization of PAL (crude and partially purified) from Spirulina CPCC-695. Partially purified PAL exhibited higher enzymatic activity and protein content than the crude enzyme. Molecular weight of the crude and partially purified PAL was ~ 66 kDa. The optimum temperature and pH for PAL activity was observed as 30 â„ƒ and 8.0 respectively. l-Phe was the most preferred substrate (100 mM) whereas gallic acid showed maximum inhibition of PAL activity. Enzyme kinetics suggested good catalytic efficacy of the PAL enzyme and affinity towards substrate. Both the enzyme (crude and partially purified) showed less than 5% haemolysis suggesting the biocompatible nature of PAL.


Asunto(s)
Fenilcetonurias , Spirulina , Humanos , Fenilalanina/metabolismo , Fenilalanina/uso terapéutico , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Fenilcetonurias/tratamiento farmacológico , Especificidad por Sustrato
11.
J Integr Plant Biol ; 64(9): 1739-1754, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35731022

RESUMEN

The ginsenoside Rg3 found in Panax species has extensive pharmacological properties, in particular anti-cancer effects. However, its natural yield in Panax plants is limited. Here, we report a multi-modular strategy to improve yields of Rg3 in a Panax ginseng chassis, combining engineering of triterpene metabolism and overexpression of a lignin biosynthesis gene, phenylalanine ammonia lyase (PAL). We first performed semi-rational design and site mutagenesis to improve the enzymatic efficiency of Pq3-O-UGT2, a glycosyltransferase that directly catalyzes the biosynthesis of Rg3 from Rh2 . Next, we used clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to knock down the branch pathway of protopanaxatriol-type ginsenoside biosynthesis to enhance the metabolic flux of the protopanaxadiol-type ginsenoside Rg3 . Overexpression of PAL accelerated the formation of the xylem structure, significantly improving ginsenoside Rg3 accumulation (to 6.19-fold higher than in the control). We combined overexpression of the ginsenoside aglycon synthetic genes squalene epoxidase, Pq3-O-UGT2, and PAL with CRISPR/Cas9-based knockdown of CYP716A53v2 to improve ginsenoside Rg3 accumulation. Finally, we produced ginsenoside Rg3 at a yield of 83.6 mg/L in a shake flask (7.0 mg/g dry weight, 21.12-fold higher than with wild-type cultures). The high-production system established in this study could be a potential platform to produce the ginsenoside Rg3 commercially for pharmaceutical use.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/metabolismo , Lignina/metabolismo , Panax/química , Panax/genética , Panax/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo
12.
Nat Commun ; 12(1): 6215, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711827

RESUMEN

In phenylketonuria (PKU) patients, a genetic defect in the enzyme phenylalanine hydroxylase (PAH) leads to elevated systemic phenylalanine (Phe), which can result in severe neurological impairment. As a treatment for PKU, Escherichia coli Nissle (EcN) strain SYNB1618 was developed under Synlogic's Synthetic Biotic™ platform to degrade Phe from within the gastrointestinal (GI) tract. This clinical-stage engineered strain expresses the Phe-metabolizing enzyme phenylalanine ammonia lyase (PAL), catalyzing the deamination of Phe to the non-toxic product trans-cinnamate (TCA). In the present work, we generate a more potent EcN-based PKU strain through optimization of whole cell PAL activity, using biosensor-based high-throughput screening of mutant PAL libraries. A lead enzyme candidate from this screen is used in the construction of SYNB1934, a chromosomally integrated strain containing the additional Phe-metabolizing and biosafety features found in SYNB1618. Head-to-head, SYNB1934 demonstrates an approximate two-fold increase in in vivo PAL activity compared to SYNB1618.


Asunto(s)
Terapia Biológica , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Fenilanina Amoníaco-Liasa/genética , Fenilalanina/metabolismo , Fenilcetonurias/metabolismo , Fenilcetonurias/terapia , Técnicas Biosensibles , Cinamatos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Fenilanina Amoníaco-Liasa/metabolismo , Ingeniería de Proteínas
13.
J Food Sci ; 86(8): 3529-3539, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34272733

RESUMEN

Surface browning is a vital phenomenon that adversely reduces the quality of fresh-cut potatoes. Although many anti-browning methods have been explored, it is unclear whether exogenous catalase (CAT) treatment influences the enzymatic browning. Our results showed that 0.05% CAT immersion for 5 min alleviated browning during cold storage (4°C, 8 days), which was accompanied by a higher lightness and lower redness; additionally, lower H2 O2 and O2 ·- contents were found. The activities of CAT, ascorbate peroxidase, and glutathione peroxidase and the scavenging efficiency of 2,2-diphenyl-1-picrylhydrazyl were also increased. Moreover, CAT treatment inhibited the activities of polyphenol oxidase, peroxidase, and phenylalanine ammonia lyase and reduced phenol accumulation. Treatment with 0.1% hydrogen peroxide (H2 O2 ) achieved the opposite results. This is the first report of CAT application reducing fresh-cut potato browning, providing a safe treatment alternative for enzymatic discoloration and preliminarily revealing the underlying mechanism with insight into antioxidant regulation. PRACTICAL APPLICATION: This research is helpful for fresh-cut potato producers because a novel, safe, easy-to-carry out anti-browning solution was proposed. Dipping in 0.05% catalase solution for 5 min revealed color improvement in the quality of fresh-cut potato slices. The mechanism may rely on enhancing antioxidant ability (ascorbate peroxidase, and glutathione peroxidase, and 2,2-diphenyl-1-picrylhydrazyl scavenging), reducing reactive oxygen species (H2 O2 , O2 ·-, malondialdehyde) and controlling enzymatic browning reaction factors (polyphenol oxidase, peroxidase, and phenylalanine ammonia lyase, and phenol accumulation). This method shows promise for better meeting the requirements and demands of consumers for fresh quality products.


Asunto(s)
Catalasa , Manipulación de Alimentos , Solanum tuberosum , Catalasa/farmacología , Catecol Oxidasa/metabolismo , Activación Enzimática/efectos de los fármacos , Manipulación de Alimentos/métodos , Calidad de los Alimentos , Malondialdehído/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo
14.
Nat Metab ; 3(8): 1125-1132, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34294923

RESUMEN

Phenylketonuria (PKU) is a rare disease caused by biallelic mutations in the PAH gene that result in an inability to convert phenylalanine (Phe) to tyrosine, elevated blood Phe levels and severe neurological complications if untreated. Most patients are unable to adhere to the protein-restricted diet, and thus do not achieve target blood Phe levels. We engineered a strain of E. coli Nissle 1917, designated SYNB1618, through insertion of the genes encoding phenylalanine ammonia lyase and L-amino acid deaminase into the genome, which allow for bacterial consumption of Phe within the gastrointestinal tract. SYNB1618 was studied in a phase 1/2a randomized, placebo-controlled, double-blind, multi-centre, in-patient study ( NCT03516487 ) in adult healthy volunteers (n = 56) and patients with PKU and blood Phe level ≥600 mmol l-1 (n = 14). Participants were randomized to receive a single dose of SYNB1618 or placebo (part 1) or up to three times per day for up to 7 days (part 2). The primary outcome of this study was safety and tolerability, and the secondary outcome was microbial kinetics. A D5-Phe tracer (15 mg kg-1) was used to study exploratory pharmacodynamic effects. SYNB1618 was safe and well tolerated with a maximum tolerated dose of 2 × 1011 colony-forming units. Adverse events were mostly gastrointestinal and of mild to moderate severity. All participants cleared the bacteria within 4 days of the last dose. Dose-responsive increases in strain-specific Phe metabolites in plasma (trans-cinnamic acid) and urine (hippuric acid) were observed, providing a proof of mechanism for the potential to use engineered bacteria in the treatment of rare metabolic disorders.


Asunto(s)
Terapia Biológica/métodos , Escherichia coli , Fenilcetonurias/terapia , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Terapia Biológica/efectos adversos , Escherichia coli/enzimología , Escherichia coli/genética , Ingeniería Genética , Humanos , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Fenilcetonurias/sangre , Fenilcetonurias/genética , Resultado del Tratamiento
15.
Food Chem ; 362: 130193, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34082290

RESUMEN

Lignin is an important component of the healing tissue in fruits. In this study, we treated muskmelon (Cucumis melo L. cv. "Manao") fruit with exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) to observe and analyze its effect on lignin synthesis and accumulation during healing. Results showed that SNP treatment enhanced the contents of endogenous NO and H2O2, increased the activities of phenylalanine ammonia lyase, cinnamate 4 hydroxylase, cinnamyl alcohol dehydrogenase, and peroxidase, and raised the contents of sinapyl alcohol, coniferyl alcohol, coumaryl alcohol, and lignin. SNP augmented the hardness of the healing tissue and decreased its resilience, springiness, and cohesiveness. In addition, SNP treatment effectively reduced the weight loss and disease index of wounded muskmelons. All these results suggest that lignin metabolism mediated by NO play a crucial role in wound healing of muskmelons.


Asunto(s)
Cucumis melo/química , Cucumis melo/metabolismo , Frutas/química , Lignina/biosíntesis , Nitroprusiato/química , Oxidorreductasas de Alcohol , Frutas/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/química , Peroxidasa/metabolismo , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fenilpropionatos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
16.
Food Chem ; 362: 130224, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34098439

RESUMEN

This study evaluated the feasibility of curcumin based photodynamic sterilization technology (PDT) applied to fresh-cut potato slices. Potato samples with 30 µmol L-1 curcumin solution were exposed to 420 nm light emitting diodes (LED) at a total dose of 0.7 kJ cm-2. Results showed that PDT inactivated 2.43 log CFU mL-1 of Escherichia coli (BL 21) and 3.18 log CFU mL-1 of Staphylococcus aureus and maintained the color, texture, weight as well as total solid content of treated potatoes. Additionally, loss of phenols and flavonoids was significantly prevented, increasing the total antioxidant capacity. This was attributed to changes in enzyme activity that PDT decreased the activity of polyphenol oxidase (PPO) and peroxidase (POD) by 59.7% and 47.8% and increased the activity of phenylalanine ammonia-lyase (PAL). Therefore, curcumin-based PDT has the potential to maintain the commercial quality of producing and achieving microbiological safety.


Asunto(s)
Antioxidantes/química , Curcumina/farmacología , Conservación de Alimentos/métodos , Solanum tuberosum/química , Solanum tuberosum/microbiología , Antibacterianos/farmacología , Catecol Oxidasa/metabolismo , Color , Escherichia coli , Flavonoides/análisis , Flavonoides/química , Conservación de Alimentos/instrumentación , Calidad de los Alimentos , Peroxidasa/química , Peroxidasa/metabolismo , Fenoles/análisis , Fenoles/química , Fenilanina Amoníaco-Liasa/metabolismo , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/metabolismo , Staphylococcus aureus
17.
J Exp Bot ; 72(13): 4915-4929, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33961691

RESUMEN

Phenolic acids are the major secondary metabolites and significant bioactive constituents of the medicinal plant Salvia miltiorrhiza. Many enzyme-encoding genes and transcription factors involved in the biosynthesis of phenolic acids have been identified, but the underlying post-translational regulatory mechanisms are poorly understood. Here, we demonstrate that the S. miltiorrhiza Kelch repeat F-box protein SmKFB5 physically interacts with three phenylalanine ammonia-lyase (PAL) isozymes and mediates their proteolytic turnover via the ubiquitin-26S proteasome pathway. Disturbing the expression of SmKFB5 reciprocally affected the abundance of SmPAL protein and the accumulation of phenolic acids, suggesting that SmKFB5 is a post-translational regulator responsible for the turnover of PAL and negatively controlling phenolic acids. Furthermore, we discovered that treatment of the hairy root of S. miltiorrhiza with methyl jasmonate suppressed the expression of SmKFB5 while inducing the transcription of SmPAL1 and SmPAL3. These data suggested that methyl jasmonate consolidated both transcriptional and post-translational regulation mechanisms to enhance phenolic acid biosynthesis. Taken together, our results provide insights into the molecular mechanisms by which SmKFB5 mediates the regulation of phenolic acid biosynthesis by jasmonic acid, and suggest valuable targets for plant breeders in tailoring new cultivars.


Asunto(s)
Salvia miltiorrhiza , Regulación de la Expresión Génica de las Plantas , Hidroxibenzoatos , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Raíces de Plantas/metabolismo , Salvia miltiorrhiza/metabolismo
18.
ACS Synth Biol ; 10(5): 1087-1094, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33880917

RESUMEN

Baicalein and scutellarein are bioactive flavonoids isolated from the traditional Chinese medicine Scutellaria baicalensis Georgi; however, there is a lack of effective strategies for producing baicalein and scutellarein. In this study, we developed a sequential self-assembly enzyme reactor involving two enzymes in the baicalein pathway with a pair of protein-peptide interactions in E. coli. These domains enabled us to optimize the stoichiometry of two baicalein biosynthetic enzymes recruited to be an enzymes complex. This strategy reduces the accumulation of intermediates and removes the pathway bottleneck. With this strategy, we successfully promoted the titer of baicalein by 6.6-fold (from 21.6 to 143.5 mg/L) and that of scutellarein by 1.4-fold (from 84.3 to 120.4 mg/L) in a flask fermentation, respectively. Furthermore, we first achieved the de novo biosynthesis of baicalein directly from glucose, and the strain was capable of producing 214.1 mg/L baicalein by fed-batch fermentation. This work provides novel insights for future optimization and large-scale fermentation of baicalein and scutellarein.


Asunto(s)
Apigenina/biosíntesis , Reactores Biológicos , Medicamentos Herbarios Chinos/metabolismo , Escherichia coli/metabolismo , Flavanonas/biosíntesis , Ingeniería Metabólica/métodos , Extractos Vegetales/biosíntesis , Técnicas de Cultivo Celular por Lotes/métodos , Escherichia coli/genética , Fermentación , Glucosa/metabolismo , Malonil Coenzima A/metabolismo , Microorganismos Modificados Genéticamente , Dominios PDZ , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/metabolismo , Scutellaria baicalensis , Sirolimus/metabolismo
19.
Food Chem ; 348: 129132, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33524691

RESUMEN

Enzymatic browning is considered a critical factor that adversely decreases the quality of fresh-cut products. Although many individual physical or chemical methods have been explored to control browning, there are few approaches combining these technologies. In the present study, Sonchus oleraceus L. extract (SOLE) and ultrasound treatment efficiently controlled the activities of polyphenol oxidase, peroxidase, phenylalanine ammonia-lyase, lipoxygenase, soluble quinones, and intermediate and advanced products, and a lower malondialdehyde content and higher antioxidant capacity were observed in fresh-cut potato slices. More than 50 phenolics and flavonoids were identified in SOLE by liquid chromatography-tandem mass spectrometry. In conclusion, the combined SOLE and ultrasound treatment could serve as a promising method for attenuating enzymatic browning.


Asunto(s)
Extractos Vegetales/química , Solanum tuberosum/química , Sonchus/química , Sonicación , Antioxidantes/química , Catecol Oxidasa/metabolismo , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Reacción de Maillard , Malondialdehído/metabolismo , Fenoles/análisis , Fenilanina Amoníaco-Liasa/metabolismo , Solanum tuberosum/metabolismo , Sonchus/metabolismo , Espectrometría de Masas en Tándem
20.
J Sci Food Agric ; 101(8): 3176-3185, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33211342

RESUMEN

BACKGROUND: Plums tend to experience a reduction in fruit quality due to ripening and they deteriorate quickly during storage at room temperature. Benzothiadiazole (BTH) is a plant elicitor capable of inducing disease resistance in many crops. In this study, the effect of BTH treatment on fruit ripening, fruit quality, and anthocyanin biosynthesis in 'Taoxingli' plum was investigated. RESULTS: The results showed that BTH treatment could accelerate fruit ripening without affecting the incidence of fruit decay or the shelf life. Benzothiadiazole treatment improved the quality and consumer acceptability of 'Taoxingli' plums during storage by increasing the sweetness, red color formation, and the concentration of healthy antioxidant compounds. The BTH treatment could also effectively promote the biosynthesis of anthocyanin by enhancing the enzyme activities of phenylalanine ammonia-lyase (PAL), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and uridine diphosphate flavonoid 3-O-glucosyltransferase (UFGT) and up-regulating the gene expressions of PsPAL, PsCHI, PsDFR, PsANS, and PsUFGT during storage. CONCLUSION: Benzothiadiazole treatment could be a potential postharvest technology for improving fruit quality and consumer acceptability in harvested plum fruit. © 2020 Society of Chemical Industry.


Asunto(s)
Antocianinas/biosíntesis , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Frutas/química , Prunus domestica/efectos de los fármacos , Tiadiazoles/farmacología , Almacenamiento de Alimentos , Frutas/efectos de los fármacos , Frutas/genética , Frutas/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus domestica/química , Prunus domestica/genética , Prunus domestica/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA