Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Trop Anim Health Prod ; 56(3): 108, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507148

RESUMEN

Saharan population in Algeria still depending on bovine milk, which suffers from serious constraints undermining its sustainability. Camelus dromedarius milk has experienced growing demand following the emerging market requirements for livestock production and dairy farming over the past decade. The present work aimed at analysing the effect of nutritional regime on milk quality. The differences in pH, Acidity D°, Ash and Fats were significant. The pH was negatively influenced by the intensification conditions such as the much higher use of concentrates. The major constituents of milk were strongly and positively correlated with barley, wheat bran, TN/Kg.DM (Total Nitrogen/ Kg. Dry Matter), Kg.DM, Concentrates and daily watering. The results showed that a good energy-protein balance around 73 g PDI/UFL (Protein Digestible in the Intestine/Energetic Forage Unit for milk production) was beneficial for a better milk protein ratio. The use of corn, soybeans, palm dates and VM-premix (Vitamin Mineral) supplementation were also favourable to the synthesis of fats. Crude fiber and cell walls were better valued in the synthesis of fats with the availability of concentrates and the increasing of TN /Kg.DM and VM-premix rate in dietary regime. The vitamin C content elevate following high ratio of UFL /Kg.DM and PDI/UFL. For thus, the influence of nutritional status can lead to major improvements that need also more advanced and detailed studies.


Asunto(s)
Camelus , Lactancia , Femenino , Animales , Leche/química , Proteínas de la Leche/análisis , Zea mays , Grasas/análisis , Grasas/metabolismo , Vitaminas/metabolismo , Dieta/veterinaria , Ensilaje/análisis , Rumen/metabolismo
2.
Nutrients ; 13(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34444773

RESUMEN

Structural differences in dietary fatty acids modify their rate of oxidation and effect on satiety, endpoints that may influence the development of obesity. This study tests the hypothesis that meals containing fat sources with elevated unsaturated fats will result in greater postprandial energy expenditure, fat oxidation, and satiety than meals containing fats with greater saturation. In a randomized, 5-way crossover design, healthy men and women (n = 23; age: 25.7 ± 6.6 years; BMI: 27.7 ± 3.8 kg/m2) consumed liquid meals containing 30 g of fat from heavy cream (HC), olive oil (OO), sunflower oil (SFO), flaxseed oil (FSO), and fish oil (FO). Energy expenditure and diet-induced thermogenesis (DIT) were determined by metabolic rate over a 240 min postprandial period. Serum concentrations of ghrelin, glucose, insulin, and triacylglycerol (TAG) were assessed. DIT induced by SFO was 5% lower than HC and FO (p = 0.04). Energy expenditure and substrate oxidation did not differ between fat sources. Postprandial TAG concentrations were significantly affected by fat source (p = 0.0001). Varying fat sources by the degree of saturation and PUFA type modified DIT but not satiety responses in normal to obese adult men and women.


Asunto(s)
Grasas de la Dieta/farmacología , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos/farmacología , Saciedad/efectos de los fármacos , Termogénesis/efectos de los fármacos , Adolescente , Adulto , Estudios Cruzados , Metabolismo Energético/efectos de los fármacos , Grasas/química , Grasas/metabolismo , Grasas/farmacología , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Insaturados/química , Femenino , Humanos , Masculino , Comidas , Persona de Mediana Edad , Obesidad/metabolismo , Aceite de Oliva/farmacología , Oxidación-Reducción , Periodo Posprandial/efectos de los fármacos , Respuesta de Saciedad/efectos de los fármacos , Adulto Joven
3.
Food Funct ; 12(15): 6841-6850, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34124721

RESUMEN

Consumption of 4-desmethylsterols has been claimed to have many beneficial effects, but the benefits of 4,4-dimethylsterols are less appreciated. We utilized a nematode model, Caenorhabditis elegans (C. elegans), to explore the anti-obesity effects of different classes of 4,4-dimethylsterols purified from rice bran oil (RST) and shea nut butter (SST). Both SST and RST significantly reduced fat deposition in C. elegans with smaller sizes and numbers of lipid droplets. But the food intake was not significantly affected. Metabolomics analysis indicated a significantly altered pathway after treatment with 4,4-dimethylsterols. Finally, it was found that 4,4-dimethylsterols targeted stearoyl-CoA desaturases (SCD) and nuclear hormone receptor-49 (NHR-49), resulting in a reduced desaturation index as proved by a lower ratio of oleic acid (C18:1n-9) to stearic acid (C18:0). Overall, 4,4-dimethylsterols can inhibit fat deposition via regulating the NHR-49/SCD pathway in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Grasas/metabolismo , Fitosteroles , Aceites de Plantas/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Metaboloma/efectos de los fármacos , Fitosteroles/química , Fitosteroles/farmacología , Transducción de Señal/efectos de los fármacos
4.
Nutrients ; 13(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802651

RESUMEN

Ketogenic diets (KDs) often contain high levels of saturated fat, which may increase liver fat, but the lower carbohydrate intake may have the opposite effect. Using a controlled feeding design, we compared liver fat responses to a hypocaloric KD with a placebo (PL) versus an energy-matched low-fat diet (LFD) in overweight adults. We also examined the added effect of a ketone supplement (KS). Overweight adults were randomized to a 6-week KD (KD + PL) or a KD with KS (KD + KS); an LFD group was recruited separately. All diets were estimated to provide 75% of energy expenditure. Weight loss was similar between groups (p > 0.05). Liver fat assessed by magnetic resonance imaging decreased after 6 week (p = 0.004) with no group differences (p > 0.05). A subset with nonalcoholic fatty liver disease (NAFLD) (liver fat > 5%, n = 12) showed a greater reduction in liver fat, but no group differences. In KD participants with NAFLD, 92% of the variability in change in liver fat was explained by baseline liver fat (p < 0.001). A short-term hypocaloric KD high in saturated fat does not adversely impact liver health and is not impacted by exogenous ketones. Hypocaloric low-fat and KDs can both be used in the short-term to significantly reduce liver fat in individuals with NAFLD.


Asunto(s)
Dieta con Restricción de Grasas , Dieta Cetogénica , Suplementos Dietéticos , Grasas/análisis , Cetonas/uso terapéutico , Hígado/química , Sobrepeso/dietoterapia , Adulto , Dieta con Restricción de Grasas/métodos , Dieta Cetogénica/métodos , Grasas/metabolismo , Femenino , Humanos , Hígado/diagnóstico por imagen , Hígado/metabolismo , Imagen por Resonancia Magnética , Masculino , Sobrepeso/metabolismo
5.
Molecules ; 26(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672773

RESUMEN

A caloric surplus and a sedentary lifestyle are undoubtedly known to be the leading causes of obesity. Natural products represent valuable allies to face this problematic issue. This study was planned to assess the effect of a white grape (Vitis vinifera) juice extract (WGJe) in diet-induced obese zebrafish (Danio rerio). Fish were divided into four different diet groups: (i) normally fed (NF); (ii) overfed (OF); (iii) WGJe-supplemented NF (5 mL/L in fish water); (iv) WGJe-supplemented OF. Body mass index (BMI) was extrapolated each week. After the fourth week, euthanized zebrafish were processed for both microscopic evaluations and gene expression analyses. OF zebrafish showed higher BMI values with respect to NF counterparts, an effect that was hindered by WGJe treatment. Moreover, histological analyses showed that the area of the adipose tissue, as well as the number, size, and density of adipocytes was significantly higher in OF fish. On the other hand, WGJe was able to avoid these outcomes both at the subcutaneous and visceral levels, albeit to different extents. At the gene level, WGJe restored the altered levels of ghrelin and leptin of OF fish both in gut and brain. Overall, our results support the anti-obesity property of WGJe, suggesting its potential role in weight management.


Asunto(s)
Adipocitos/efectos de los fármacos , Grasas/antagonistas & inhibidores , Ghrelina/antagonistas & inhibidores , Leptina/antagonistas & inhibidores , Extractos Vegetales/farmacología , Vitis/química , Animales , Modelos Animales de Enfermedad , Grasas/metabolismo , Jugos de Frutas y Vegetales/análisis , Ghrelina/genética , Ghrelina/metabolismo , Leptina/genética , Leptina/metabolismo , Estructura Molecular , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra
6.
Aging Cell ; 20(2): e13303, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33464721

RESUMEN

Intramyocellular lipid (IMCL) utilization is impaired in older individuals, and IMCL accumulation is associated with insulin resistance. We hypothesized that increasing muscle total carnitine content in older men would increase fat oxidation and IMCL utilization during exercise, and improve insulin sensitivity. Fourteen healthy older men (69 ± 1 year, BMI 26.5 ± 0.8 kg/m2 ) performed 1 h of cycling at 50% VO2 max and, on a separate occasion, underwent a 60 mU/m2 /min euglycaemic hyperinsulinaemic clamp before and after 25 weeks of daily ingestion of a 220 ml insulinogenic beverage (44.4 g carbohydrate, 13.8 g protein) containing 4.5 g placebo (n = 7) or L-carnitine L-tartrate (n = 7). During supplementation, participants performed twice-weekly cycling for 1 h at 50% VO2 max. Placebo ingestion had no effect on muscle carnitine content or total fat oxidation during exercise at 50% VO2 max. L-carnitine supplementation resulted in a 20% increase in muscle total carnitine content (20.1 ± 1.2 to 23.9 ± 1.7 mmol/kg/dm; p < 0.01) and a 20% increase in total fat oxidation (181.1 ± 15.0 to 220.4 ± 19.6 J/kg lbm/min; p < 0.01), predominantly due to increased IMCL utilization. These changes were associated with increased expression of genes involved in fat metabolism (ACAT1, DGKD & PLIN2; p < 0.05). There was no change in resting insulin-stimulated whole-body or skeletal muscle glucose disposal after supplementation. This is the first study to demonstrate that a carnitine-mediated increase in fat oxidation is achievable in older individuals. This warrants further investigation given reduced lipid turnover is associated with poor metabolic health in older adults.


Asunto(s)
Carnitina/metabolismo , Ejercicio Físico , Grasas/metabolismo , Músculo Esquelético/metabolismo , Anciano , Humanos , Masculino , Oxidación-Reducción
7.
Phytomedicine ; 82: 153447, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33444943

RESUMEN

BACKGROUND: Carya cathayensis1is a commercially cultivated plant in the Zhejiang Province, China. Its nuts exhibit properties of tonifying kidneys and relieving asthma. There have been a few pharmacological studies addressing the function of the leaves of this plant. Our previous studies on C. cathayensis leaf extract (CCE) showed a significant inhibitory effect on weight gain in mice fed a high-fat diet, particularly in female mice. HYPOTHESIS/PURPOSE: To investigate the biological and molecular mechanisms underlying the regulation of ectopic adipose tissue deposition by CCE in ovariectomized rats fed a high-fat diet. STUDY DESIGN: Female Sprague-Dawley rats were ovariectomized and treated with CCE (50, 100, and 200 mg/kg body weight, oral) or estradiol (1 mg/kg body weight, oral) for 8 weeks. METHODS: CCE was subjected to high-performance liquid chromatography to quantify major components. Body weight gain, abdominal fat coefficient, and aortic arch fat coefficient were determined; serum was collected for biochemical analysis; tissues were collected for histopathological examination, quantitative polymerase chain reaction (Q-PCR), and western blotting. RESULTS: The total flavonoid content was determined to be 57.30% in the CCE and comprised chrysin, cardamomin, pinostrobin chalcone, and pinocembrin. Compared with the model group (OVX), CCE treatment reduced body weight gain, abdominal and aortic arch fat coefficients, serum and hepatic lipid profiles, including total cholesterol (TC), total triglycerides (TG), and free fatty acids (FFA) levels; decreased lipid droplets in liver cells; decreased fat accumulation in the aortic arch blood vessel wall and increased its smoothness; decreased the diameter of abdominal fat cells; and reduced serum leptin and adiponectin levels significantly. Serum adiponectin levels significantly correlated with serum TG and hepatic TC levels. Leptin levels positively correlated with serum TG levels and negatively correlated with hepatic TG. Leptin mRNA, peroxisome proliferator-activated receptor (PPARγ) mRNA, and protein expression levels in abdominal adipose tissue were significantly down-regulated. Adiponectin mRNA levels were slightly reduced but not significantly. CONCLUSION: CCE attenuated ectopic fat deposition induced by deficient estrogen and a high-fat diet in rats; this may be associated with activated leptin sensitivity, improved leptin resistance, and regulated adiponectin levels. CCE may improve adipose function to regulate adipocyte differentiation by down-regulating PPARγ. Overall, these results suggest that CCE is a potential phytoestrogen.


Asunto(s)
Grasa Abdominal/metabolismo , Aorta Torácica/metabolismo , Carya/química , Dieta Alta en Grasa , Grasas/metabolismo , Hígado/metabolismo , Ovariectomía , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Femenino , Leptina/sangre , Ratones , Ratas , Ratas Sprague-Dawley , Triglicéridos/sangre
8.
Food Chem ; 346: 128918, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385913

RESUMEN

This study investigates whether lecithin could fasten lipolysis through the alleviation of protein aggregation in an infant formula emulsion model. Our previous study reported low intestinal digestion of infant formula could be due to the aggregation of proteins that slow lipid digestion. The emulsion contained lipids droplets simulating the fatty acid composition in breast milk, different levels of lecithin and milk protein. The interphase proteins were replaced with lecithin in a dose-dependent manner. The results showed the addition of 5% and 7% lecithin improves the physical stability, narrows the range of particle size, reduces the mean particle size and increases the zeta potential. The 5% lecithin emulsion showed the highest rate and extent of lipid and protein digestion. These positive effects were caused by lecithin through stabilizing the emulsion and suppressing droplet flocculation after digestion. Lecithin promotes lipid digestion and may improve the "insufficient fat supply" in infant formula.


Asunto(s)
Digestión , Emulsiones , Grasas/metabolismo , Fórmulas Infantiles , Lecitinas/metabolismo , Floculación , Humanos , Lactante , Proteínas de la Leche/metabolismo , Tamaño de la Partícula
9.
Lett Appl Microbiol ; 72(1): 24-35, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32989746

RESUMEN

Currently, knowledge is limited concerning the impact of a Lactobacillus plantarum JL01 diet for weaned piglets on caecal bacteria and metabolite profiles. In our experiments, 24 weaned piglets were randomly divided into two groups; each piglet in the treatment groups (Cec-Lac) was fed a basic diet and administered 10 ml of L. plantarum JL01 (1·0 × 109  CFU per ml) every day. The control group (Cec-Con) was fed a basic diet. After feeding for 28 days, we analysed the parameters of the caecal digesta of weaned piglets. We used 16S rDNA gene sequencing and mass spectrometry (MS)-based metabolomics techniques to investigate the effect of a L. plantarum JL01 diet on intestinal microbial composition and its metabolite profiles in the caecum contents of weaned piglets. The results showed that the richness estimators (ACE and Chao indices) in the caecal bacteria increased in the Cec-Lac group. Prevotella_2 and Desulfovibrio decreased significantly, while Pantoea and Rectale_group increased in the caecum of weaned piglets in the Cec-Lac group. Furthermore, Pearson's correlation analysis revealed that the genus Rectale_group was positively correlated with indole-3-acetic acid (P < 0·05), and the genus Pantoea had the same correlation with 1-palmitoyl lysophosphatidic acid. The metabolomics analysis revealed that the L. plantarum JL01 diet supplementation had significant effects on tryptophan metabolism and fat digestion and absorption. The results indicated that the L. plantarum JL01 dietary supplementation not only altered the microbial composition but also mediated tryptophan metabolism and fat digestion and absorption in the caecum, factors that may further affect the health of the host.


Asunto(s)
Bacterias/metabolismo , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal , Lactobacillus plantarum/fisiología , Porcinos/microbiología , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Ciego/microbiología , Dieta/veterinaria , Grasas/metabolismo , Metabolómica , Pantoea/clasificación , Pantoea/genética , Pantoea/metabolismo , Distribución Aleatoria , Triptófano/metabolismo
10.
J Sci Food Agric ; 101(8): 3366-3375, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33230856

RESUMEN

BACKGROUND: As an edible and medicinal herb in Chinese folk medicine, Cyclocarya paliurus (Batal.) Iljinskaja leaves are traditionally widely used in the treatment of metabolic disorders. The vegetable Momordica charantia L. has been consumed worldwide for thousands of years as a traditional drug due to its activities against obesity and diabetes. In view of the therapeutic value of Momordica saponins (MSs) and C. paliurus polysaccharides (CPPs), an independently developed MSs- and CPPs-containing beverage (MC) was evaluated for its efficacy in controlling oxidative stress and obesity in Caenorhabditis elegans. RESULTS: First, we found that MC could promote the nuclear localization of DAF-16 and the translation of SOD-3. Further exploring its antioxidant properties, the oxidative stress by-products reactive oxygen species, malondialdehyde, and nonesterified fatty acids were significantly inhibited in C. elegans. Moreover, damage due to diseases related to oxidative stress (age pigments and neurodegenerative diseases) was alleviated. Furthermore, fat accumulation was significantly reduced in normal and high-fat models. Finally, the lipid-lowering effects of MC might involve reductions in the size and number of lipid droplets without impairing basic physiological functions in C. elegans. CONCLUSION: These results provide promising data indicating MC as an innovative health beverage for the pharmacological management of oxidative stress and obesity. © 2020 Society of Chemical Industry.


Asunto(s)
Bebidas/análisis , Caenorhabditis elegans/metabolismo , Grasas/metabolismo , Juglandaceae/química , Momordica charantia/química , Obesidad/dietoterapia , Extractos Vegetales/metabolismo , Polisacáridos/metabolismo , Saponinas/metabolismo , Animales , Humanos , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos
11.
Sci Rep ; 10(1): 18768, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127939

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a significant problem because its prevalence is increasing worldwide. Recent animal studies have identified gut microbiota as a potentially important player in the pathogenesis of NAFLD. Previously, we reported that the administration of branched-chain amino acids (BCAAs) reduces hepatic fat accumulation in experimental animal models. This study aimed to clarify how changes in the intestinal microbial flora following the administration of BCAAs affect a high-fat diet (HF)-induced fat accumulation in the liver. We examined whether the administration of BCAAs alters the development of hepatic fat accumulation as well as intestinal microbial flora. The oral administration of BCAAs (3% kcal) induced a significant increase in Ruminococcus flavefaciens (R. flavefaciens) and portal acetic acid levels, and it reduced hepatic fat accumulation in HF-fed rats. In addition, BCAAs reduced the expression of the lipogenesis-related genes FAS and ACC in the liver. Furthermore, we observed that R. flavefaciens is essential for promoting a BCAA-induced reduction in hepatic fat accumulation. These data suggest that BCAA treatment induces the proliferation of intestinal flora including R. flavefaciens and that portal acetic acid synthesized from intestinal flora improves NAFLD by downregulating the expression of FAS and ACC in the liver.


Asunto(s)
Ácido Acético/metabolismo , Aminoácidos de Cadena Ramificada/administración & dosificación , Suplementos Dietéticos , Grasas/metabolismo , Microbioma Gastrointestinal , Hígado/metabolismo , Animales , Dieta Alta en Grasa , Lipogénesis , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas
12.
J Dairy Sci ; 103(11): 10258-10263, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32921471

RESUMEN

The negative effects of heat stress partly result from disturbed systemic metabolic responses and possibly altered mammary gland metabolism of lactating dairy cows. Our previous research reported that supplemental dietary Zn sources may affect milk fat synthesis of lactating cows during summer. Thus, our objective was to evaluate the systemic and mammary metabolism of cows fed 2 supplemental Zn sources under 2 environmental conditions. Multiparous lactating Holstein cows (n = 72; days in milk: 99.7 ± 13.4 d; parity: 2.9 ± 0.3) were randomly assigned to 4 treatments in a 2 × 2 factorial arrangement. Treatments included 2 different environments: cooled (CL) using fans and misters or noncooled (NC), and 2 supplemental Zn sources: 75 mg of Zn hydroxychloride/kg of DM (IOZ) or 35 mg of Zn hydroxychloride/kg of DM + 40 mg of Zn-Met complex/kg of DM (ZMC). The 168-d experiment was divided into baseline and environmental challenge phases, 84 d each. During the baseline phase, all cows were cooled and fed respective dietary treatments, and during the environmental challenge phase cows continued receiving the same diets but NC cows were deprived of cooling. Temperature-humidity index averaged 77.6 ± 3.8 and 77.8 ± 3.8 for CL and NC pens, respectively, during the environmental challenge phase. Plasma was collected before the baseline phase and at 1, 3, 5, 12, 22, 26, 41, 54, 61, 68, 75, and 81 d of the environmental challenge phase for metabolites and insulin analyses. Mammary biopsies were collected before the baseline phase and at 7 and 56 d of the environmental challenge phase to measure mRNA abundance of proteins related to mammary metabolism. Compared with CL, NC reduced plasma glucose, nonesterified fatty acids, ß-hydroxybutyrate, and triglyceride concentrations, but increased insulin concentration. Cows fed ZMC had greater plasma triglyceride concentration than IOZ. Treatments had no effect on mRNA abundance of protein related to mammary fatty acid and glucose metabolism except that NC cows had greater mammary mRNA abundance of 6-phosphogluconate dehydrogenase and ATP-dependent 6-phosphofructokinase than CL cows. In conclusion, deprivation of evaporative cooling influenced the metabolism of lactating dairy cows but dietary Zn source had no apparent effect.


Asunto(s)
Bovinos/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/fisiología , Glándulas Mamarias Animales/metabolismo , Zinc/administración & dosificación , Aire Acondicionado , Animales , Suplementos Dietéticos , Grasas/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/sangre , Femenino , Humedad , Lactancia/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Leche/metabolismo , Proteínas de la Leche/genética , Proteínas de la Leche/metabolismo , ARN Mensajero/análisis , Estaciones del Año , Temperatura
13.
J Nutr Biochem ; 84: 108457, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32738733

RESUMEN

To endure prolonged fasting, animals undergo important acute physiological adjustments. However, whether severe fasting also leads to long-term metabolic adaptations is largely unknown. Forty-eight-hour fasting caused a pronounced weight loss in adult C57BL/6 male mice. Seven days of refeeding increased body adiposity to levels above baseline, whereas fasting-induced reductions in lean body mass and energy expenditure were not fully recovered. Respiratory exchange ratio and locomotor activity also remained altered. A fasting/refeeding cycle led to persistent suppression of Pomc mRNA levels and significant changes in the expression of histone deacetylases and DNA methyltransferases in the hypothalamus. Additionally, histone acetylation in the ventromedial nucleus of the hypothalamus was reduced by prolonged fasting and remained suppressed after refeeding. Mice subjected to 48-h fasting 30 days earlier exhibited higher body weight and fat mass compared to aged-matched animals that were never food-deprived. Furthermore, a previous fasting experience altered the changes in body weight, lean mass, energy expenditure and locomotor activity induced by a second cycle of fasting and refeeding. Notably, when acutely exposed to high-palatable/high-fat diet, mice that went through cumulative fasting episodes presented higher calorie intake and reduced energy expenditure and fat oxidation, compared to mice that had never been subjected to fasting. When chronically exposed to high-fat diet, mice that experienced cumulative fasting episodes showed higher gain of body and fat mass and reduced energy expenditure and calorie intake. In summary, cumulative episodes of prolonged fasting lead to hypothalamic epigenetic changes and long-lasting metabolic adaptations in mice.


Asunto(s)
Ayuno , Hipotálamo/metabolismo , Animales , Ingestión de Energía , Metabolismo Energético , Epigénesis Genética , Grasas/metabolismo , Masculino , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Factores de Tiempo
14.
BMC Biotechnol ; 20(1): 22, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375769

RESUMEN

BACKGROUND: In Norway, 3 million discarded egg-laying hens are destructed annually, which equals 1500 tons pure hen meat. Due to the slaughter methods used, this raw material is handled as a high-risk waste, while in reality it constitutes a source of valuable components like proteins and lipids. METHODS: This study assess different processing methods (thermal treatment, enzymatic hydrolysis and silaging) for utilization of discarded egg-laying hens for the production of ingredients for human consumption and animal feed. The processing methods were evaluated on the basis of quantity and quality of the obtained products. RESULTS: Thermal treatment and enzymatic hydrolysis resulted in extraction of good quality lipids from the raw material. The separated oil (50.1-82.3% of the total lipid content in the raw material) was of high quality based on the content of free fatty acids (≤ 1.0%) and total oxidation value (≤ 3.9). Enzymatic hydrolysis also enabled separation of protein in the form of protein hydrolysate. Addition of Protamex and Papain+Bromelain significantly (p ≤ 0.05) increased the protein content (85.1-94.6%) and decreased the lipid content (0.3-1.1%) in the hydrolysate compared to autolysis (protein content: 64.8-72.3%, lipid content: 1.0-2.6%). Silaging increased the protein digestibility (63.2-79.7% compared to 57.3-66.2% for untreated raw material), and thus constitutes a good method for utilizing the protein content of the raw material for animal feed. CONCLUSION: The biotechnological processing methods thermal treatment, enzymatic hydrolysis and silaging can be used to increase the utilization of discarded egg-laying hens for production of ingredients for human consumption and animal feed.


Asunto(s)
Alimentación Animal/análisis , Grasas/metabolismo , Proteínas/metabolismo , Animales , Pollos , Digestión , Femenino , Manipulación de Alimentos , Calor , Ensilaje/análisis
15.
Pak J Biol Sci ; 23(5): 650-657, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32363821

RESUMEN

BACKGROUND AND OBJECTIVE: Reproduction system is affected by nutrient status of the animal. Flushing is one of reproduction program where the animal should give good quality diet. This study was aimed to evaluate etawah crossbred does reproduction performance giving flushing diet with different fat sources. The fat of plant oils are sunflower and flaxseed and from animal oils are tallow and Lemuru fish. MATERIALS AND METHODS: Twenty four of Etawah crossbred does (average body weight 33.83±3.70 kg) were used in this experiment by using completely randomized block design. There are four treatments with four animals of each treatment. The treatments were flushing diet containing 5% sunflower oil (R1), 5.2% flaxseed oil (R2), 5.3% tallow (R3) and 5% Lemuru fish oil (R4). Treatment was given three weeks before and two weeks after matting, following 2 weeks before partus. During pregnant, the does were given basal diet (ratio concentrate:napier grass was 70:30). Body condition score, nutrient status, blood metabolite and hormone and also performance reproduction were evaluated. RESULTS: The nutrient consumption was same in all treatment. Blood glucose were same in all treatments but the highest blood cholesterol was in R3 during estrus and in R4 during mid gestation. The highest plasma estradiol was in R1 during early gestation, while the highest plasma progesterone was in R2 during late gestation. Litter size and birth weight were same in all treatment, while the highest total embryo was in R2 treatment. CONCLUSION: It is concluded that flaxseed oil for flushing diet was significantly increased number of total embryo.


Asunto(s)
Alimentación Animal , Grasas/metabolismo , Aceites de Pescado/metabolismo , Cabras/fisiología , Aceite de Linaza/metabolismo , Reproducción , Aceite de Girasol/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biomarcadores/sangre , Composición Corporal , Grasas/administración & dosificación , Femenino , Aceites de Pescado/administración & dosificación , Cabras/sangre , Cabras/genética , Hibridación Genética , Aceite de Linaza/administración & dosificación , Estado Nutricional , Valor Nutritivo , Embarazo , Aceite de Girasol/administración & dosificación
16.
Peptides ; 128: 170308, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32229144

RESUMEN

Since its discovery in 2006 by Oh-I and colleagues, NUCB2/nesfatin-1 encoded by nucleobindin-2 (NUCB2) has drawn sustained attention as reflected in over 500 publications. Among those, more than half focused on the alterations of food intake, body weight and metabolism (glucose, fat) induced by nesfatin-1 and/or NUCB2/nesfatin-1. In the current review we discuss the existing literature focusing on NUCB2/nesfatin-1's influence on food intake, body weight and glucose as well as fat metabolism and highlight gaps in knowledge.


Asunto(s)
Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Nucleobindinas/metabolismo , Nucleobindinas/farmacología , Animales , Grasas/metabolismo , Glucosa/metabolismo , Humanos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo
17.
Adipocyte ; 9(1): 120-131, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32163011

RESUMEN

The present study investigated the effects of varying concentrations of sodium butyrate (SB) on fat accumulation and cell proliferation in chicken adipocytes. High and low serial concentrations of SB used significantly reduced adipocytic fat accumulation. However, they were observed to exhibit differences in cell morphology and distinctions in lipogenic genes expression profiles. At lower concentration (0.01 mM), fat accumulation was decreased with an associated downregulation in the expression of lipogenic genes, which was mediated by free fatty acid receptors (FFARs). Contarily, at higher concentration (1 mM), the fat droplets laden in adipocytes were enlarged, and this was accompanied with activation of lipogenic genes expression. However, the total accumulated fat was also decreased largely due to reduction in cell numbers, which was partially attributable to the reduction in histone deacetylase (HDAC) activity. Animal experiments further indicated that dietary supplementation of lower dose coated SB (0.1% wt/wt) inhibited fat deposition in livers and abdominal fat tissues of broilers, suggesting the potential application of sodium butyrate as feed additive in the regulation of fat deposition.


Asunto(s)
Adipocitos/efectos de los fármacos , Ácido Butírico/farmacología , Grasas/antagonistas & inhibidores , Adipocitos/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Pollos , Relación Dosis-Respuesta a Droga , Grasas/metabolismo
18.
Pflugers Arch ; 472(3): 367-374, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32078030

RESUMEN

Recent evidence suggests that mitochondrial complex II is an essential mediator of myocardial ischemia-reperfusion injury. The present study aimed to investigate the effects of fatty acid supplementation or high-fat diet (HFD) on cardiac mitochondrial activity. The changes of complex I and complex II activities and mitochondrial oxygen consumption rate (OCR) following hypoxia and re-oxygenation under these conditions were studied. Our results have shown that OCR (mitochondrial activity) was significantly increased with palmitoylcarnitine supplementation in mitochondria-enriched fraction from C57BL/6 mice hearts. Mitochondrial complex I activity was unaffected by palmitoylcarnitine but complex II activity was enhanced. Re-oxygenation following 30-min hypoxia transiently increased OCR but such an effect on OCR was abolished by complex II inhibitor, malonate, but not by complex I inhibitor, rotenone, despite that complex I activity was significantly increased with re-oxygenation following hypoxia in the presence of palmitoylcarnitine. Furthermore, OCR and complex II activity were significantly increased in the mitochondria from high-fat diet mice heart compared with those of normal or low-fat diet mice. Re-oxygenation to mitochondria following 30-min hypoxia increased OCR in all three groups but significantly more in HFD. Malonate abolished re-oxygenation-induced OCR increment in all groups. Our results indicate that complex II activity and OCR are enhanced with palmitoylcarnitine or in HFD mice heart. Although re-oxygenation following hypoxia enhanced complex II and complex I activities, complex II plays an important role in increasing mitochondrial activity, which may be instrumental in myocardial injury following ischemic reperfusion.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Grasas/metabolismo , Corazón/fisiología , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Animales , Dieta Alta en Grasa , Complejo I de Transporte de Electrón/metabolismo , Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/metabolismo , Oxidación-Reducción
19.
Proc Natl Acad Sci U S A ; 117(5): 2462-2472, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31953260

RESUMEN

Preadipocytes can give rise to either white adipocytes or beige adipocytes. Owing to their distinct abilities in nutrient storage and energy expenditure, strategies that specifically promote "beiging" of adipocytes hold great promise for counterbalancing obesity and metabolic diseases. Yet, factors dictating the differentiation fate of adipocyte progenitors remain to be elucidated. We found that stearoyl-coenzyme A desaturase 1 (Scd1)-deficient mice, which resist metabolic stress, possess augmentation in beige adipocytes under basal conditions. Deletion of Scd1 in mature adipocytes expressing Fabp4 or Ucp1 did not affect thermogenesis in mice. Rather, Scd1 deficiency shifted the differentiation fate of preadipocytes from white adipogenesis to beige adipogenesis. Such effects are dependent on succinate accumulation in adipocyte progenitors, which fuels mitochondrial complex II activity. Suppression of mitochondrial complex II by Atpenin A5 or oxaloacetic acid reverted the differentiation potential of Scd1-deficient preadipocytes to white adipocytes. Furthermore, supplementation of succinate was found to increase beige adipocyte differentiation both in vitro and in vivo. Our data reveal an unappreciated role of Scd1 in determining the cell fate of adipocyte progenitors through succinate-dependent regulation of mitochondrial complex II.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Grasas/metabolismo , Obesidad/enzimología , Estearoil-CoA Desaturasa/genética , Ácido Succínico/metabolismo , Adipocitos Beige/citología , Adipocitos Beige/metabolismo , Adipogénesis , Animales , Metabolismo Energético , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Estearoil-CoA Desaturasa/metabolismo , Termogénesis
20.
J Agric Food Chem ; 67(48): 13269-13281, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31725275

RESUMEN

We studied the long-term influence of gestational diabetes mellitus (GDM) on the pancreas of offspring and the effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on offspring's pancreas. GDM offspring were divided into three groups: GDM offspring, n-3 PUFA-adequate-GDM offspring, and n-3 PUFA-deficient GDM offspring. All healthy and GDM offspring were fed up to 11 months old. The pancreas of GDM offspring exhibited fatty infiltration at 11 months old, whereas n-3 PUFA improved the pancreatic fatty infiltration. n-3 PUFA lowered the pancreatic oxidative stress and inflammation. Surprisingly, n-3 PUFA postponed pancreatic telomere shortening of GDM offspring at old age. Nontargeted metabolomics showed that many metabolites were altered in the pancreas of GDM offspring at old age, including l-valine, ceramide, acylcarnitines, tocotrienol, cholesteryl acetate, and biotin. n-3 PUFA modulated some altered metabolites and metabolic pathways. Therefore, GDM caused the long-term effects on offspring's pancreas, whereas n-3 PUFA played a beneficial role.


Asunto(s)
Diabetes Gestacional/tratamiento farmacológico , Ácidos Grasos Omega-3/administración & dosificación , Páncreas/metabolismo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Animales , Diabetes Gestacional/metabolismo , Grasas/metabolismo , Femenino , Humanos , Masculino , Metabolómica , Páncreas/química , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Wistar , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA