Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Sci ; 341: 111996, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272070

RESUMEN

During the sunflower seed production process, the role of artificial shading treatment (ST) in seed development and subsequent seed germination remains largely unknown. In the present study, sunflower mother plants were artificially shaded during 1-34 (full period-ST, FST), 1-22 (early period-ST, EST), and 22-34 (late period-ST, LST) days after pollination (DAP), to examine the effects of parental shading on subsequent seed germination. Both FST and EST significantly reduced the photosynthetic efficiency of sunflower, manifested as decreased seed dry weight and unfavorable seed germination. On the contrary, LST remarkably increased seed dry weight and promoted subsequent seed germination and seedling establishment. LST enhanced the activities of several key enzymes involved in triglyceride anabolism and corresponding-genes expression, which in turn increased the total fatty acid contents and altered the fatty acid composition. During early germination, the key enzyme activities involved in triglyceride disintegration and corresponding-gene expressions in LST seeds were apparently higher than those in seeds without the shading treatment (WST). Consistently, LST seeds had significant higher contents of ATP and soluble sugar. Moreover, enzyme activities related to abscisic acid (ABA) biosynthesis and corresponding gene expressions decreased within LST seeds, whereas the enzyme activities and corresponding gene expressions associated with gibberellin (GA) biosynthesis were increased. These results were also evidenced by the reduced ABA content but elevated GA level within LST seeds, giving rise to higher GA/ABA ratio. Our findings suggested that LST could promote sunflower seed development and subsequent seed germination as well as seedling establishment through modulating the dynamic metabolism of triglycerides, fatty acid and GA/ABA balance.


Asunto(s)
Helianthus , Plantones , Germinación/genética , Helianthus/genética , Helianthus/metabolismo , Ácido Abscísico/metabolismo , Semillas/metabolismo , Giberelinas/metabolismo , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139361

RESUMEN

In potatoes, tuber secondary growth, especially sprouting, deforms the tubers and severely lowers their commercial value. Tuber sprouting is induced by signal substances, such as gibberellin (GA), which are transported to the tuber from the plant body. The molecular mechanism underlying GA-induced sprouting remains ambiguous. Here, we tried to recreate tuber secondary growth using in vitro stemmed microtubers (MTs) (with the nodal stem attached) and MT halves (with the nodal stem entirely removed). Our experiments showed that GA alone could initiate the sprouting of stemmed microtubers; however, GA failed to initiate MT halves unless 6-benzyladenine, a synthetic cytokinin CK, was co-applied. Here, we analyzed the transcriptional profiles of sprouting buds using these in vitro MTs. RNA-seq analysis revealed a downregulation of cytokinin-activated signaling but an upregulation of the "Zeatin biosynthesis" pathway, as shown by increased expression of CYP735A, CISZOG, and UGT85A1 in sprouting buds; additionally, the upregulation of genes, such as IAA15, IAA22, and SAUR50, associated with auxin-activated signaling and one abscisic acid (ABA) negative regulator, PLY4, plays a vital role during sprouting growth. Our findings indicate that the role of the nodal stem is synonymous with CK in sprouting growth, suggesting that CK signaling and homeostasis are critical to supporting GA-induced sprouting. To effectively control tuber sprouting, more effort is required to be devoted to these critical genes.


Asunto(s)
Citocininas , Solanum tuberosum , Citocininas/metabolismo , Solanum tuberosum/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Perfilación de la Expresión Génica , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Tubérculos de la Planta/metabolismo
3.
Plant Physiol ; 193(4): 2555-2572, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37691396

RESUMEN

Phased short-interfering RNAs (phasiRNAs) fine tune various stages of growth, development, and stress responses in plants. Potato (Solanum tuberosum) tuberization is a complex process, wherein a belowground modified stem (stolon) passes through developmental stages like swollen stolon and minituber before it matures to a potato. Previously, we identified several phasiRNA-producing loci (PHAS) from stolon-to-tuber transition stages. However, whether phasiRNAs mediate tuber development remains unknown. Here, we show that a gene encoding NB-ARC DOMAIN-CONTAINING DISEASE RESISTANCE PROTEIN (StRGA4; a PHAS locus) is targeted by Stu-microRNA482c to generate phasiRNAs. Interestingly, we observed that one of the phasiRNAs, referred as short-interfering RNA D29(-), i.e. siRD29(-), targets the gibberellin (GA) biosynthesis gene GIBBERELLIN 3-OXIDASE 3 (StGA3ox3). Since regulation of bioactive GA levels in stolons controls tuber development, we hypothesized that a gene regulatory module, Stu-miR482c-StRGA4-siRD29(-)-StGA3ox3, could govern tuber development. Through transient expression assays and small RNA sequencing, generation of siRD29(-) and its phase was confirmed in planta. Notably, the expression of StGA3ox3 was higher in swollen stolon compared to stolon, whereas siRD29(-) showed a negative association with StGA3ox3 expression. Antisense (AS) lines of StGA3ox3 produced more tubers compared to wild type. As expected, StRGA4 overexpression (OE) lines had high levels of siRD29(-) and mimicked the phenotypes of StGA3ox3-AS lines, indicating the functionality of this module in potato. In vitro tuberization assays (with or without a GA inhibitor) using StGA3ox3 antisense lines and overexpression lines of StGA3ox3 or StRGA4 revealed that StGA3ox3 controls the tuber stalk development. Taken together, our findings suggest that a phasiRNA, siRD29(-), mediates the regulation of StGA3ox3 during stolon-to-tuber transitions in potato.


Asunto(s)
Giberelinas , Solanum tuberosum , Giberelinas/metabolismo , ARN Interferente Pequeño/metabolismo , Solanum tuberosum/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta , Regulación de la Expresión Génica de las Plantas
4.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982639

RESUMEN

With far-red-light supplementation (3 W·m-2, and 6 W·m-2), the flower budding rate, plant height, internode length, plant display, and stem diameter of Chinese kale were largely elevated, as well as the leaf morphology such as leaf length, leaf width, petiole length, and leaf area. Consequently, the fresh weight and dry weight of the edible parts of Chinese kale were markedly increased. The photosynthetic traits were enhanced, and the mineral elements were accumulated. To further explore the mechanism that far-red light simultaneously promoted the vegetative growth and reproductive growth of Chinese kale, this study used RNA sequencing to gain a global perspective on the transcriptional regulation, combining it with an analysis of composition and content of phytohormones. A total of 1409 differentially expressed genes were identified, involved mainly in pathways related to photosynthesis, plant circadian rhythm, plant hormone biosynthesis, and signal transduction. The gibberellins GA9, GA19, and GA20 and the auxin ME-IAA were strongly accumulated under far-red light. However, the contents of the gibberellins GA4 and GA24, the cytokinins IP and cZ, and the jasmonate JA were significantly reduced by far-red light. The results indicated that the supplementary far-red light can be a useful tool to regulate the vegetative architecture, elevate the density of cultivation, enhance the photosynthesis, increase the mineral accumulation, accelerate the growth, and obtain a significantly higher yield of Chinese kale.


Asunto(s)
Brassica , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Brassica/metabolismo , Transcriptoma , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo
5.
BMC Plant Biol ; 23(1): 93, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782128

RESUMEN

BACKGROUND: Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS: In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS: In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.


Asunto(s)
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Sci ; 324: 111447, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36041563

RESUMEN

Male reproductive development in higher plants experienced a series of complex biological processes, which can be regulated by Gibberellins (GA). The transcriptional factor GAMYB is a crucial component of GA signaling in anther development. However, the mechanism of GAMYB in wheat male reproduction is less understood. Here, we found that the thermo-sensitive genic male sterilitywheat line YanZhan 4110S displayed delayed tapetum programmed cell death and pollen abortive under the hot temperature stress. Combined with RNA-Sequencing data analysis, TaGAMYB associated with fertility conversion was isolated, which was located in the nucleus and highly expressed in fertility anthers. The silencing of TaGAMYB in wheat displayed fertility decline, defects in tapetum, pollen and exine formation, where the abortion characteristics were the same as YanZhan 4110S. In addition, either hot temperature or GA3 treatment in YanZhan 4110S caused the downregulation of TaGAMYB at binucleate stage and trinucleate stage, as well as fertility decrease. Further, the transcription factor TaWRKY2 significantly changed under GA3-treatment and directly interacted with the TaGAMYB promoter by W-box cis-element. Therefore, we suggested that TaGAMYB may be essential for anther development and male fertility, and GA3 activates TaGAMYB by TaWRKY2 to regulate fertility in wheat.


Asunto(s)
Fenómenos Biológicos , Oryza , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Oryza/genética , Polen , ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismo
7.
Theor Appl Genet ; 135(10): 3497-3510, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962210

RESUMEN

KEY MESSAGE: A novel mutation in the BnaA03.IAA7 protein reduces plant height and enhances gibberellin signaling in Brassica napus L. Rapeseed (Brassica napus) is an excellent and important source for vegetable oil production, but its production is severely affected by lodging. Lodging hinders mechanization and decreases yield, and an ideal solution is semidwarf breeding. Limited by germplasm resources, semidwarf breeding developed slowly in rapeseed. In the current study, a mutant called sdA03 was isolated from EMS-mutagenized lines of Zhongshuang 11 (ZS11). The inheritance analysis showed that phenotypes of sdA03 were controlled by a single semidominant gene. Genetic mapping, RNA-seq and candidate gene analysis identified BnaA03.IAA7 as a candidate gene, and a function test confirmed that the mutated BnaA03.iaa7 regulates plant architecture in a dose-dependent manner. Yeast two-hybrid and transient expression experiments illustrated the P87L substitution in the GWPPV/I degron motif of BnaA03.iaa7 impaired the interaction between BnaA03.IAA7 and TIR1 proteins, and BnaA03.iaa7 prevented ARF from activating the auxin signaling pathway.The gibberellin (GA) content was higher in sdA03 hypocotyls than in those of ZS11. Further expression analysis showed more active gibberellin signaling in hypocotyl and richer expression of GA synthetic genes in root and cotyledon of sdA03 seedlings. Finally, a marker was developed based on the SNP found in BnaA03.iaa7 and used in molecular breeding. The study enriched our understanding of the architectural regulation of rapeseed and provided germplasm resources for breeding.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Brassica rapa/genética , Perfilación de la Expresión Génica , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Fitomejoramiento , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética
8.
Cells ; 11(7)2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406664

RESUMEN

Onion (Allium cepa L.) is an important bulb crop grown worldwide. Dormancy in bulbous plants is an important physiological state mainly regulated by a complex gene network that determines a stop of vegetative growth during unfavorable seasons. Limited knowledge on the molecular mechanisms that regulate dormancy in onion were available until now. Here, a comparison between uninfected and onion yellow dwarf virus (OYDV)-infected onion bulbs highlighted an altered dormancy in the virus-infected plants, causing several symptoms, such as leaf striping, growth reduction, early bulb sprouting and rooting, as well as a lower abscisic acid (ABA) level at the start of dormancy. Furthermore, by comparing three dormancy stages, almost five thousand four hundred (5390) differentially expressed genes (DEGs) were found in uninfected bulbs, while the number of DEGs was significantly reduced (1322) in OYDV-infected bulbs. Genes involved in cell wall modification, proteolysis, and hormone signaling, such as ABA, gibberellins (GAs), indole-3-acetic acid (IAA), and brassinosteroids (BRs), that have already been reported as key dormancy-related pathways, were the most enriched ones in the healthy plants. Interestingly, several transcription factors (TFs) were up-regulated in the uninfected bulbs, among them three genes belonging to the WRKY family, for the first time characterized in onion, were identified during dormancy release. The involvement of specific WRKY genes in breaking dormancy in onion was confirmed by GO enrichment and network analysis, highlighting a correlation between AcWRKY32 and genes driving plant development, cell wall modification, and division via gibberellin and auxin homeostasis, two key processes in dormancy release. Overall, we present, for the first time, a detailed molecular analysis of the dormancy process, a description of the WRKY-TF family in onion, providing a better understanding of the role played by AcWRKY32 in the bulb dormancy release. The TF co-expressed genes may represent targets for controlling the early sprouting in onion, laying the foundations for novel breeding programs to improve shelf life and reduce postharvest.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Cebollas , Ácido Abscísico/metabolismo , Redes Reguladoras de Genes , Giberelinas/metabolismo , Cebollas/genética , Cebollas/metabolismo , Potyvirus
9.
Environ Sci Pollut Res Int ; 29(43): 64999-65011, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35482243

RESUMEN

Different maize varieties respond differentially to cadmium (Cd) stress. However, the physiological mechanisms that determine the response are not well defined. Antioxidant systems and sucrose metabolism help plants to cope with abiotic stresses, including Cd stress. The relationship of these two systems in the response to Cd stress is unclear. Seed is sensitive to Cd stress during germination. In this study, we investigated changes in the antioxidant system, sucrose metabolism, and abscisic acid and gibberellin concentrations in two maize varieties with low (FY9) or high (SY33) sensitivities to Cd under exposure to CdCl2 (20 mg L-1) at different stages of germination (3, 6, and 9 days).The seed germination and seedling growth were inhibited under Cd stress. The superoxide, malondialdehyde, and proline concentrations, and the superoxide dismutase, peroxidase, catalase, and lipoxygenase activities increased compared with those of the control (CK; without Cd). The expression levels of three genes (ZmOPR2, ZmOPR5, and ZmPP2C6) responsive to oxidative stress increased differentially in the two varieties under Cd stress. The activity of the antioxidant system and the transcript levels of oxidative stress-responsive genes were higher in the Cd-tolerant variety, FY9, than in the sensitive variety, SY33. Sucrose metabolism was increased under Cd stress compared with that of the CK and was more active in the Cd-sensitive variety, SY33. These results suggest that the antioxidant system is the first response to Cd stress in maize, and that sucrose metabolism is cooperative and complementary under exposure to Cd.


Asunto(s)
Antioxidantes , Cadmio , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Cadmio/metabolismo , Catalasa/metabolismo , Giberelinas/metabolismo , Lipooxigenasas/metabolismo , Malondialdehído/metabolismo , Peroxidasas/metabolismo , Prolina/metabolismo , Sacarosa , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Zea mays
10.
Plant Physiol Biochem ; 174: 11-21, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121481

RESUMEN

Although a few apple (Malus × ×domestica) varieties are self-compatible, little is known about the differences in fruit quality between self- and cross-pollinated apple. In our current study, we compared the fruit quality of self-pollinated apple plants (cultivar 'Hanfu') in self-pollination or cross-pollinated by another cultivar 'Qinguan'. Analysis of fruit quality revealed substantial differences in the external qualities between self- and cross-pollinated apple fruit, but not in the internal qualities. Fruits harvested from self-pollinated 'Hanfu' were smaller and more asymmetrical than those harvested from the cross-pollinated plants. We developed a mathematical model describing how seed number and distribution affect fruit growth. According to this model, the fewer the seeds, the greater the force released from the seeds and the more asymmetrical the fruit. Detection of endogenous hormone and the associated gene expression revealed that gibberellin (GA) levels and GA transporter gene expression on the seedless side were significantly lower than those on the seeded side. Analysis of fruit pectin methylesterase activity and demethylated pectin levels indicated that the lack of GA limits fruit cell wall extension. Additionally, spraying the self-pollinating plants with gibberellic acid increased the fruit weight and lowered the proportion of asymmetrical fruit, recovering the exterior fruit quality to that of the cross-pollinated fruit. Furthermore, exogenous GA treatment increased the wax layer thickness and reduced the fruit water loss rate, leading to a dramatic improvement in fruit storage capacity. Therefore, exogenous GA treatment could be used to ensure regular fruit production of self-pollinated 'Hanfu'.


Asunto(s)
Malus , Frutas/metabolismo , Giberelinas/metabolismo , Malus/genética , Polinización , Semillas
11.
Biomolecules ; 12(2)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35204699

RESUMEN

Melatonin production is induced by many abiotic and biotic stressors; it modulates the levels of many plant hormones and their signaling pathways. This study investigated the effects of plant hormones on melatonin synthesis. Melatonin synthesis in rice seedlings was significantly induced upon exogenous gibberellin 3 (GA3) treatment, while it was severely decreased by GA synthesis inhibitor paclobutrazol. In contrast, abscisic acid (ABA) strongly inhibited melatonin synthesis, whereas its inhibitor norflurazon (NF) induced melatonin synthesis. The observed GA-mediated increase in melatonin was closely associated with elevated expression levels of melatonin biosynthetic genes such as TDC3, T5H, and ASMT1; it was also associated with reduced expression levels of catabolic genes ASDAC and M2H. In a paddy field, the treatment of immature rice seeds with exogenous GA led to enhanced melatonin production in rice seeds; various transgenic rice plants downregulating a GA biosynthesis gene (GA3ox2) and a signaling gene (Gα) showed severely decreased melatonin levels, providing in vivo genetic evidence that GA has a positive effect on melatonin synthesis. This is the first study to report that GA is positively involved in melatonin synthesis in plants; GA treatment can be used to produce melatonin-rich seeds, vegetables, and fruits, which are beneficial for human health.


Asunto(s)
Melatonina , Oryza , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Giberelinas/farmacología , Humanos , Melatonina/metabolismo , Melatonina/farmacología , Oryza/metabolismo
12.
Cells ; 10(10)2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34685657

RESUMEN

Flax (Linum usitatissimum L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development. In this study, we demonstrate a positive relationship between seed oil production and seed coat mucilage extrusion in the agronomic model, flax. Three recombinant inbred lines were selected for low, medium and high mucilage and seed oil contents. Metabolite and transcript profiling (1H NMR and DNA oligo-microarrays) was performed on the seeds during seed development. These analyses showed main changes in the seed coat transcriptome during the mid-phase of seed development (25 Days Post-Anthesis), once the mucilage biosynthesis and modification processes are thought to be finished. These transcriptome changes comprised genes that are putatively involved in mucilage chemical modification and oil synthesis, as well as gibberellic acid (GA) metabolism. The results of this integrative biology approach suggest that transcriptional regulations of seed oil and fatty acid (FA) metabolism could occur in the seed coat during the mid-stage of seed development, once the seed coat carbon supplies have been used for mucilage biosynthesis and mechanochemical properties of the mucilage secretory cells.


Asunto(s)
Lino/crecimiento & desarrollo , Lino/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mucílago de Planta/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Transcripción Genética , Pared Celular/metabolismo , Endospermo/metabolismo , Ácidos Grasos/metabolismo , Lino/ultraestructura , Giberelinas/metabolismo , Glucosa/metabolismo , Endogamia , Cinética , Metabolómica , Fenotipo , Mucílago de Planta/ultraestructura , Aceites de Plantas/metabolismo , Análisis de Componente Principal , Recombinación Genética/genética , Semillas/ultraestructura , Almidón/metabolismo , Sacarosa/metabolismo , Transcriptoma/genética
13.
BMC Plant Biol ; 21(1): 206, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931042

RESUMEN

BACKGROUND: Tartary buckwheat is an important minor crop species with high nutritional and medicinal value and is widely planted worldwide. Cultivated Tartary buckwheat plants are tall and have hollow stems that lodge easily, which severely affects their yield and hinders the development of the Tartary buckwheat industry. METHODS: Heifeng No. 1 seeds were treated with ethylmethanesulfonate (EMS) to generate a mutant library. The dwarf mutant ftdm was selected from the mutagenized population, and the agronomic characteristics giving rise to the dwarf phenotype were evaluated. Ultra-fast liquid chromatography-electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) was performed to determine the factors underlying the different phenotypes between the wild-type (WT) and ftdm plants. In addition, RNA sequencing (RNA-seq) was performed via the HiSeq 2000 platform, and the resulting transcriptomic data were analysed to identify differentially expressed genes (DEGs). Single-nucleotide polymorphism (SNP) variant analysis revealed possible sites associated with dwarfism. The expression levels of the potential DEGs between the WT and ftdm mutant were then measured via qRT-PCR and fragments per kilobase of transcript per million mapped reads (FPKM). RESULT: The plant height (PH) of the ftdm mutant decreased to 42% of that of the WT, and compared with the WT, the mutant and had a higher breaking force (BF) and lower lodging index (LI). Lower GA4 and GA7 contents and higher contents of jasmonic acid (JA), salicylic acid (SA) and brassinolactone (BR) were detected in the stems of the ftdm mutant compared with the WT. Exogenous application of GAs could not revert the dwarfism of the ftdm mutant. On the basis of the transcriptomic analysis, 146 homozygous SNP loci were identified. In total, 12 DEGs with nonsynonymous mutations were ultimately identified, which were considered potential candidate genes related to the dwarf trait. When the sequences of eight genes whose expression was downregulated and four genes whose expression was upregulated were compared, SKIP14, an F-box protein whose sequence is 85% homologous to that of SLY1 in Arabidopsis, presented an amino acid change (from Ser to Asn) and was expressed at a lower level in the stems of the ftdm mutant compared with the WT. Hence, we speculated that this amino acid change in SKIP14 resulted in a disruption in GA signal transduction, indirectly decreasing the GA content and downregulating the expression of genes involved in GA biosynthesis or the GA response. Further studies are needed to determine the molecular basis underlying the dwarf phenotype of the ftdm mutant. CONCLUSION: We report a Tartary buckwheat EMS dwarf mutant, ftdm, suitable for high-density planting and commercial farming. A significant decrease in GA4 and GA7 levels was detected in the ftdm mutant, and 12 DEGs expressed in the stems of the ftdm mutant were selected as candidates of the dwarfing gene. One nonsynonymous mutation was detected in the SKIP14 gene in the ftdm mutant, and this gene had a lower transcript level compared with that in the WT.


Asunto(s)
Fagopyrum/genética , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Fagopyrum/anatomía & histología , Fagopyrum/crecimiento & desarrollo , Perfilación de la Expresión Génica , Mutación , Fenotipo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ARN
14.
Plant Cell Rep ; 40(8): 1585-1602, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34003317

RESUMEN

KEY MESSAGE: Melatonin enhanced arsenic (As) tolerance by inhibiting As bioaccumulation, modulating the expression of As transporters and phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid. The present study was aimed at investigating the influence of exogenous melatonin on the regulation of endogenous plant growth regulators and their cumulative effects on metal(loid)-binding ligands in two contrasting indica rice cultivars, viz., Khitish (arsenic sensitive) and Muktashri (arsenic tolerant) under arsenic stress. Melatonin supplementation ameliorated arsenic-induced perturbations by triggering endogenous levels of gibberellic acid and melatonin, via up-regulating the expression of key biosynthetic genes like GA3ox, TDC, SNAT and ASMT. The endogenous abscisic acid content was also enhanced upon melatonin treatment by induced expression of the key anabolic gene, NCED3 and concomitant suppression of ABA8ox1. Enhanced melatonin content induced accumulation of higher polyamines (spermidine and spermine), together with up-regulation of SPDS and SPMS in Khitish, thereby modulating stress condition. On the contrary, melatonin escalated putrescine and spermidine levels in Muktashri, via enhanced expression of ADC and SAMDC. The role of melatonin appeared to be more prominent in Khitish, as evident from better utilization of thiol components like cysteine, GSH, non-protein thiols and phytochelatins, with higher GSH/GSSG ratio, despite down-regulated expression of corresponding thiol-metabolic genes (OsMT2 and OsPCS1) to deal with arsenic toxicity. The extent of arsenic bioaccumulation, which was magnified several folds, particularly in Khitish, was decreased upon melatonin application. Overall, our observation highlighted the fact that melatonin enhanced arsenic tolerance by inhibiting arsenic bioaccumulation, via modulating the expression levels of selected arsenic transporters (OsNramp1, OsPT2, OsPT8, OsLsi1) and controlling endogenous phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid.


Asunto(s)
Arsénico/toxicidad , Melatonina/farmacología , Oryza/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Ácido Abscísico/metabolismo , Arsénico/farmacocinética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/metabolismo , Glutatión/metabolismo , Homeostasis/efectos de los fármacos , Inactivación Metabólica , Melatonina/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Estrés Fisiológico/efectos de los fármacos
15.
J Agric Food Chem ; 68(49): 14417-14425, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33191742

RESUMEN

As a widely used plant growth regulator, the gibberellic acid (GA3) residue in tea has potential risk for human health. Herein, the degradation of GA3 and its conversion into main metabolites were investigated during tea planting, manufacturing, and brewing using ultrahigh-performance liquid chromatography tandem mass spectrometry. The metabolite iso-GA3 was first discovered during the tea production chain and identified using Q-Exactive Orbitrap mass spectrometry. GA3 dissipated following first-order kinetics in tea shoots with half-lives ranging from 2.46 to 2.74 days. It was degraded into iso-GA3 in tea shoots, which had a longer residual period than GA3. Meanwhile, external application of GA3 could increase the proportion of growth-promoting endogenous phytohormones and lead to rapid growth of tea plants. During tea manufacturing, iso-GA3 was quickly and massively converted from GA3. Fixing (heat at 220-230 °C) played an important role in the dissipation of GA3 and iso-GA3 during green tea manufacturing, but there were high residues of iso-GA3 in black tea. High transfer rates (77.3 to 94.5%) of GA3 and iso-GA3 were observed during tea brewing. These results could provide a practical reference for food safety in tea and other agricultural products and the guidance for scientific application of GA3 in tea planting.


Asunto(s)
Camellia sinensis/metabolismo , Giberelinas/química , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Camellia sinensis/química , Camellia sinensis/crecimiento & desarrollo , Culinaria , Residuos de Medicamentos/química , Residuos de Medicamentos/metabolismo , Inocuidad de los Alimentos , Calor , Humanos , Espectrometría de Masas , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Té/química
16.
Dokl Biol Sci ; 494(1): 248-250, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33083883

RESUMEN

The effect of the introduction of a non-ionogenic surfactant Polysorbate 20 into a sorption preparation (CB-H-BYA) on the structure of sorbent layers formed on the surface of spring wheat seeds during their pre-sowing treatment has been studied using electron microscopy. According to the results, an increase in the efficiency of sorption preparations containing Polysorbate 20 is based on an intensification of the bentonite aggregate disintegration into individual montmorillonite particles and a formation of more dense protective sorption layer providing a better protection of seeds against allelotoxins on the seed surface. The introduction of non-ionogenic surfactants into the preparation increases a sorption capacity of a bentonite-humus complex that results in a decreased gibberellin activity in a solution. Therefore, to achieve the maximum physiological activity of gibberellin in a preparation solution, it is necessary to increase its concentration from 100 to 300 mg/L. As a result, the stimulating effect increases from 36 to 55%.


Asunto(s)
Adsorción/efectos de los fármacos , Polisorbatos/farmacología , Semillas/efectos de los fármacos , Triticum/efectos de los fármacos , Bentonita/metabolismo , Giberelinas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Tensoactivos/farmacología , Triticum/crecimiento & desarrollo , Triticum/metabolismo
17.
Sci Rep ; 10(1): 9680, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541892

RESUMEN

Saffron, derived from the stigma of Crocus sativus, is not only a valuable traditional Chinese medicine but also the expensive spice and dye. Its yield and quality are seriously influenced by its flowering transition. However, the molecular regulatory mechanism of the flowering transition in C. sativus is still unknown. In this study, we performed morphological, physiological and transcriptomic analyses using apical bud samples from C. sativus during the floral transition process. Morphological results indicated that the flowering transition process could be divided into three stages: an undifferentiated period, the early flower bud differentiation period, and the late flower bud differentiation period. Sugar, gibberellin (GA3), auxin (IAA) and zeatin (ZT) levels were steadily upregulated, while starch and abscisic acid (ABA) levels were gradually downregulated. Transcriptomic analysis showed that a total of 60 203 unigenes were identified, among which 19 490 were significantly differentially expressed. Of these, 165 unigenes were involved in flowering and were significantly enriched in the sugar metabolism, hormone signal transduction, cell cycle regulatory, photoperiod and autonomous pathways. Based on the above analysis, a hypothetical model for the regulatory networks of the saffron flowering transition was proposed. This study lays a theoretical basis for the genetic regulation of flowering in C. sativus.


Asunto(s)
Crocus/fisiología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Crocus/genética , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zeatina/metabolismo
18.
Chemosphere ; 256: 127157, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32470740

RESUMEN

Microcystins released by cyanobacteria affect crop growth and productivity, and even food safety. Plant hormones play a vital role in regulating growth, development and stress response in plants. Therefore, we studied the response of hormones including abscisic acid (ABA), indole-3-acetic acid (IAA), Zeatin (ZT) and gibberellin (GA3) as well as hormone balances (IAA/ABA, ZT/ABA and GA/ABA) to cyanobacterial extract containing microcystins (1, 10, 100 and 1000 µg/L) during stress and recovery periods. Low concentration microcystins (1 µg/L) promoted growth of rice seedlings by increasing levels of IAA, ZT and GA3 and maintaining hormone balances. In addition, the up-regulation of OsYUCCA1 increased IAA level in rice roots by promoting IAA biosynthesis. High concentrations microcystins (10, 100 or1000 µg/L) inhibited growth of rice seedlings by reducing levels of IAA, ZT and GA3 and ratios of IAA/ABA, ZT/ABA and GA/ABA due to increased ABA level. The increase in ABA in rice seedlings induced by high concentrations MCs was resulted from up-regulation of OsNCED1, OsNCED3, OsNCED4 and OsZEP to enhance ABA biosynthesis, and was controlled by up-regulating expression levels of OsABAox1-3 for enhancing ABA catabolism as negative feedback. The highest concentration of MCs (1000 µg/L) caused irreversible damage to metabolisms of IAA and ABA, partly resulting in unrecoverable inhibition on rice growth. All results demonstrate that "low-concentration promotion and high-concentration inhibition" of microcystins was associated with changes in hormone levels and balances by affecting their metabolisms, and could be helpful for guiding agricultural irrigation with microcystin contaminated water.


Asunto(s)
Cianobacterias/metabolismo , Microcistinas/toxicidad , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/crecimiento & desarrollo , Oryza/microbiología , Extractos Vegetales , Raíces de Plantas/metabolismo , Zeatina/metabolismo
19.
PLoS One ; 15(4): e0231117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32240252

RESUMEN

Herbaceous peony (Paeonia lactiflora Pall.) is a popular ornamental and medicinal plant. Taking approximately six to seven months, the seeds germination under natural conditions experiences dual dormancies, which seriously affects horticultural cultivation. Few studies have been conducted on exploring both biological and molecular mechanism that regulates dormancy removal process in hypocotyls double dormant plants. Here, we first measured ABA and GA3 content changes at four key dormancy break stages, and then performed transcriptomic analyses to identify the differentially expressed genes (DEGs) using RNA-seq. We subsequently carried out Quantitative real-time PCR (qRT-PCR) to validate RNA-seq data. ABA content decreased during the whole dormancy removal process and GA3 content exhibited decreasing slightly and then increasing trend. RNA sequencing de novo assembly generated a total of 99,577 unigenes. 20,344 unigenes were differentially expressed in the whole dormancy release process. The qPCR results of 54 selected unigenes were consistent with the FPKM values obtained from RNA-seq. Our results summarize a valuable collection of gene expression profiles characterizing the dormancy release process. The DEGs are candidates for functional analyses of genes affecting the dormancy release, which is a precious resource for the on-going physiological and molecular investigation of seeds dormancy removal in other perennial plants.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Paeonia/genética , Latencia en las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Anotación de Secuencia Molecular , Transducción de Señal , Transcriptoma/genética
20.
Sci Rep ; 10(1): 4867, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184427

RESUMEN

High callus production is a feasible way to improve the propagation coefficient of garlic. It remains unknown how genotypes and explants affect garlic callus formation. In the present investigation, we found that there were significant differences in callus formation among garlic varieties. Tip explants were the best calli-producing source, and 91.05% of the explants from four varieties, on average, formed calli after 45 d of primary culturing. Upper leaf parts explants produced lower values. Among the different varieties and explant types, tip explants of variety T141 induced calli in the shortest time and had the greatest callus fresh weight at 45 d. An endogenous hormone contents analysis showed that auxins (indole-3-acetic acid and methyl indole-3-acetic acetate), cytokinins (trans-zeatin and dihydrozeatin), gibberellins4, 9,15,19,24 and 53, abscisic acid, jasmonic acid, jasmonoyl-L-isoleucine, and dihydrojasmonic acid were significantly greater in the tips than those in the upper leaf parts. High endogenous jasmonic acid content might play important roles in callus formation. These results will help us not only establish an efficient garlic callus induction protocol that can be applied to large-scale callus multiplication and regeneration, and to genetically improvement of garlic production, but also understand endogenous hormone roles in tissue/organ differentiation and dedifferentiation.


Asunto(s)
Ajo/crecimiento & desarrollo , Ajo/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Ajo/metabolismo , Genotipo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Especificidad de Órganos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Cultivo Primario de Células/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA