Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(29): 11239-11251, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37449982

RESUMEN

As part of our ongoing efforts to discover novel agricultural fungicidal candidates from natural sesquiterpene lactones, in the present work, sixty-three xanthatin-based derivatives containing a arylpyrazole, arylimine, thio-acylamino, oxime, oxime ether, or oxime ester moiety were synthesized. Their structures were well characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry, while the absolute configurations of compounds 5' and 6a were further determined by single-crystal X-ray diffraction. Meanwhile, the antifungal activities of the prepared compounds against several phytopathogenic fungi were investigated using the spore germination method and the mycelium growth rate method in vitro. The bioassay results illustrated that compounds 5, 5', and 15 exhibited excellent inhibitory activity against the tested fungal spores and displayed remarkable inhibitory effects on fungal mycelia. Compounds 5 and 5' exhibited more potent inhibitory activity (IC50 = 1.1 and 24.8 µg/mL, respectively) against the spore of Botrytis cinerea than their precursor xanthatin (IC50 = 37.6 µg/mL), wherein the antifungal activity of compound 5 was 34-fold higher than that of xanthatin and 71-fold higher than that of the positive control, difenoconazole (IC50 = 78.5 µg/mL). Notably, compound 6'a also demonstrated broad-spectrum inhibitory activity against the four tested fungal spores. Meanwhile, compounds 2, 5, 8, and 15 showed prominent inhibitory activity against the mycelia of Cytospora mandshurica with the EC50 values of 2.3, 11.7, 11.1, and 3.0 µg/mL, respectively, whereas the EC50 value of xanthatin was 14.8 µg/mL. Additionally, compounds 5' and 15 exhibited good in vivo therapeutic and protective effects against B. cinerea with values of 55.4 and 62.8%, respectively. The preliminary structure-activity relationship analysis revealed that the introduction of oxime, oxime ether, or oxime ester structural fragment at the C-4 position of xanthatin or the introduction of a chlorine atom at the C-3 position of xanthatin might be significantly beneficial to antifungal activity. In conclusion, the comprehensive investigation indicated that partial xanthatin-based derivatives from this study could be considered for further exploration as potential lead structures toward developing novel fungicidal candidates for crop protection.


Asunto(s)
Fungicidas Industriales , Sesquiterpenos , Xanthium , Antifúngicos/farmacología , Antifúngicos/química , Xanthium/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Relación Estructura-Actividad , Esporas Fúngicas , Botrytis , Lactonas/farmacología , Sesquiterpenos/farmacología , Ésteres/farmacología , Oximas/farmacología
2.
Z Naturforsch C J Biosci ; 78(5-6): 179-187, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35768067

RESUMEN

In the course of finding new antifungal natural compounds against plant pathogens, the methanol extract of Desmodium triflorum was investigated phytochemically. From n-butanol-soluble fraction, seven compounds (1-7) were isolated and structurally elucidated. Of which, six compounds belong to flavone 6- or 8-C-glycoside class (1-6). Three major compounds (1-3) exhibited moderate in vitro antifungal activity against Sclerotium rolfsii, Fusarium oxysporum f. sp. cubense, and Phytophthora palmivora. Compound 1 (IC50 = 162.1 µg/mL) was most active against S. rolfsii in a dose-dependent manner. At 300 µg/mL, compounds 1 and 2 significantly inhibited P. palmivora, whereas compound 3 lacked effectiveness. In addition, the nanoemulsion of the methanol extract with a droplet size of 12.2 nm displayed an excellent inhibition against S. rolfsii and P. palmivora compared with the normal extract. The presence of 1 (0.846%) and 2 (0.759%) in the methanol extract may attribute to the antifungal activity of D. triflorum. These results proved the potential of D. triflorum and its C-glycoside flavonoids against phytopathogenic fungi for the first time. Besides, an enhancement in the effectiveness of nanoemulsion containing D. triflorum extract against the fungi was confirmed. The structural characteristics of 1 and 2 could be considered to develop new fungicidal substances in the future.


Asunto(s)
Fungicidas Industriales , Fusarium , Antifúngicos/farmacología , Metanol , Hongos , Fungicidas Industriales/química , Extractos Vegetales/química
3.
Pest Manag Sci ; 78(6): 2657-2666, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35355395

RESUMEN

BACKGROUND: Fenpicoxamid and florylpicoxamid are picolinamide fungicides targeting the Qi site of the cytochrome bc1 complex, via their primary metabolites UK-2A and CAS-649, respectively. We explore binding interactions and resistance mechanisms for picolinamides, antimycin A and ilicicolin H in yeast by testing effects of cytochrome b amino acid changes on fungicide sensitivity and interpreting results using molecular docking. RESULTS: Effects of amino acid changes on sensitivity to UK-2A and CAS-649 were similar, with highest resistance associated with exchanges involving G37 and substitutions N31K and L198F. These changes, as well as K228M, also affected antimycin A, while ilicicolin H was affected by changes at G37 and L198, as well as Q22E. N31 substitution patterns suggest that a lysine at position 31 introduces an electrostatic interaction with neighbouring D229, causing disruption of a key salt-bridge interaction with picolinamides. Changes involving G37 and L198 imply resistance primarily through steric interference. G37 changes also showed differences between CAS-649 and UK-2A or antimycin A with respect to branched versus unbranched amino acids. N31K and substitution of G37 by large amino acids reduced growth rate substantially while L198 substitutions showed little effect on growth. CONCLUSION: Binding of UK-2A and CAS-649 at the Qi site involves similar interactions such that general cross-resistance between fenpicoxamid and florylpicoxamid is anticipated in target pathogens. Some resistance mutations reduced growth rate and could carry a fitness penalty in pathogens. However, certain changes involving G37 and L198 carry little or no growth penalty and may pose the greatest risk for resistance development in the field. © 2022 Society of Chemical Industry.


Asunto(s)
Complejo III de Transporte de Electrones , Fungicidas Industriales , Ácidos Picolínicos , Aminoácidos , Antimicina A/farmacología , Citocromos , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/genética , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Lactonas/química , Lactonas/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Ácidos Picolínicos/metabolismo , Piridinas/química , Piridinas/metabolismo , Saccharomyces cerevisiae/genética
4.
Molecules ; 27(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35164398

RESUMEN

Fungal infections of cultivated food crops result in extensive losses of crops at the global level, while resistance to antifungal agents continues to grow. Supercritical fluid extraction using CO2 (SFE-CO2) has gained attention as an environmentally well-accepted extraction method, as CO2 is a non-toxic, inert and available solvent, and the extracts obtained are, chemically, of greater or different complexities compared to those of conventional extracts. The SFE-CO2 extracts of Achillea millefolium, Calendula officinalis, Chamomilla recutita, Helichrysum arenarium, Humulus lupulus, Taraxacum officinale, Juniperus communis, Hypericum perforatum, Nepeta cataria, Crataegus sp. and Sambucus nigra were studied in terms of their compositions and antifungal activities against the wheat- and buckwheat-borne fungi Alternaria alternata, Epicoccum nigrum, Botrytis cinerea, Fusarium oxysporum and Fusarium poae. The C. recutita and H. arenarium extracts were the most efficacious, and these inhibited the growth of most of the fungi by 80% to 100%. Among the fungal species, B. cinerea was the most susceptible to the treatments with the SFE-CO2 extracts, while Fusarium spp. were the least. This study shows that some of these SFE-CO2 extracts have promising potential for use as antifungal agents for selected crop-borne fungi.


Asunto(s)
Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/química , Extractos Vegetales/farmacología , Botrytis/efectos de los fármacos , Dióxido de Carbono/química , Cromatografía con Fluido Supercrítico/métodos , Productos Agrícolas/microbiología , Fagopyrum/microbiología , Hongos/efectos de los fármacos , Fungicidas Industriales/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Extractos Vegetales/aislamiento & purificación , Triticum/microbiología
5.
J Sci Food Agric ; 102(2): 794-800, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34223648

RESUMEN

BACKGROUND: Two edible coating (EC) emulsions based on potato starch (F6 and F10) alone or formulated with sodium benzoate (SB, 2% w/w) (F6/SB and F10/SB) were evaluated to maintain postharvest quality of cold-stored 'Fino' lemons and control sour rot on lemons artificially inoculated with Geotrichum citri-aurantii. Previous research showed the potential of these ECs to improve the storability of 'Orri' mandarins and reduce citrus green and blue molds caused by Penicillum digitatum and Penicillium italicum, respectively. RESULTS: The coatings F6/SB and F10/SB significantly reduced sour rot incidence and severity compared to uncoated control samples on lemons incubated at 28 °C for 4 and 7 days. The F6/SB coating reduced weight loss and gas exchange compared to uncoated fruit after 2 and 4 weeks of storage at 12 °C plus a shelf life of 1 week at 20 °C, without adversely affecting the lemon physicochemical quality. CONCLUSION: Overall, the F6/SB coating formulation, composed of pregelatinized potato starch, glyceryl monostearate, glycerol, emulsifiers and SB, with a total solid content of 5.5%, showed the best results in reducing citrus sour rot and maintaining the postharvest quality of cold-stored 'Fino' lemons. Therefore, it showed potential as a new cost-effective postharvest treatment suitable to be included in integrated disease management programs for citrus international markets with zero tolerance to chemical residues. © 2021 Society of Chemical Industry.


Asunto(s)
Citrus/microbiología , Conservación de Alimentos/métodos , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Geotrichum/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Almidón/química , Almidón/farmacología , Citrus/química , Composición de Medicamentos , Almacenamiento de Alimentos , Frutas/química , Frutas/microbiología , Geotrichum/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Benzoato de Sodio/química , Solanum tuberosum/química
6.
Comb Chem High Throughput Screen ; 25(9): 1545-1551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34391376

RESUMEN

BACKGROUND: Developing the high-efficiency and low-risk small-molecule greenfungicide is the key to effective control of the plant pathogenic oomycetes. Essential oils play a very important role in novel fungicide discovery for their unique sources and potential target sites. Eugenol, a kind of plant essential oil, was mainly isolated from the unopened and dried flower buds of Syzygium aromaticum of the Myrtaceae family. Due to its unique structural skeleton, eugenol and its derivatives have exhibited a wide range of biological activities. However, a study on the synthesis of novel 1-sulfonyloxy/acyloxyeugenol derivatives as fungicidal agents against Phytophthora capsici has not yet been reported. METHODS: Twenty-six novel 1-sulfonyloxy/acyloxyeugenol derivatives (3a-p and 5a-j) were prepared and their structures were well characterized by 1H NMR, HRMS, and m.p. Their fungicidal activity was evaluated against P. capsici by using the mycelial growth rate method. RESULTS: To find novel natural-product-based fungicidal agents to control the plant pathogenic oomycetes, we herein designed and synthesized two series of novel 1-sulfonyloxy/acyloxyeugenol derivatives (3a-p and 5a-j) as fungicidal agents against P. capsici Leonian, in vitro. Results of fungicidal activity revealed that, among all compounds, especially compounds 3a, 3f, and 3n displayed the most potent anti-oomycete activity against P. capsici with EC50 values of 79.05, 75.05, and 70.80, respectively. CONCLUSION: The results revealed that the anti-oomycete activity of eugenol with the sulfonyloxy group was higher than that with the acyloxy group. It is suggested that the fungicidal activity of eugenol can be improved by introducing the sulfonyloxy group. This will pave the way for further design, structural modification, and development of eugenol derivatives as fungicidal agents.


Asunto(s)
Fungicidas Industriales , Aceites Volátiles , Phytophthora , Eugenol/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Aceites de Plantas
7.
Molecules ; 26(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34770948

RESUMEN

Many Fusarium species are pathogenic, causing crop diseases during crop production and spoilage of agricultural products in both commercial and smallholder farming. Fusarium attack often results into food contamination, yield loss and increases in food insecurity and food prices. Synthetic fungicides have been used as a control strategy for the management of crop diseases caused by Fusarium pathogens. The negative effects associated with application of many synthetic pesticides has necessitated the need to search for alternative control strategies that are affordable and environmentally safe. Research on medicinal plants as control agents for Fusarium pathogens has received attention since plants are readily available and they contain wide variety of secondary metabolites that are biodegradable. The activities of solvent extracts, essential oils and compounds from medicinal plants have been tested against Fusarium phytopathogenic species. A summary of recent information on antifungal activity of plants against Fusarium species is valuable for the development of biopesticides. This paper reviews the antifungal research conducted on medicinal plants against Fusarium pathogens, over a 10-year period, from January 2012 to May 2021. We also highlight the challenges and opportunities of using natural products from medicinal plants in crop protection. Several databases (Science Direct and Web of Science) were used to obtain information on botanical products used to control Fusarium diseases on crops. Keywords search used included natural products, antifungal, Fusarium, crops diseases, phytopathogenic, natural compounds and essential oil.


Asunto(s)
Antifúngicos/farmacología , Productos Biológicos/farmacología , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Plantas Medicinales/química , Antifúngicos/química , Productos Biológicos/química , Fungicidas Industriales/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular
8.
J Invertebr Pathol ; 186: 107688, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34728218

RESUMEN

Nosema disease is one factor that can cause colony decline in honeybees (Apis mellifera L.) worldwide. Nosema ceranae has outcompeted Nosema apis in the Western honeybee (A. mellifera) which is its original host. Fumagilin is an effective antibiotic treatment to control Nosema infection but currently it is forbidden in many countries. In this study, 12 plant extracts were evaluated for their toxicity to adult bees and antimicrosporidian activity under laboratory and field conditions. N. ceranae-infected adult bees were fed ad libitum with 50% sucrose solution containing 1% and 5% (w/v) of each plant extract. Bee mortality in N. ceranae-infected groups fed with plant extracts was higher than that in the control group treated with fumagilin. The results demonstrated that 9 of 12 extracts had high antimicrosporidian activity against N. ceranae and their efficacies were comparable to fumagilin. Spore reduction in infected bees was 4-6 fold less after extract treatment. Following laboratory screening, Annona squamosa, Ocimum basilicum, Psidium guajava and Syzygium jambos were tested in honeybee colonies. Plant extracts of 2% concentration (w/v) inhibited the development of Nosema spores after 30 days of treatment. At the end of experiment (90 days), spores in the plant extract treated groups were lower than in group treated with fumagilin but there was no significant difference. Although, extracts tested in this study showed high toxicity to bee in laboratory cages, they did not show negative affects on bees under whole colony conditions. Therefore, the effectiveness of plant extracts tested in this study was notable and warrants further study as potential Nosema control agents in honey bees. Plant extracts would offer a non-antibiotic alternative for Nosema control and help reduce the overuse of antibiotics in livestock.


Asunto(s)
Abejas/microbiología , Fungicidas Industriales/farmacología , Nosema/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Fungicidas Industriales/química , Nosema/fisiología , Extractos Vegetales/química
9.
J Nat Prod ; 84(10): 2709-2716, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34644092

RESUMEN

Characterization of cryptic biosynthetic gene clusters (BGCs) from microbial genomes has been proven to be a powerful approach to the discovery of new natural products. However, such a genome mining approach to the discovery of bioactive plant metabolites has been muted. The plant BGCs characterized to date encode pathways for antibiotics important in plant defense against microbial pathogens, providing a means to discover such phytoalexins by mining plant genomes. Here is reported the discovery and characterization of a minimal BGC from the medicinal plant Catharanthus roseus, consisting of an adjacent pair of genes encoding a terpene synthase (CrTPS18) and cytochrome P450 (CYP71D349). These two enzymes act sequentially, with CrTPS18 acting as a sesquiterpene synthase, producing 5-epi-jinkoheremol (1), which CYP71D349 further hydroxylates to debneyol (2). Infection studies with maize revealed that 1 and 2 exhibit more potent fungicidal activity than validamycin. Accordingly, this study demonstrates that characterization of such cryptic plant BGCs is a promising strategy for the discovery of potential agrochemical leads. Moreover, despite the observed absence of 1 and 2 in C. roseus, the observed transcriptional regulation is consistent with their differential fungicidal activity, suggesting that such conditional coexpression may be sufficient to drive BGC assembly in plants.


Asunto(s)
Catharanthus/genética , Fungicidas Industriales/química , Familia de Multigenes , Sesquiterpenos/química , Transferasas Alquil y Aril/genética , Catharanthus/química , Sistema Enzimático del Citocromo P-450/genética , Genoma de Planta , Enfermedades de las Plantas/prevención & control , Plantas Medicinales/química , Plantas Medicinales/genética , Zea mays/microbiología , Fitoalexinas
10.
J Nat Prod ; 84(8): 2111-2120, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34197108

RESUMEN

A bioactivity-guided study on the leaves of Picrasma javanica led to the isolation of 19 quassinoids, including 13 new compounds. The structures of the new compounds were elucidated by a combination of spectroscopic data analysis, X-ray crystallography studies, and electronic circular dichroism (ECD) data interpretation. Compounds 1-7 are rare examples of quassinoids with a keto carbonyl group at C-12. The biological activities of 11 of the more abundant isolates were evaluated against five phytopathogenic fungi in vitro, and several of them including 6 and 15 showed moderate inhibitory effects that were comparative to those of the positive control, carbendazim. In addition, the preliminary structure-activity relationships (SARs) of these quassinoids were also investigated.


Asunto(s)
Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Picrasma/química , Cuassinas/farmacología , China , Hongos/patogenicidad , Fungicidas Industriales/química , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/farmacología , Picrasma/microbiología , Extractos Vegetales/química , Hojas de la Planta/química , Cuassinas/química , Relación Estructura-Actividad
11.
Molecules ; 26(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919567

RESUMEN

Essential oils are gaining interest as environmentally friendly alternatives to synthetic fungicides for management of seedborne pathogens. Here, seven essential oils were initially tested in vivo for disinfection of squash seeds (Cucurbita maxima) naturally contaminated by Stagonosporopsis cucurbitacearum, Alternaria alternata, Fusarium fujikuro, Fusarium solani, Paramyrothecium roridum, Albifimbria verrucaria, Curvularia spicifera, and Rhizopus stolonifer. The seeds were treated with essential oils from Cymbopogon citratus, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and Origanum majorana (#1 and #2). Incidence of S. cucurbitacearum was reduced, representing a range between 67.0% in L. nobilis to 84.4% in O. majorana #2. Treatments at 0.5 mg/mL essential oils did not affect seed germination, although radicles were shorter than controls, except with C. citratus and O. majorana #1 essential oils. Four days after seeding, seedling emergence was 20%, 30%, and 10% for control seeds and seeds treated with C. citratus essential oil (0.5 mg/mL) and fungicides (25 g/L difenoconazole plus 25 g/L fludioxonil). S. cucurbitacearum incidence was reduced by ~40% for plantlets from seeds treated with C. citratus essential oil. These data show the effectiveness of this essential oil to control the transmission of S. cucurbitacearum from seeds to plantlets, and thus define their potential use for seed decontamination in integrated pest management and organic agriculture.


Asunto(s)
Cucurbita/microbiología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Semillas/efectos de los fármacos , Alternaria/efectos de los fármacos , Alternaria/patogenicidad , Ascomicetos/patogenicidad , Cucurbita/efectos de los fármacos , Curvularia/efectos de los fármacos , Curvularia/patogenicidad , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Fusarium/patogenicidad , Hypocreales/efectos de los fármacos , Hypocreales/patogenicidad , Aceites Volátiles/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Aceites de Plantas/química , Rhizopus/efectos de los fármacos , Rhizopus/patogenicidad , Semillas/microbiología
12.
Food Chem ; 355: 129551, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33799235

RESUMEN

Hops contain a variety of compounds possessing antioxidant capacity including phenolic and polyphenolic compounds as well as α- and ß- acids. These compounds may contribute to the oxidative stability of beer during brewing and storage. Hop plants may be treated with copper-based fungicides (CBFs) which have been shown to increase the total copper content of harvested hop cones; however, copper ions are well known to catalyze the generation of reactive oxygen species production in beer and may negatively impact its oxidative stability. Increased copper content in CBF-treated hops has been previously shown to have deleterious effects on the aroma quality of hops and beer. The impact of CBFs on the antioxidant content and quality of hops has not been previously investigated. In this study, ethanolic extracts of CBF-treated hops are evaluated for their metal content and antioxidant quality in order to determine whether excess copper from CBF treatment negatively impacts their antioxidant capacity.


Asunto(s)
Antioxidantes/análisis , Cannabaceae/química , Cannabaceae/efectos de los fármacos , Cobre/química , Cobre/farmacología , Etanol/química , Extractos Vegetales/química , Cerveza/análisis , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Humulus , Oxidación-Reducción
13.
J Sci Food Agric ; 101(5): 1998-2005, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32949153

RESUMEN

BACKGROUND: Propiconazole is widely used to control fungal diseases in field crops, including celery and onion. The potential risk to the environment and human health has aroused much public concern. Therefore, it is significant to investigate the degradation behaviour, residue distribution, and dietary risk assessment of propiconazole in celery and onion. RESULTS: A sensitive analytical method for determination of propiconazole residue in celery and onion was established and validated through high-performance liquid chromatography tandem mass spectrometry. The average recovery rate of propiconazole ranged from 85.7% to 101.8%, with a relative standard deviation of 2.1-6.3%. For the dissipation kinetics, the data showed that propiconazole in celery and onion was degraded, with half-lives of 6.1-6.2 days and 8.7-8.8 days respectively. In the terminal residue experiments, the residues of propiconazole were below 4.66 mg kg-1 in celery after application two or three times and were below 0.029 mg kg-1 in onion after application of three or four times with an interval of 14 days under the designed dosages. The chronic and acute dietary exposure assessments for propiconazole were valued by risk quotient, with all values being lower than 100%. CONCLUSION: Propiconazole in celery and onion was rapidly degraded following first-order kinetics models. The dietary risk of propiconazole through celery or onion was negligible to consumers. The study not only offers a valuable reference for reasonable usage of propiconazole on celery and onion, but also facilitates the establishment of maximum residue limits in China. © 2020 Society of Chemical Industry.


Asunto(s)
Apium/química , Fungicidas Industriales/química , Cebollas/química , Triazoles/química , China , Cromatografía Líquida de Alta Presión , Exposición Dietética/efectos adversos , Residuos de Medicamentos , Contaminación de Alimentos/análisis , Cinética , Espectrometría de Masas en Tándem , Verduras/química
14.
Sci Rep ; 10(1): 22323, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339951

RESUMEN

The nanoformulations of pesticides have shown great interest from many parties due to their slow release capability and site-specific delivery. Hence, in this work, a new nanoformulation of a fungicide, namely chitosan-hexaconazole nanoparticles with a mean diameter size of 18 nm was subjected to the residual analysis on oil palm tissue, leaf and palm oil (crude palm oil and crude palm kernel oil) using a quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with the gas chromatography-micro electron capture detector (GC-µECD). The chitosan-hexaconazole nanoparticles were applied using the trunk injection method at 4.5 g a.i./palm (standard single dose) and 9.0 g a.i./palm (double dose). The fungicide residue was analyzed at 0 (6 h after application), 1, 3, 7, 14, 30, 60, 90, and 120 days after treatment. The palm oil matrices; the crude palm oil (CPO) and crude palm kernel oil (CPKO) were found to be residue-free. However, it was observed that high accumulation of the fungicide in the stem tissue and leaf after the treatment using the chitosan-hexaconazole nanoparticles, which is good for better bioavailability for the treatment of the fungi, Ganoderma boninense. The dissipation kinetic at double dose treatment in the tissue and leaf was found to govern by the second-order kinetic with half-lives (t1/2) of 383 and 515 days, respectively.


Asunto(s)
Quitosano/farmacología , Fungicidas Industriales/farmacología , Nanopartículas/química , Plaguicidas/farmacología , Quitosano/química , Fungicidas Industriales/química , Ganoderma/efectos de los fármacos , Ganoderma/patogenicidad , Aceite de Palma/química , Plaguicidas/química , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Triazoles/química , Triazoles/farmacología
15.
J Agric Food Chem ; 68(42): 11631-11643, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32985180

RESUMEN

Research groups have put significant emphasis on the evaluation of nutritional, health-promoting, and other biological activities of secondary metabolites from buckwheat. Among these phytochemicals, phenolic and lipophilic antioxidants, particularly, phenolic acids, flavonoids, and tocopherols, have been the focus of the latest studies since antioxidant activity has recently been associated with the possibility of inhibiting fungal growth and mycotoxin biosynthesis. The mycotoxin contamination of cereal and pseudocereal grains caused primarily by Fusarium, Penicillium, and Aspergillus species poses a significant hazard to human health. Therefore, efforts to examine the involvement of plant antioxidants in the biosynthesis of mycotoxins at the transcriptional level have emerged. In addition, hydrophobic interactions of buckwheat phenolics with cell membranes could also explain their capacity to reduce fungal development. Eventually, possibilities of enhancing the biological activity of cereal and pseudocereal phytochemicals have been studied, and sourdough fermentation has been proposed as an efficient method to increase antioxidant activities. This effect could result in an increased antifungal effects of sourdough and bakery products. This review reports the main advances in research on buckwheat phenolics and other antioxidant phytochemicals, highlighting possible mechanisms of action and processes that could improve their biological activities.


Asunto(s)
Fagopyrum/metabolismo , Fungicidas Industriales/química , Extractos Vegetales/química , Semillas/química , Fagopyrum/química , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Fungicidas Industriales/metabolismo , Fungicidas Industriales/farmacología , Humanos , Fenoles/química , Fenoles/metabolismo , Fenoles/farmacología , Enfermedades de las Plantas/microbiología , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Metabolismo Secundario , Semillas/metabolismo
16.
J Agric Food Chem ; 68(31): 8163-8171, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32790355

RESUMEN

We tested the ability of 14 strains of Trichoderma to emit volatile compounds that decreased or stopped the growth of Phytophthora infestans. Volatile organic compounds (VOCs) emitted from Trichoderma strains designated T41 and T45 inhibited the mycelial growth of P. infestans grown on a laboratory medium by 80 and 81.4%, respectively, and on potato tubers by 93.1 and 94.1%, respectively. Using the DNA sequence analysis of the translation elongation factor region, both Trichoderma strains were identified as Trichoderma atroviride. VOCs emitted by the strains were analyzed, and 39 compounds were identified. The most abundant compounds were 3-methyl-1-butanol, 6-pentyl-2-pyrone, 2-methyl-1-propanol, and acetoin. Electron microscopy of the hyphae treated with T. atroviride VOCs revealed serious morphological and ultrastructural damages, including cell deformation, collapse, and degradation of cytoplasmic organelles. To our knowledge, this is the first report describing the ability of Trichoderma VOCs to suppress the growth of the late blight potato pathogen.


Asunto(s)
Fungicidas Industriales/farmacología , Phytophthora infestans/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Trichoderma/química , Compuestos Orgánicos Volátiles/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Phytophthora infestans/crecimiento & desarrollo , Tubérculos de la Planta/microbiología , Trichoderma/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
17.
J Sci Food Agric ; 100(15): 5476-5486, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32564371

RESUMEN

BACKGROUND: Driven by environmental concerns, chemical fumigants are no longer allowed in many countries. Therefore, other strategies for reducing fungal inoculum in soils and on crop debris are being explored. In the present study, several Brassicaceae crops were screened for their potential to control Fusarium gramineaum and Fusarium poae mycelial growth in an in vitro inverted Petri dish experiment. Volatile production was measured using gas chromatography-mass spectrometry headspace analysis. A selection of cultivars from each crop species was further investigated using a pot experiment with maize. RESULTS: Ethiopian mustard (Brassica carinata) and brown mustard (Brassica juncea) released volatile allyl isothiocyanate (AITC) and a higher concentration of AITC was correlated with a better fungal growth reduction in the in vitro screening. Brown mustard cultivar Etamine completely inhibited growth of both Fusarium spp. Pure AITC in a solution with methanol resulted in a sigmoid dose-response curve for both Fusarium spp. tested. Fusarium poae appeared to be more tolerant to AITC than F. graminearum. A pot experiment revealed that the incorporation of brown mustard plant material could alleviate the clear negative effect of F. graminearum infection on maize growth. CONCLUSION: The present study demonstrated the correlation between the fungistatic effect of biofumigation crops on Fusarium spp. and their production of volatile AITC in vitro, without the addition of exogenous enzymes, and confirmed the biofumigation potential of brown mustard in a pot experiment with maize. These results may help farmers when selecting a green manure crop suitable for biofumigation. © 2020 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Isotiocianatos/farmacología , Planta de la Mostaza/química , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Zea mays/microbiología , Fumigación , Fungicidas Industriales/química , Fusarium/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Isotiocianatos/química , Planta de la Mostaza/clasificación , Extractos Vegetales/química
18.
J Sci Food Agric ; 100(12): 4575-4582, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32424855

RESUMEN

BACKGROUND: Erwinia carotovora subsp. cause the potato soft rot, which is a major disease in agriculture. Antibacterial agents currently applied on potato soft rot often offer a restricted control and have several disadvantages. Propolis has shown a wide range of antimicrobial activity, although its effect has not been investigated on E. carotovora subsp. In this work, we tested extracts from propolis samples of Northwest Argentina against E. carotovora subsp. RESULTS: Ethanolic propolis extracts (EPEs) from samples of Santiago del Estero province, particularly from sample 4 (EPE4), showed the highest antibacterial activity, which was associated with the highest content of flavonoids. 2',4'-Dihydroxychalcone, 2',4'-dihydroxy-3'-methoxychalcone, galangin, and pinocembrin were identified as antibacterial constituents of EPE4. 2',4'-Dihydroxychalcone showed an antibacterial activity (minimum inhibitory concentration, MIC = 0.3-1.2 µg gallic acid equivalents (GAE) mL-1 ; minimum bactericidal concentration, MBC = 0.6-4.8 µg GAE mL-1 ) lower than that of bacterimycin (MIC = 2.4-9.6 µg mL-1 ; MBC = 19.2-38.4 µg GAE mL-1 ) and streptocycline (MIC = 19.2-38.4 µg mL-1 ; MBC = 38.4-76.8 µg mL-1 ). Preventive assays on unwounded and wounded potatoes showed that their immersion in EPE4 containing 87.5 µg GAE mL-1 or streptocycline containing 40 µg mL-1 was equally effective in controlling potato soft rot, reducing the disease incidence by 64.6-67.0% (unwounded tubers) and 88.0-86.0% (wounded tubers) and the disease severity by 49.8-49.8% (unwounded tubers) and 54.5-68.5% (wounded tubers). CONCLUSIONS: Flavonoid-rich propolis extracts from Northwest Argentina efficiently reduced in vivo the incidence and severity of potato soft rot caused by E. carotovora subsp.


Asunto(s)
Fungicidas Industriales/farmacología , Pectobacterium carotovorum/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Própolis/farmacología , Solanum tuberosum/microbiología , Argentina , Fungicidas Industriales/química , Pruebas de Sensibilidad Microbiana , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/prevención & control , Tubérculos de la Planta/microbiología , Própolis/química
19.
J Sci Food Agric ; 100(13): 4705-4713, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32458444

RESUMEN

BACKGROUND: Iprodione is considered to be an endocrine-disturbing pesticide, which could harm consumers. The garlic crop has three edible parts: the garlic, the green garlic, and the garlic shoot, which correspond to different stages of its growth. In this study, iprodione residue dissipation and distribution in these three edible parts were investigated, and dietary risk was evaluated. RESULTS: Iprodione residues were present in these samples in the following order: green garlic > garlic shoot > > garlic. The dissipation of iprodione in green garlic was slow with a half-life of 5.82-19.25 days. A very high RQchronic value of 207.35-407.30% suggested that the residual iprodione in green garlic had an unacceptable level of risk. Iprodione residue was significantly eliminated (59-90%) by an alkaline solution. The order for removing iprodione by soaking was the alkaline solutions (0.5% and 2% NaHCO3 ) > the acidic solutions (5% and 10% of vinegar) ≈ the neutral solutions (the 1% and 2% of table salt) > tap water. Processing factors (PFs) were <1, indicating that processing could decrease the iprodione residue level. CONCLUSION: This work could contribute to establishing maximum residue limits (MRLs) for iprodione in garlic, green garlic, and garlic shoots, and could provide guidance on the safe and appropriate use of iprodione in the garlic crop. © 2020 Society of Chemical Industry.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Fungicidas Industriales/química , Ajo/química , Hidantoínas/química , Residuos de Plaguicidas/química , Brotes de la Planta/química , Aminoimidazol Carboxamida/química , Contaminación de Alimentos/análisis , Ajo/crecimiento & desarrollo , Semivida , Hojas de la Planta/química , Brotes de la Planta/crecimiento & desarrollo
20.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316699

RESUMEN

Rutaceae are widely used in ethnomedicine to treat infectious diseases in humans and plants. In this study, the antifungal activity of the Vepris macrophylla leaf essential oil (VEO) and its main components, citral and citronellol, was evaluated against six phytopathogenic fungi. In addition, the possible action of VEO on the synthesis of mycotoxins was evaluated as well. To determine the antifungal activity of VEO we used the agar dilution method and VEO showed inhibitory activity against all the tested fungi. In particular, VEO resulted to be fungicidal against Phytophthora cryptogea and Fusarium avenaceum. For all other fungi VEO exhibited fungistatic activity and the weakest effect was observed on Alternaria solani. Citral was very effective against P. cryptogea, F. avenaceum, F. poae and F. graminearum. On the other hand, citronellol showed good activity towards P. cryptogea and F. avenaceum and weaker activity towards F. poae and F. graminearum. It can be concluded that VEO can be considered a promising antifungal agent, especially against P. cryptogea and F. avenaceum, suggesting a possible use in the formulation of new selective and natural fungicides.


Asunto(s)
Hongos/crecimiento & desarrollo , Fungicidas Industriales/farmacocinética , Micotoxinas/metabolismo , Aceites Volátiles/farmacología , Rutaceae/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacología , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Recuento de Colonia Microbiana , Hongos/clasificación , Hongos/efectos de los fármacos , Fungicidas Industriales/química , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Aceites Volátiles/química , Phytophthora/efectos de los fármacos , Phytophthora/crecimiento & desarrollo , Hojas de la Planta/química , Aceites de Plantas/química , Aceites de Plantas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA