Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EBioMedicine ; 101: 105013, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364702

RESUMEN

BACKGROUND: Influenza viruses continually acquire mutations in the antigenic epitopes of their major viral antigen, the surface glycoprotein haemagglutinin (HA), allowing evasion from immunity in humans induced upon prior influenza virus infections or vaccinations. Consequently, the influenza strains used for vaccine production must be updated frequently. METHODS: To better understand the antigenic evolution of influenza viruses, we introduced random mutations into the HA head region (where the immunodominant epitopes are located) of a pandemic H1N1 (H1N1pdm) virus from 2015 and incubated it with various human sera collected in 2015-2016. Mutants not neutralized by the human sera were sequenced and further characterized for their haemagglutination inhibition (HI) titers with human sera and with ferret sera raised to H1N1pdm viruses from 2009 to 2015. FINDINGS: The largest antigenic changes were conferred by mutations at HA amino acid position 187; interestingly, these antigenic changes were recognized by human, but not by ferret serum. H1N1pdm viruses with amino acid changes at position 187 were very rare until the end of 2018, but have become more frequent since; in fact, the D187A amino acid change is one of the defining changes of clade 6B.1A.5a.1 viruses, which emerged in 2019. INTERPRETATION: Our findings indicate that amino acid substitutions in H1N1pdm epitopes may be recognized by human sera, but not by homologous ferret sera. FUNDING: This project was supported by funding from the NIAID-funded Center for Research on Influenza Pathogenesis (CRIP, HHSN272201400008C).


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Animales , Hurones , Subtipo H1N1 del Virus de la Influenza A/genética , Epítopos , Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química
2.
Vet Res ; 53(1): 43, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35706014

RESUMEN

Based on differences in the amino acid sequence of the protein haemagglutinin (HA), the H9N2 avian influenza virus (H9N2 virus) has been clustered into multiple lineages, and its rapidly ongoing evolution increases the difficulties faced by prevention and control programs. The HA protein, a major antigenic protein, and the amino acid mutations that alter viral antigenicity in particular have always been of interest. Likewise, it has been well documented that some amino acid mutations in HA alter viral antigenicity in the H9N2 virus, but little has been reported regarding how these antibody escape mutations affect antigenic variation. In this study, we were able to identify 15 HA mutations that were potentially relevant to viral antigenic drift, and we also found that a key amino acid mutation, A180V, at position 180 in HA (the numbering for mature H9 HA), the only site of the receptor binding sites that is not conserved, was directly responsible for viral antigenic variation. Moreover, the recombinant virus with alanine to valine substitution at position 180 in HA in the SH/F/98 backbone (rF/HAA180V virus) showed poor cross-reactivity to immune sera from animals immunized with the SH/F/98 (F/98, A180), SD/SS/94 (A180), JS/Y618/12 (T180), and rF/HAA180V (V180) viruses by microneutralization (MN) assay. The A180V substitution in the parent virus caused a significant decrease in cross-MN titres by enhancing the receptor binding activity, but it did not physically prevent antibody (Ab) binding. The strong receptor binding avidity prevented viral release from cells. Moreover, the A180V substitution promoted H9N2 virus escape from an in vitro pAb-neutralizing reaction, which also slightly affected the cross-protection in vivo. Our results suggest that the A180V mutation with a strong receptor binding avidity contributed to the low reactors in MN/HI assays and slightly affected vaccine efficacy but was not directly responsible for immune escape, which suggested that the A180V mutation might play a key role in the process of the adaptive evolution of H9N2 virus.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Sustitución de Aminoácidos , Aminoácidos , Animales , Variación Antigénica , Antígenos Virales/genética , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Subtipo H9N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza , Mutación
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35131851

RESUMEN

For an efficacious vaccine immunogen, influenza hemagglutinin (HA) needs to maintain a stable quaternary structure, which is contrary to the inherently dynamic and metastable nature of class I fusion proteins. In this study, we stabilized HA with three substitutions within its pH-sensitive regions where the refolding starts. An X-ray structure reveals how these substitutions stabilize the intersubunit ß-sheet in the base and form an interprotomeric aliphatic layer across the stem while the native prefusion HA fold is retained. The identification of the stabilizing substitutions increases our understanding of how the pH sensitivity is structurally accomplished in HA and possibly other pH-sensitive class I fusion proteins. Our stabilization approach in combination with the occasional back mutation of rare amino acids to consensus results in well-expressing stable trimeric HAs. This repair and stabilization approach, which proves broadly applicable to all tested influenza A HAs of group 1 and 2, will improve the developability of influenza vaccines based on different types of platforms and formats and can potentially improve efficacy.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas/genética , Aminoácidos/genética , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Vacunas contra la Influenza/genética , Gripe Humana/virología , Mutación/genética , Conformación Proteica en Lámina beta/genética
4.
Front Immunol ; 12: 737973, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691043

RESUMEN

Influenza virus alters glycosylation patterns on its surface exposed glycoproteins to evade host adaptive immune responses. The viral hemagglutinin (HA), in particular the H3 subtype, has increased its overall surface glycosylation since its introduction in 1968. We previously showed that modulating predicted N-linked glycosylation sites on H3 A/Hong Kong/1/1968 HA identified a conserved epitope at the HA interface. This epitope is occluded on the native HA trimer but is likely exposed during HA "breathing" on the virion surface. Antibodies directed to this site are protective via an ADCC-mediated mechanism. This glycan engineering strategy made an otherwise subdominant epitope dominant in the murine model. Here, we asked whether cysteine stabilization of the hyperglycosylated HA trimer could reverse this immunodominance by preventing access to the interface epitope and focus responses to the HA receptor binding site (RBS). While analysis of serum responses from immunized mice did not show a redirection to the RBS, cysteine stabilization did result in an overall reduction in immunogenicity of the interface epitope. Thus, glycan engineering and cysteine stabilization are two strategies that can be used together to alter immunodominance patterns to HA. These results add to rational immunogen design approaches used to manipulate immune responses for the development of next-generation influenza vaccines.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Animales , Cisteína , Femenino , Glicosilación , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunidad Humoral , Inmunización , Epítopos Inmunodominantes , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Ratones Endogámicos C57BL , Ingeniería de Proteínas
5.
Virus Res ; 290: 198188, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33045306

RESUMEN

Understanding the dynamics of the selection of influenza A immune escape variants by serum antibody is critical for designing effective vaccination programs for animals, especially poultry where large populations have a short generation time and may be vaccinated with high frequency. In this report, immune-escape mutants of A/turkey/New York/4450/1994 H7N2 low pathogenic avian influenza virus, were selected by serially passaging the virus in the presence of continuously increasing concentrations of homologous chicken polyclonal sera. Amino acid mutations were identified by sequencing the parental hemagglutinin (HA) gene and every 10 passages by both Sanger and deep sequencing, and the antigenic distance of the mutants to the parent strain was determined. Progressively, a total of five amino acid mutations were observed over the course of 30 passages. Based on their absence from the parental virus with deep sequencing, the mutations appear to have developed de novo. The antigenic distance between the selected mutants and the parent strain increased as the number of amino acid mutations accumulated and the concentration of antibodies had to be periodically increased to maintain the same reduction in virus titer during selection. This selection system demonstrates how H7 avian influenza viruses behave under selection with homologous sera, and provides a glimpse of their evolutionary dynamics, which can be applied to developing vaccination programs that maximize the effectiveness of a vaccine over time.


Asunto(s)
Variación Antigénica/genética , Evasión Inmune , Sueros Inmunes , Subtipo H7N2 del Virus de la Influenza A/genética , Subtipo H7N2 del Virus de la Influenza A/inmunología , Gripe Aviar/virología , Mutación , Aves de Corral/virología , Aminoácidos/genética , Animales , Anticuerpos Antivirales/sangre , Variación Antigénica/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H7N2 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Aves de Corral/inmunología , Organismos Libres de Patógenos Específicos , Vacunación
6.
Proc Natl Acad Sci U S A ; 117(31): 18431-18438, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690700

RESUMEN

Influenza hemagglutinin (HA) glycoprotein is the primary surface antigen targeted by the host immune response and a focus for development of novel vaccines, broadly neutralizing antibodies (bnAbs), and therapeutics. HA enables viral entry into host cells via receptor binding and membrane fusion and is a validated target for drug discovery. However, to date, only a very few bona fide small molecules have been reported against the HA. To identity new antiviral lead candidates against the highly conserved fusion machinery in the HA stem, we synthesized a fluorescence-polarization probe based on a recently described neutralizing cyclic peptide P7 derived from the complementarity-determining region loops of human bnAbs FI6v3 and CR9114 against the HA stem. We then designed a robust binding assay compatible with high-throughput screening to identify molecules with low micromolar to nanomolar affinity to influenza A group 1 HAs. Our simple, low-cost, and efficient in vitro assay was used to screen H1/Puerto Rico/8/1934 (H1/PR8) HA trimer against ∼72,000 compounds. The crystal structure of H1/PR8 HA in complex with our best hit compound F0045(S) confirmed that it binds to pockets in the HA stem similar to bnAbs FI6v3 and CR9114, cyclic peptide P7, and small-molecule inhibitor JNJ4796. F0045 is enantioselective against a panel of group 1 HAs and F0045(S) exhibits in vitro neutralization activity against multiple H1N1 and H5N1 strains. Our assay, compound characterization, and small-molecule candidate should further stimulate the discovery and development of new compounds with unique chemical scaffolds and enhanced influenza antiviral capabilities.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Polarización de Fluorescencia/métodos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Bibliotecas de Moléculas Pequeñas/farmacología , Antivirales/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Bibliotecas de Moléculas Pequeñas/química
7.
Viruses ; 11(4)2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30987023

RESUMEN

Highly pathogenic avian H5 influenza viruses persist among poultry and wild birds throughout the world. They sometimes cause interspecies transmission between avian and mammalian hosts. H5 viruses possessing the HA of subclade 2.3.4.4, 2.3.2.1, 2.2.1, or 7.2 were detected between 2015 and 2018. To understand the neutralizing epitopes of H5-HA, we characterized 15 human monoclonal antibodies (mAbs) against the HA of H5 viruses, which were obtained from volunteers who received the H5N1 vaccine that contains a subclade 2.2.1 or 2.1.3.2 virus as an antigen. Twelve mAbs were specific for the HA of subclade 2.2.1, two mAbs were specific for the HA of subclade 2.1.3.2, and one mAb was specific for the HA of both. Of the 15 mAbs analyzed, nine, which were specific for the HA of subclade 2.2.1, and shared the VH and VL genes, possessed hemagglutination inhibition and neutralizing activities, whereas the others did not. A single amino acid substitution or insertion at positions 144-147 in antigenic site A conferred resistance against these nine mAbs to the subclade 2.2.1 viruses. The amino acids at positions 144-147 are highly conserved among subclade 2.2.1, but differ from those of other subclades. These results show that the neutralizing epitope including amino acids at positions 144-147 is targeted by human antibodies, and plays a role in the antigenic difference between subclade 2.2.1 and other subclades.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Aminoácidos , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Mapeo Epitopo , Epítopos , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Evasión Inmune/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Mutación , Pruebas de Neutralización
8.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567980

RESUMEN

Influenza A viruses (IAVs) remain a significant public health threat, causing more than 300,000 hospitalizations in the United States during the 2015-2016 season alone. While only a few IAVs of avian origin have been associated with human infections, the ability of these viruses to cause zoonotic infections further increases the public health risk of influenza. Of these, H9N2 viruses in Asia are of particular importance as they have contributed internal gene segments to other emerging zoonotic IAVs. Notably, recent H9N2 viruses have acquired molecular markers that allow for a transition from avian-like to human-like terminal sialic acid (SA) receptor recognition via a single amino acid change at position 226 (H3 numbering), from glutamine (Q226) to leucine (L226), within the hemagglutinin (HA) receptor-binding site (RBS). We sought to determine the plasticity of amino acid 226 and the biological effects of alternative amino acids on variant viruses. We created a library of viruses with the potential of having any of the 20 amino acids at position 226 on a prototypic H9 HA subtype IAV. We isolated H9 viruses that carried naturally occurring amino acids, variants found in other subtypes, and variants not found in any subtype at position 226. Fitness studies in quails revealed that some natural amino acids conferred an in vivo replication advantage. This study shows the flexibility of position 226 of the HA of H9 influenza viruses and the resulting effect of single amino acid changes on the phenotype of variants in vivo and in vitroIMPORTANCE A single amino acid change at position 226 in the hemagglutinin (HA) from glutamine (Q) to leucine (L) has been shown to play a key role in receptor specificity switching in various influenza virus HA subtypes, including H9. We tested the flexibility of amino acid usage and determined the effects of such changes. The results reveal that amino acids other than L226 and Q226 are well tolerated and that some amino acids allow for the recognition of both avian and human influenza virus receptors in the absence of other changes. Our results can inform better avian influenza virus surveillance efforts as well as contribute to rational vaccine design and improve structural molecular dynamics algorithms.


Asunto(s)
Aminoácidos/genética , Sitios de Unión/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Tropismo/fisiología , Replicación Viral/genética , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Línea Celular Tumoral , Pollos , Perros , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Vacunas contra la Influenza/genética , Gripe Aviar/virología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Unión Proteica/genética , Codorniz/virología , Receptores de Superficie Celular/genética
9.
Sci China Life Sci ; 62(1): 76-83, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30515728

RESUMEN

Antigenic drift forces us to frequently update influenza vaccines; however, the genetic basis for antigenic variation remains largely unknown. In this study, we used clade 7.2 H5 viruses as models to explore the molecular determinants of influenza virus antigenic variation. We generated eight monoclonal antibodies (MAbs) targeted to the hemagglutinin (HA) protein of the index virus A/chicken/Shanxi/2/2006 and found that two representative antigenically drifted clade 7.2 viruses did not react with six of the eight MAbs. The E131N mutation and insertion of leucine at position 134 in the HA protein of the antigenically drifted strains eliminated the reactivity of the virus with the MAbs. We also found that the amino acid N131 in the H5 HA protein is glycosylated. Our results provide experimental evidence that glycosylation and an amino acid insertion or deletion in HA influence antigenic variation.


Asunto(s)
Aminoácidos/inmunología , Antígenos Virales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Antígenos Virales/genética , Antígenos Virales/metabolismo , Pollos/virología , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/metabolismo , Gripe Aviar/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/virología , Homología de Secuencia de Aminoácido
10.
Vaccine ; 36(43): 6383-6392, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30224200

RESUMEN

Influenza virus hemagglutinin (HA) and neuraminidase (NA) proteins elicit protective antibody responses and therefore, are used as targets for vaccination, especially the HA protein. However, these proteins are subject to antigenic drift, decreasing vaccine efficacy, and few to no studies have analyzed antigenic variability of these proteins by growing the viruses under immune pressure provided by human sera. In this work, we show that after growing different influenza virus strains under immune pressure, the selection of amino acid changes in the NA protein is much more limited than the selection in the HA protein, suggesting that the NA protein could remain more conserved under immune pressure. Interestingly, all the mutations in the HA and NA proteins affected protein antigenicity, and many of the selected amino acid changes were located at the same positions found in viruses circulating. These studies could help to inform HA and NA protein residues targeted by antibody responses after virus infection in humans and are very relevant to update the strains used for influenza virus vaccination each year and to improve the currently available vaccines.


Asunto(s)
Aminoácidos/genética , Variación Antigénica/genética , Flujo Genético , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Neuraminidasa/genética , Anticuerpos Antivirales/sangre , Monitoreo Epidemiológico , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Neuraminidasa/inmunología , Selección Genética
11.
PLoS One ; 12(12): e0189511, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29252990

RESUMEN

Influenza virus evolves rapidly due to the accumulated genetic variations on the viral sequence. Unlike in North America and Europe, influenza season in the tropical Southeast Asia spans both the rainy and cool seasons. Thus, influenza epidemiology and viral evolution sometimes differ from other regions, which affect the ever-changing efficacy of the vaccine. To monitor the current circulating influenza viruses in this region, we determined the predominant influenza virus strains circulating in Thailand between January 2016 and June 2017 by screening 7,228 samples from patients with influenza-like illness. During this time, influenza A(H3N2) virus was the predominant influenza virus detected. We then phylogenetically compared the hemagglutinin (HA) gene from a subset of these A(H3N2) strains (n = 62) to the reference sequences and evaluated amino acid changes in the dominant antigenic epitopes on the HA protein structure. The divergence of the circulating A(H3N2) from the A/Hong Kong/4801/2014 vaccine strain formed five genetic groups (designated I to V) within the 3C.2a clade. Our results suggest a marked drift of the current circulating A(H3N2) strains in Thailand, which collectively contributed to the declining predicted vaccine effectiveness (VE) from 74% in 2016 down to 48% in 2017.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/inmunología , Aminoácidos/química , Epítopos/inmunología , Variación Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Filogenia , ARN Viral/genética , Estaciones del Año , Tailandia/epidemiología
12.
Eur J Clin Microbiol Infect Dis ; 36(2): 361-371, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27848039

RESUMEN

There was an increase in severe and fatal influenza cases in Greece during the 2011-2015 post-pandemic period. To investigate causality, we determined neuraminidase (NA) inhibitor susceptibility and resistance-conferring NA and hemagglutinin (HA) mutations in circulating influenza type A viruses during the pandemic (2009-2010) and post-pandemic periods in Greece. One hundred thirty-four influenza A(H1N1)pdm09 and 95 influenza A(H3N2) viruses submitted to the National Influenza Reference Laboratory of Southern Greece were tested for susceptibility to oseltamivir and zanamivir. Antiviral resistance was assessed by neuraminidase sequence analysis, as well as the fluorescence-based 50 % inhibitory concentration (IC50) method. Five influenza A(H1N1)pdm09 viruses (2.2 %) showed significantly reduced inhibition by oseltamivir (average IC50 300.60nM vs. 1.19nM) by Gaussian kernel density plot analysis. These viruses were isolated from immunocompromised patients and harbored the H275Y oseltamivir resistance-conferring NA substitution. All A(H1N1)pdm09 viruses were zanamivir-susceptible, and all A(H3N2) viruses were susceptible to both drugs. Oseltamivir-resistant viruses did not form a distinct cluster by phylogenetic analysis. Permissive mutations were detected in immunogenic and non immunogenic NA regions of both oseltamivir- resistant and susceptible viruses in the post-pandemic seasons. Several amino acid substitutions in the HA1 domain of the HA gene of post-pandemic viruses were identified. This study indicated low resistance to NAIs among tested influenza viruses. Antiviral resistance emerged only in immunocompromised patients under long-term oseltamivir treatment. Sequential sample testing in this vulnerable group of patients is recommended to characterise resistance or reinfection and viral evolution.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Anciano , Femenino , Genotipo , Grecia , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Huésped Inmunocomprometido , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Concentración 50 Inhibidora , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación Missense , Neuraminidasa/genética , Oseltamivir/farmacología , Proteínas Virales/genética , Zanamivir/farmacología
13.
Avian Dis ; 60(4): 784-791, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27902910

RESUMEN

Globally, avian influenza (AI) is a serious problem in poultry farming. Despite vaccination, the prevalence of AI in México highlights the need for new approaches to control AI and to reduce the economic losses associated with its occurrence in susceptible birds. Recombinant proteins from avian influenza virus (AIV) have been expressed in different organisms, such as plants. The present study investigated the feasibility of designing and expressing the HA protein of AIV in the transplastomic microalga Chlamydomonas reinhardtii as a novel approach for AIV control and taking advantage of culture conditions, its reproductive range, and safe use in consideration of the generally regarded as safe food ingredient regulatory classification. The results showed that the HA protein of AIV in C. reinhardtii presents antigenic activity by western blot test and through its application in chickens, demonstrating its feasibility as a recombinant antigen against AIV.


Asunto(s)
Chlamydomonas reinhardtii/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , Enfermedades de las Aves de Corral/inmunología , Animales , Anticuerpos Antivirales/inmunología , Pollos , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Evaluación Preclínica de Medicamentos , Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Aviar/prevención & control , Gripe Aviar/virología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología
14.
Sci China Life Sci ; 58(9): 882-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26219513

RESUMEN

The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbidity and mortality because of its antigenic variation. So far, very little is known about the antigenic patterns of the recent H3N2 virus. By systematically mapping the antigenic relationships of H3N2 strains isolated since 2010, we discovered that two groups with obvious antigenic divergence, named SW13 (A/Switzerland/9715293/2013-like strains) and HK14 (A/Hong Kong/5738/2014-like strains), co-circulated during the 2014-2015 winter season. HK14 group co-circulated with SW13 in Europe and the United States during this season, while there were few strains of HK14 in mainland China, where SW13 has dominated since 2012. Furthermore, we found that substitutions near the receptor-binding site on hemagglutinin played an important role in the antigenic variation of both the groups. These findings provide a comprehensive understanding of the recent antigenic evolution of H3N2 virus and will aid in the selection of vaccine strains.


Asunto(s)
Variación Antigénica , Antígenos Virales/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/virología , Secuencia de Aminoácidos , Aminoácidos/química , Antígenos Virales/genética , Sitios de Unión , China , Simulación por Computador , Epidemias , Epítopos/química , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza , Gripe Humana/epidemiología , Datos de Secuencia Molecular , Filogenia , Estaciones del Año , Homología de Secuencia de Aminoácido
15.
BMC Biotechnol ; 14: 111, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25540031

RESUMEN

BACKGROUND: Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency. Potency is measured by the Single Radial Immuno-diffusion (SRID) assay to determine the amount of HA that has the correct antigenic form. RESULTS: The five cysteine residues in the transmembrane (TM) and cytoplasmic (CT) domains of the rHA protein from the H3 A/Perth/16/2009 human influenza strain have been substituted to alanine and/or serine residues to produce three different site directed variants (SDVs). These SDVs have been evaluated to determine the impact of the TM and CT cysteines on potency, cross-linking, and the biochemical and biophysical properties of the rHA. Modification of these cysteine residues prevents disulfide bond cross-linking in the TM and CT, and the resulting rHA maintains potency for at least 12 months at 25 °C. The strategy of substituting TM and CT cysteines to prevent potency loss has been successfully applied to another H3 rHA protein (from the A/Texas/50/2012 influenza strain) further demonstrating the utility of the approach. CONCLUSION: rHA potency can be maintained by preventing non-specific disulfide bonding and cross-linked multimer formation. Substitution of carboxy terminal cysteines is an alternative to using reducing agents, and permits room temperature storage of the vaccine.


Asunto(s)
Cisteína/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Animales , Cisteína/genética , Cisteína/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza A/química , Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
16.
J Pharm Sci ; 103(3): 821-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24425059

RESUMEN

The recombinant hemagglutinin (rHA)-based influenza vaccine Flublok® has recently been approved in the United States as an alternative to the traditional egg-derived flu vaccines. Flublok is a purified vaccine with a hemagglutinin content that is threefold higher than standard inactivated influenza vaccines. When rHA derived from an H3N2 influenza virus was expressed, purified, and stored for 1 month, a rapid loss of in vitro potency (∼50%) was observed as measured by the single radial immunodiffusion (SRID) assay. A comprehensive characterization of the rHA protein antigen was pursued to identify the potential causes and mechanisms of this potency loss. In addition, the biophysical and chemical stability of the rHA in different formulations and storage conditions was evaluated over time. Results demonstrate that the potency loss over time did not correlate with trends in changes to the higher order structure or hydrodynamic size of the rHA. The most likely mechanism for the early loss of potency was disulfide-mediated cross-linking of rHA, as the formation of non-native disulfide-linked multimers over time correlated well with the observed potency loss. Furthermore, a loss of free thiol content, particularly in specific cysteine residues in the antigen's C-terminus, was correlated with potency loss measured by SRID.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/química , Fenómenos Químicos , Cisteína/análisis , Cisteína/química , Cistina/análisis , Cistina/química , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Excipientes/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/farmacología , Hidrodinámica , Inmunodifusión , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/metabolismo , Vacunas contra la Influenza/farmacología , Octoxinol/química , Oxidación-Reducción , Mapeo Peptídico , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Tioglicolatos/química
17.
Vet Microbiol ; 162(2-4): 623-630, 2013 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-23265240

RESUMEN

Since 2003, the highly pathogenic avian influenza (HPAI) H5N1 has become a serious problem in animals and an increasing threat to public health. To develop effective vaccines for H5 HPAI in chickens, virus-like particles (VLP) were produced using a baculovirus expression system. The particles comprised hemagglutinin (HA) alone (HA-VLP) or HA in combination with a matrix protein (M1; HAM-VLP) derived from a recent clade 2.3.2.1 H5N1 HPAI virus. To compare the immunogenicity and protective efficacy of these VLPs, 10 µg HAM-VLP, the equivalent amounts of HA incorporated HA-VLP or whole inactivated virus (WIV), were emulsified with mineral oil and used to immunize chickens. The serum hemagglutination inhibition antibody levels induced by HA-VLP and HAM-VLP were comparable to WIV. Antibodies to nucleoprotein were detected only in the WIV group. Immunized chickens in each group survived and were protected against a lethal homologous virus challenge, showing no clinical signs of infection. The challenge virus was detected intermittently in some oropharyngeal swabs, but not in cloacal swabs or various organs, which means that VLPs and WIV provide protection against systemic but not local virus replication in chickens. After the challenge, the HA-VLP group showed significantly increased serum antibody levels compared to the HAM-VLP and WIV groups, and some chickens in the HA-VLP group seroconverted with respect to nucleoprotein. Taken together, these results suggest that VLPs may be an effective method for controlling HPAI in chickens. They could be applied to a differentiating infected from vaccinated animals (DIVA) strategy. In addition, it is likely that HAM-VLP is more efficacious than HA-VLP in chickens.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Aviar/prevención & control , Vacunas de Partículas Similares a Virus/administración & dosificación , Proteínas de la Matriz Viral/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Baculoviridae/genética , Baculoviridae/inmunología , Pollos , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Aviar/inmunología , Gripe Aviar/virología , Células Sf9 , Organismos Libres de Patógenos Específicos , Vacunación/veterinaria , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología , Proteínas de la Matriz Viral/genética , Virión/genética , Virión/inmunología
18.
Vaccine ; 30(5): 872-8, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22172510

RESUMEN

The proteolytic enzyme bromelain has been traditionally used to cleave the hemagglutinin (HA) protein at the C-terminus of the HA2 region to release the HA proteins from influenza virions. The bromelain cleaved HA (BHA) has been routinely used as an antigen to generate antiserum that is essential for influenza vaccine product release. The HA of the 2009 pandemic H1N1 influenza A/California/7/2009 (CA09) virus could not be cleaved efficiently by bromelain. To ensure timely delivery of BHA for antiserum production, we generated a chimeric virus that contained the HA1 region from CA09 and the HA2 region from the seasonal H1N1 A/South Dakota/6/2007 (SD07) virus that is cleavable by bromelain. The BHA from this chimeric virus was antigenically identical to CA09 and induced high levels of HA-specific antibodies and protected ferrets from wild-type H1N1 CA09 virus challenge. To determine the molecular basis of inefficient cleavage of CA09 HA by bromelain, the amino acids that differed between the HA2 of CA09 and SD07 were introduced into recombinant CA09 virus to assess their effect on bromelain cleavage. The D373N or E374G substitution in the HA2 stalk region of CA09 HA enabled efficient cleavage of CA09 HA by bromelain. Sequence analysis of the pandemic H1N1-like viruses isolated from 2010 revealed emergence of the E374K change. We found that K374 enabled the HA to be cleaved by bromelain and confirmed that the 374 residue is critical for HA bromelain cleavage.


Asunto(s)
Bromelaínas/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Sustitución de Aminoácidos , Animales , Anticuerpos Antivirales/sangre , Femenino , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Hidrólisis , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Masculino , Mutagénesis Sitio-Dirigida , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Virus Res ; 160(1-2): 294-304, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21763731

RESUMEN

Interactions between model enzymes and the influenza virus hemagglutinin (HA) homotrimeric spike were addressed. We digested influenza virions (naturally occurring strains and laboratory reassortants) with bromelain or subtilisin Carlsberg and analyzed by MALDI-TOF mass spectrometry the resulting HA2 C-terminal segments. All cleavage sites, together with (minor) sites detected in undigested HAs, were situated in the linker region that connects the transmembrane domain to the ectodomain. In addition to cleavage at highly favorable amino acids, various alternative enzyme preferences were found that strongly depended on the HA subtype/type. We also evaluated the surface electrostatic potentials, binding cleft topographies and spatial dimensions of stem bromelain (homologically modeled) and subtilisin Carlsberg (X-ray resolved). The results show that the enzymes (∼45Å(3)) would hardly fit into the small (∼18-20Å) linker region of the HA-spike. However, the HA membrane proximal ectodomain region was predicted to be intrinsically disordered. We propose that its motions allow steric adjustment of the enzymes' active sites to the neck of the HA spike. The subtype/type-specific architectures in this region also influenced significantly the cleavage preferences of the enzymes.


Asunto(s)
Bromelaínas/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Mapeo de Interacción de Proteínas , Subtilisinas/metabolismo , Bromelaínas/química , Bromelaínas/genética , Biología Computacional , Cristalografía por Rayos X , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hidrólisis , Modelos Biológicos , Modelos Moleculares , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Subtilisinas/química , Subtilisinas/genética
20.
Vaccine ; 29(34): 5657-65, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21704111

RESUMEN

Vaccine production and initiation of mass vaccination is a key factor in rapid response to new influenza pandemic. During the 2009-2010 H1N1 pandemic, several bottlenecks were identified, including the delayed availability of vaccine potency reagents. Currently, antisera for the single-radial immunodiffusion (SRID) potency assay are generated in sheep immunized repeatedly with HA released and purified after bromelain-treatment of influenza virus grown in eggs. This approach was a major bottleneck for pandemic H1N1 (H1N1pdm09) potency reagent development in 2009. Alternative approaches are needed to make HA immunogens for generation of SRID reagents in the shortest possible time. In this study, we found that properly folded recombinant HA1 globular domain (rHA1) from several type A viruses including H1N1pdm09 and two H5N1 viruses could be produced efficiently using a bacterial expression system and subsequent purification. The rHA1 proteins were shown to form functional oligomers of trimers, similar to virus derived HA, and elicited high titer of neutralizing antibodies in rabbits and sheep. Importantly, the immune sera formed precipitation rings with reference antigens in the SRID assay in a dose-dependent manner. The HA contents in multiple H1N1 vaccine products from different manufacturers (and in several lots) as determined with the rHA1-generated sheep sera were similar to the values obtained with a traditionally generated sheep serum from NIBSC. We conclude that bacterially expressed recombinant HA1 proteins can be produced rapidly and used to generate SRID potency reagents shortly after new influenza strains with pandemic potential are identified.


Asunto(s)
Escherichia coli/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza/inmunología , Proteínas Recombinantes , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Conejos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA