Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Food Sci ; 88(6): 2583-2594, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37092315

RESUMEN

Campylobacter is one of the most common foodborne bacterial pathogens causing illness, known as campylobacteriosis, in the United States. More than 70% of the campylobacteriosis cases have direct or indirect relation with poultry/poultry products. Currently, both conventional and organic/pasture poultry farmers are searching for sustainable alternative to antibiotics which can reduce colonization and cross-contamination of poultry products with Campylobacter and promote poultry health and growth. Probiotic and their nutritional supplement, known as prebiotic, have become consumers' preferences as alternatives to antibiotics/chemicals. In this study, we evaluated the combined effect of plant-derived prebiotic and probiotic-derived metabolites in reducing growth of Campylobacter in cecum contents, a simulated chicken gut condition. Cecum contents were collected from chickens pre-inoculated with kanamycin-resistant Campylobacter (CJRMKm), were incubated over 48 h time period, while being supplemented with either berry phenolic extract (BPE), cell free cultural supernatant from an engineered probiotic, Lactobacillus casei, or their combination. It was found that combine treatments were able to reduce both inoculated and naturally colonized Campylobacter more effectively. Microbiome analysis using 16S rRNA sequencing also revealed that combine treatments were capable to alter natural microflora positively within chicken cecum contents. Differences were observed in bacterial abundance at both phylum and genus level but did not show significant alteration in alpha diversity due to this treatment. PRACTICAL APPLICATION: The results of this study provide critical information for understanding the potential of synbiotic as an alternative in sustainable poultry farming. The outcomes of this study will lead future direction of using combination of probiotic-derived metabolites and BPE in poultry farming.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Campylobacter , Lacticaseibacillus casei , Microbiota , Enfermedades de las Aves de Corral , Simbióticos , Animales , Pollos/microbiología , Campylobacter/genética , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/veterinaria , Frutas , ARN Ribosómico 16S , Ciego/microbiología , Aves de Corral/genética , Fenoles/farmacología , Bacterias/genética , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Enfermedades de las Aves de Corral/microbiología
2.
Poult Sci ; 102(5): 102592, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36972674

RESUMEN

Campylobacter jejuni (C. jejuni) is the most common food-borne pathogen that causes human gastroenteritis in the United States. Consumption of contaminated poultry products is considered as the major source of human Campylobacter infection. An effective vaccine would be a promising alternative to antibiotic supplements to curb C. jejuni colonization in poultry gastrointestinal (GI) tract. However, the genetic diversity among the C. jejuni isolates makes vaccine production more challenging. Despite many attempts, an effective Campylobacter vaccine is not yet available. This study aimed to identify suitable candidates to develop a subunit vaccine against C. jejuni, which could reduce colonization in the GI tract of the poultry. In the current study, 4 C. jejuni strains were isolated from retail chicken meat and poultry litter samples and their genomes were sequenced utilizing next-generation sequencing technology. The genomic sequences of C. jejuni strains were screened to identify potential antigens utilizing the reverse vaccinology approach. In silico genome analysis predicted 3 conserved potential vaccine candidates (phospholipase A [PldA], TonB dependent vitamin B12 transporter [BtuB], and cytolethal distending toxin subunit B [CdtB]) suitable for the development of a vaccine. Furthermore, the expression of predicted genes during host-pathogen interaction was analyzed by an infection study using an avian macrophage-like immortalized cell line (HD11). The HD11 was infected with C. jejuni strains, and the RT-qPCR assay was performed to determine the expression of the predicted genes. The expression difference was analyzed using ΔΔCt methods. The results indicate that all 3 predicted genes, PldA, BtuB, and CdtB, were upregulated in 4 tested C. jejuni strains irrespective of their sources of isolation. In conclusion, in silico prediction and gene expression analysis during host-pathogen interactions identified 3 potential vaccine candidates for C. jejuni.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Campylobacter , Vacunas , Animales , Humanos , Campylobacter jejuni/genética , Genes Bacterianos , Pollos/genética , Infecciones por Campylobacter/prevención & control , Infecciones por Campylobacter/veterinaria , Infecciones por Campylobacter/genética , Aves de Corral
3.
Infect Immun ; 90(10): e0033722, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36135600

RESUMEN

Campylobacter jejuni is the most common cause of bacterial foodborne gastroenteritis and holds significant public health importance. The continuing increase of antibiotic-resistant Campylobacter necessitates the development of antibiotic-alternative approaches to control infections in poultry and in humans. Here, we assessed the ability of E. coli Nissle 1917 (EcN; free and chitosan-alginate microencapsulated) to reduce C. jejuni colonization in chickens and measured the effect of EcN on the immune responses, intestinal morphology, and gut microbes of chickens. Our results showed that the supplementation of 3-week-old chickens daily with free EcN in drinking water resulted in a 2.0 log reduction of C. jejuni colonization in the cecum, whereas supplementing EcN orally three times a week, either free or microencapsulated, resulted in 2.0 and 2.5 log reductions of C. jejuni colonization, respectively. Gavaged free and microencapsulated EcN did not have an impact on the evenness or the richness of the cecal microbiota, but it did increase the villous height (VH), crypt depth (CD), and VH:CD ratio in the jejunum and ileum of chickens. Further, the supplementation of EcN (all types) increased C. jejuni-specific and total IgA and IgY antibodies in chicken's serum. Microencapsulated EcN induced the expression of several cytokines and chemokines (1.6 to 4.3-fold), which activate the Th1, Th2, and Th17 pathways. Overall, microencapsulated EcN displayed promising effects as a potential nonantibiotic strategy to control C. jejuni colonization in chickens. Future studies on testing microencapsulated EcN in the feed and water of chickens raised on built-up floor litter would facilitate the development of EcN for industrial applications to control Campylobacter infections in poultry.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Quitosano , Agua Potable , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Probióticos , Animales , Humanos , Alginatos/farmacología , Antibacterianos/farmacología , Infecciones por Campylobacter/microbiología , Ciego/microbiología , Quimiocinas , Pollos/microbiología , Quitosano/farmacología , Citocinas , Escherichia coli , Inmunidad , Inmunoglobulina A , Enfermedades de las Aves de Corral/microbiología , Probióticos/farmacología , Probióticos/uso terapéutico
4.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830039

RESUMEN

Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.


Asunto(s)
Péptidos Antimicrobianos/uso terapéutico , Biopelículas/efectos de los fármacos , Infecciones por Campylobacter , Campylobacter jejuni/fisiología , Aceites Volátiles/uso terapéutico , Animales , Péptidos Antimicrobianos/química , Infecciones por Campylobacter/prevención & control , Infecciones por Campylobacter/transmisión , Humanos , Aceites Volátiles/química , Aves de Corral/microbiología
5.
BMC Infect Dis ; 21(1): 1139, 2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34743683

RESUMEN

BACKGROUND: The alarming rise in multi-drug resistant (MDR) zoonotic pathogens, including Campylobacter spp., has been threatening the health sector globally. In Bangladesh, despite rapid growth in poultry sector little is known about the potential risks of zoonotic pathogens in homestead duck flocks. The aim of this study was to understand the occurrence, species diversity, and multi-drug resistance in Campylobacter spp., and identify the associated risk factors in duck farms in Bangladesh. METHODS: The study involved 20 duck farms at 6 sub-districts of Mymensingh, Bangladesh. Monthly occurrence of Campylobacter spp. in potential sources at the farms during February-September, 2018, was detected by culture and PCR-based methods. Campylobacter isolates were examined for resistance to different antimicrobials. Risk factors, concerning climatic and environmental disposition, farm management, and anthropogenic practices, of Campylobacter infection were estimated by participatory epidemiological tools. RESULTS: Occurrence of Campylobacter spp. was detected in overall 36.90% (155/420) samples, more frequently in drinking water (60%, 30/50), followed by cloacal swab (37.50%, 75/200), egg surface swab (35%, 35/100) and soil of the duck resting places (30%, 15/50) but was not detected in feed samples (n = 20). PCR assays distinguished the majority (61.30%, 95/155) of the isolates as C. coli, while the rest (38.70%, 60/155) were C. jejuni. Notably, 41.7% (25/60) and 31.6% (30/95) strains of C. jejuni and C. coli, respectively, were observed to be MDR. The dynamics of Campylobacter spp., distinctly showing higher abundance during summer and late-monsoon, correlated significantly with temperature, humidity, and rainfall, while sunshine hours had a negative influence. Anthropogenic management-related factors, including, inadequate hygiene practices, use of untreated river water, wet duck shed, flock age (1-6 months), and unscrupulous use of antimicrobials were identified to enhance the risk of MDR Campylobacter infection. CONCLUSION: The present study clearly demonstrates that duck farms contribute to the enhanced occurrence and spread of potentially pathogenic and MDR C. coli and C. jejuni strains and the bacterial dynamics are governed by a combined interaction of environmental and anthropogenic factors. A long-term holistic research at the environment-animal-human interface would be integral to divulge health risk reduction approaches tackling the spread of Campylobacter spp. from duck farms.


Asunto(s)
Infecciones por Campylobacter , Campylobacter coli , Campylobacter jejuni , Campylobacter , Enfermedades de las Aves de Corral , Animales , Bangladesh/epidemiología , Campylobacter/genética , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/veterinaria , Pollos , Resistencia a Múltiples Medicamentos , Patos , Granjas , Humanos , Lactante , Enfermedades de las Aves de Corral/epidemiología , Factores de Riesgo
6.
Poult Sci ; 100(11): 101423, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34534853

RESUMEN

Spotty liver disease (SLD) is a serious condition affecting extensively housed laying hens. The causative bacterium was described in 2015 and characterized in 2016 and named Campylobacter hepaticus. Antibiotics are the only tool currently available to combat SLD. However, antimicrobial resistance has already been detected, so finding therapeutic alternatives is imperative. Isoquinoline alkaloids (IQA), such as sanguinarine and chelerythrine, have been shown to have immunomodulatory effects. It has been hypothesized that IQA could ameliorate some of the deleterious effects of SLD. This study aimed to address that hypothesis in an experimental disease induction model. Birds were fed with diets containing 2 different doses of an IQA containing product, 100 mg of product/kg of feed (0.5 ppm of sanguinarine) and 200 mg of product/kg of feed (1.0 ppm of sanguinarine). Two additional groups remained untreated (a challenged positive control and an unchallenged negative control). After 4 wk of treatment, birds from all groups except the negative control group were exposed to C. hepaticus strain HV10. The IQA treated groups showed a reduction in the number of miliary lesions on the liver surface and reduced lesion scores compared with untreated hens. A significant reduction of egg mass was detected 6 d after exposure to C. hepaticus in the untreated group (P = 0.02). However, there was not a significant drop in egg-mass in the IQA groups, especially those fed with a high dose of IQA (P = 0.93). IQA supplementation did not produce significant changes in intestinal villus height and crypt depth but did result in a significant reduction in the proinflammatory cytokine, interleukin-8, in the blood (P < 0.01). Microbiota analysis showed that IQA treatment did not alter the alpha diversity of the cecal microbiota but did produce changes in the phylogenetic structure, with the higher dose of IQA increasing the Firmicutes/Bacteroidetes ratio. Other minor changes in production indicators included an increase in feed consumption (P < 0.01) and an increase in body weight of the treated hens (P < 0.0001). The present study has demonstrated that IQA confers some protection of chickens from the impact of SLD.


Asunto(s)
Infecciones por Campylobacter , Hepatopatías , Enfermedades de las Aves de Corral , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Campylobacter , Infecciones por Campylobacter/veterinaria , Pollos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Isoquinolinas , Hepatopatías/veterinaria , Filogenia , Enfermedades de las Aves de Corral/prevención & control
7.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445577

RESUMEN

Infections by the zoonotic foodborne bacterium Campylobacter jejuni (C. jejuni) are among the most frequent causes of bacterial gastroenteritis worldwide. The aim was to evaluate the relationship between epithelial barrier disruption, mucosal immune activation, and vitamin D (VD) treatment during C. jejuni infection, using intestinal epithelial cells and mouse models focused on the interaction of C. jejuni with the VD signaling pathway and VD treatment to improve C. jejuni-induced barrier dysfunction. Our RNA-Seq data from campylobacteriosis patients demonstrate inhibition of VD receptor (VDR) downstream targets, consistent with suppression of immune function. Barrier-preserving effects of VD addition were identified in C. jejuni-infected epithelial cells and IL-10-/- mice. Furthermore, interference of C. jejuni with the VDR pathway was shown via VDR/retinoid X receptor (RXR) interaction. Paracellular leakiness of infected epithelia correlated with tight junction (TJ) protein redistribution off the TJ domain and apoptosis induction. Supplementation with VD reversed barrier impairment and prevented inhibition of the VDR pathway, as shown by restoration of transepithelial electrical resistance and fluorescein (332 Da) permeability. We conclude that VD treatment restores gut epithelial barrier functionality and decreases bacterial transmigration and might, therefore, be a promising compound for C. jejuni treatment in humans and animals.


Asunto(s)
Infecciones por Campylobacter/complicaciones , Permeabilidad de la Membrana Celular , Células Epiteliales/efectos de los fármacos , Interleucina-10/fisiología , Mucosa Intestinal/efectos de los fármacos , Vitamina D/farmacología , Animales , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/aislamiento & purificación , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Uniones Estrechas/metabolismo , Vitaminas/farmacología
8.
Food Chem Toxicol ; 154: 112354, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34146620

RESUMEN

Preparations of the fungus Cordyceps sinensis and bovine colostrum are considered nutraceuticals due to their anti-inflammatory, repair and gut alimentation properties in mammalian models. To reduce the reliance on rodents in routine experimentation, we gauged the capacity of nutraceuticals to alleviate gastric damage in an insect surrogate, Galleria mellonella. Larvae were reared on standard or supplemented diets - 10% (w/w) colostrum, 10% (w/w) C. sinensis, or 5% + 5% each - prior to receiving an oral dose of the NSAID indomethacin (30 mg/kg) or challenged with the bacterial pathogen Campylobacter jejuni (1-3 x106) via two inoculation routes. Insects reared on a cordyceps-supplemented diet proved most resistant to indomethacin-induced gut leakiness, and displayed stable health indices after C. jejuni challenge (~77% survival). Insects reared on a colostrum-supplemented diet also showed recalcitrance in the gut, but were more sensitive to C. jejuni when injected directly into the body cavity (50% survival). The nutraceutical blend yielded improved health outcomes when compared to the standard diet, but was not as effective as either nutraceutical alone. Our findings represent clear evidence that insects were more resistant to known chemical and microbial agitators when reared on nutraceutical-supplemented diets - toxicological endpoints that are shared with vertebrate studies.


Asunto(s)
Infecciones por Campylobacter/dietoterapia , Suplementos Dietéticos , Tracto Gastrointestinal/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Animales , Campylobacter jejuni/efectos de los fármacos , Bovinos , Calostro , Cordyceps , Indometacina/farmacología , Larva/efectos de los fármacos , Permeabilidad
9.
Artículo en Inglés | MEDLINE | ID: mdl-33918252

RESUMEN

This study was conducted to evaluate the presence of Campylobacter (C.) jejuni and C. coli in dogs at five dog training centers in Southern Italy. A total of 550 animals were sampled by collecting rectal swabs. The samples were processed to detect thermotolerant Campylobacter spp. by culture and molecular methods. Campylobacter spp. were isolated from 135/550 (24.5-95% confidence interval) dogs. A total of 84 C. jejuni (62.2%) and 51 C. coli (37.8%) isolates were identified using conventional PCR. The dog data (age, sex, breed, and eating habits) were examined by two statistical analyses using the C. jejuni and C. coli status (positive or negative) as dependent variables. Dogs fed home-cooked food showed a higher risk of being positive for C. jejuni than dogs fed dry or canned meat for dogs (50.0%; p < 0.01). Moreover, purebred dogs had a significantly higher risk than crossbred dogs for C. coli positivity (16.4%; p < 0.01). This is the first study on the prevalence of C. jejuni and C. coli in dogs frequenting dog training centers for animal-assisted therapies (AATs). Our findings emphasize the potential zoonotic risk for patients and users involved in AATs settings and highlight the need to carry out ad hoc health checks and to pay attention to the choice of the dog, as well as eating habits, in order to minimize the risk of infection.


Asunto(s)
Terapia Asistida por Animales , Infecciones por Campylobacter , Campylobacter jejuni , Campylobacter , Enfermedades de los Perros , Animales , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/veterinaria , Perros , Humanos , Italia/epidemiología
10.
Int J Food Microbiol ; 340: 109046, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33445066

RESUMEN

Campylobacteriosis is a zoonosis and the most frequent cause of food-borne bacterial enteritis in humans. C. jejuni and C. coli are the most common species implicated in campylobacteriosis. Broilers and their products are considered the most important food sources of human infections. The aim of the present study was to evaluate the presence of thermotolerant Campylobacter in different reservoirs at the farm, and the permanence of this pathogen during four consecutive rearing periods. The samples were taken from the same house farm in the downtime period and during the last week of broiler rearing, prior to their slaughter during four consecutive cycles. Different reservoirs as potential sources of Campylobacter were analysed. The prevalence of Campylobacter in vectors was 23% in A. diaperinus larvae, 20% in wild birds, 13% in A. diaperinus adults, and 9% in flies; as regards fomites, the prevalence was 50% in workers' boots, 27% in litter, and 21% in feed, while in broilers it was 80%. Campylobacter jejuni was the most detected species (51%) in the samples analysed. In addition, some Campylobacter genotypes persisted in the house farm throughout consecutive rearing periods, indicating that those strains remain during downtime periods. However, our study could not identify the Campylobacter sources in the downtime periods because all the samples were negative for Campylobacter isolation. In addition, a remarkable finding was the effect of the use of enrofloxacin (as a necessary clinical intervention for flock health) in cycle 3 on the Campylobacter population. No Campylobacter could be isolated after that clinic treatment. Afterwards, we found a greater proportion of C. coli isolates, and the genotypes of those isolates were different from the genotypes found in the previous rearing periods. In conclusion, the effect of the use of enrofloxacin during the rearing period changed the Campylobacter species proportion, and this finding is particularly interesting for further evaluation. Furthermore, more studies should be conducted with the aim of detecting the Campylobacter sources between rearing periods.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones por Campylobacter/veterinaria , Campylobacter/aislamiento & purificación , Pollos , Reservorios de Enfermedades , Enrofloxacina/uso terapéutico , Granjas , Animales , Animales Salvajes/microbiología , Campylobacter/fisiología , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/genética , Pollos/microbiología , Genotipo , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/microbiología , Prevalencia , Termotolerancia
11.
Appl Microbiol Biotechnol ; 104(24): 10409-10436, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33185702

RESUMEN

Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Campylobacter , Preparaciones Farmacéuticas , Animales , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/prevención & control , Infecciones por Campylobacter/veterinaria , Humanos , Factores de Virulencia
12.
BMC Infect Dis ; 20(1): 518, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32677920

RESUMEN

BACKGROUND: Campylobacter jejuni is a leading cause of bacterial diarrhea worldwide, and increasing rates of fluoroquinolone (FQ) resistance in C. jejuni are a major public health concern. The rapid detection and tracking of FQ resistance are critical needs in developing countries, as these antimicrobials are widely used against C. jejuni infections. Detection of point mutations at T86I in the gyrA gene by real-time polymerase chain reaction (RT-PCR) is a rapid detection tool that may improve FQ resistance tracking. METHODS: C. jejuni isolates obtained from children with diarrhea in Peru were tested by RT-PCR to detect point mutations at T86I in gyrA. Further confirmation was performed by sequencing of the gyrA gene. RESULTS: We detected point mutations at T86I in the gyrA gene in 100% (141/141) of C. jejuni clinical isolates that were previously confirmed as ciprofloxacin-resistant by E-test. No mutations were detected at T86I in gyrA in any ciprofloxacin-sensitive isolates. CONCLUSIONS: Detection of T86I mutations in C. jejuni is a rapid, sensitive, and specific method to identify fluoroquinolone resistance in Peru. This detection approach could be broadly employed in epidemiologic surveillance, therefore reducing time and cost in regions with limited resources.


Asunto(s)
Infecciones por Campylobacter/diagnóstico , Campylobacter jejuni/genética , Girasa de ADN/genética , Farmacorresistencia Bacteriana/genética , Fluoroquinolonas/uso terapéutico , Mutación Puntual , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sustitución de Aminoácidos , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/aislamiento & purificación , Niño , Ciprofloxacina/uso terapéutico , Análisis Mutacional de ADN/métodos , Diarrea/diagnóstico , Diarrea/tratamiento farmacológico , Diarrea/microbiología , Humanos , Isoleucina/genética , Pruebas de Sensibilidad Microbiana , Perú , Treonina/genética
13.
Transl Res ; 223: 76-88, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32438073

RESUMEN

Campylobacter is an enteric pathogen and a leading bacterial cause of diarrhea worldwide. It is widely distributed in food animal species and is transmitted to humans primarily through the foodborne route. While generally causing self-limited diarrhea in humans, Campylobacter may induce severe or systemic infections in immunocompromised or young/elderly patients, which often requires antibiotic therapy with the first-line antibiotics including fluoroquinolones and macrolides. Over the past decades, Campylobacter has acquired resistance to these clinically significant antibiotics, compromising the effectiveness of antibiotic treatments. To address this concern, many studies have been conducted to advance novel and alternative measures to control antibiotic-resistant Campylobacter in animal reservoirs and in the human host. Although some of these undertakings have yielded promising results, efficacious and reliable alternative approaches are yet to be developed. In this review article, we will describe Campylobacter-associated disease spectrums and current treatment options, discuss the state of antibiotic resistance and alternative therapies, and provide an evaluation of various approaches that are being developed to control Campylobacter infections in animal reservoirs and the human host.


Asunto(s)
Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/microbiología , Campylobacter/fisiología , Farmacorresistencia Microbiana , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Campylobacter/efectos de los fármacos , Farmacorresistencia Microbiana/efectos de los fármacos , Humanos , Inmunización
14.
Poult Sci ; 99(2): 1135-1149, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32036965

RESUMEN

Salmonella and Campylobacter are considered major public health burdens worldwide, and poultry are known to be one of the main reservoirs for these zoonotic pathogens. This study was conducted to evaluate the effect of a commercial probiotic or direct-fed microbial (DFM) Calsporin (CSP), and prebiotic or mannan oligosaccharide (MOS) (IMW50) on ultrastructural changes and the villous integrity of intestinal mucosa in turkey poults challenged with Salmonella and Campylobacter. A 21-day battery cage study was conducted using 4 dietary treatments including a basal diet (corn and soybean-based) nonsupplemented and uninfected as a negative control (NC); basal diet supplemented with 0.05% DFM (CSP); basal diet supplemented with 0.05% MOS (IMW50); and basal diet supplemented with 0.05% mixture of DFM and MOS at equal proportions. Female large white turkey poults aged 336 days were obtained from a local commercial hatchery and randomly distributed in electrically heated battery cages with 12 treatments of 4 replicates per treatment containing 7 poults per pen. The first 16 pens were not infected with bacteria, poults in pens 17-32 were orally challenged at day 7 with 105 cfu Salmonella Heidelberg, and the poults in pens 33-48 were orally challenged at day 7 with 105 cfu Campylobacter jejuni. Feed and water were provided ad libitum throughout the study. At day 21, ileal tissue samples from 1 bird per cage were collected for intestinal integrity and ultrastructural examination by scanning and electron microscopy. DFM and MOS supplementation was effective in both challenged and nonchallenged (not infected with Salmonella and Campylobacter) birds. Goblet cells and mucus were increased, with the presence of large numbers of segmented filamentous bacteria in DFM- and MOS-supplemented groups compared with birds in control treatments. The number and size of villi were reduced in poults exposed to Salmonella and Campylobacter. Results show that CSP and IMW50 provide protection of ileal mucosal integrity in poults exposed to Salmonella or Campylobacter.


Asunto(s)
Infecciones por Campylobacter/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Prebióticos , Probióticos/farmacología , Salmonelosis Animal/prevención & control , Pavos , Alimentación Animal/análisis , Animales , Campylobacter/fisiología , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/prevención & control , Dieta/veterinaria , Suplementos Dietéticos/análisis , Íleon/efectos de los fármacos , Íleon/ultraestructura , Mucosa Intestinal/efectos de los fármacos , Mananos/farmacología , Microscopía Electrónica de Rastreo/veterinaria , Microscopía Electrónica de Transmisión/veterinaria , Oligosacáridos/farmacología , Distribución Aleatoria , Saccharomyces cerevisiae/química , Salmonella/fisiología , Salmonelosis Animal/microbiología
15.
J Bacteriol ; 202(7)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31932316

RESUMEN

Campylobacter jejuni causes acute gastroenteritis worldwide and is transmitted primarily through poultry, in which it is often a commensal member of the intestinal microbiota. Previous transcriptome sequencing (RNA-Seq) experiment showed that transcripts from an operon encoding a high-affinity phosphate transporter (PstSCAB) of C. jejuni were among the most abundant when the bacterium was grown in chickens. Elevated levels of the pstSCAB mRNA were also identified in an RNA-Seq experiment from human infection studies. In this study, we explore the role of PstSCAB in the biology and colonization potential of C. jejuni Our results demonstrate that cells lacking PstSCAB survive poorly in stationary phase, in nutrient-limiting media, and under osmotic conditions reflective of those in the chicken. Polyphosphate levels in the mutant cells were elevated at stationary phase, consistent with alterations in expression of polyphosphate metabolism genes. The mutant strain was highly attenuated for colonization of newly hatched chicks, with levels of bacteria at several orders of magnitude below wild-type levels. Mutant and wild type grew similarly in complex media, but the pstS::kan mutant exhibited a significant growth defect in minimal medium supplemented with l-lactate, postulated as a carbon source in vivo Poor growth in lactate correlated with diminished expression of acetogenesis pathway genes previously demonstrated as important for colonizing chickens. The phosphate transport system is thus essential for diverse aspects of C. jejuni physiology and in vivo fitness and survival.IMPORTANCECampylobacter jejuni causes millions of human gastrointestinal infections annually, with poultry a major source of infection. Due to the emergence of multidrug resistance in C. jejuni, there is need to identify alternative ways to control this pathogen. Genes encoding the high-affinity phosphate transporter PstSCAB are highly expressed by C. jejuni in chickens and humans. In this study, we address the role of PstSCAB on chicken colonization and other C. jejuni phenotypes. PstSCAB is required for colonization in chicken, metabolism and survival under different stress responses, and during growth on lactate, a potential growth substrate in chickens. Our study highlights that PstSCAB may be an effective target to develop mechanisms for controlling bacterial burden in both chicken and human.


Asunto(s)
Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/fisiología , Pollos/microbiología , Ácido Láctico/metabolismo , Proteínas de Transporte de Fosfato/genética , Enfermedades de las Aves de Corral/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Metabolómica/métodos , Mutación , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Estrés Fisiológico
16.
Vet Microbiol ; 240: 108504, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31902497

RESUMEN

Campylobacter jejuni (C. jejuni) is a predominant cause of foodborne illness in humans, while its colonization in chickens is usually asymptomatic. Antibiotics are not routinely used to treat chickens against C. jejuni, but in the face of other bacterial diseases, C. jejuni may be exposed to antibiotics. In this study, chickens were treated with antibiotics (AT) to modify the gut microbiota composition and compared with untreated chickens (Conv) with respect to changes in C. jejuni-colonization and bacterial-intestine interaction. Groups of AT and Conv chickens were inoculated after an antibiotic-withdrawal time of eight days with one of three different C. jejuni isolates to identify possible strain variations. Significantly higher numbers of colony forming units of C. jejuni were detected in the cecal content of AT birds, with higher colonization rates in the spleen and liver compared to Conv birds independent of the inoculated strain (p < 0.05). Clinical signs and histopathological lesions were only observed in C. jejuni-inoculated AT birds. For the first time we demonstrated C. jejuni invasion of the cecal mucosa in AT chickens and its inter- and intracellular localization by using antigen-straining, and electronic microscopy. This study provides the first circumstantial evidence that antibiotic treatment with lasting modification of the microbiota may provide a suitable environment for C. jejuni invasion also in chickens which may subsequently increase the risk of C. jejuni-introduction into the food chain.


Asunto(s)
Antibacterianos/uso terapéutico , Adhesión Bacteriana/efectos de los fármacos , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/patogenicidad , Ciego/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Infecciones por Campylobacter/microbiología , Ciego/efectos de los fármacos , Pollos/microbiología , Interacciones Microbiota-Huesped/efectos de los fármacos , Mucosa Intestinal/microbiología , Enfermedades de las Aves de Corral/microbiología
17.
Mini Rev Med Chem ; 20(15): 1462-1474, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31965943

RESUMEN

Campylobacter (curved bacteria) is considered one of the most important and common zoonotic bacteria and the three leading bacterial causes of gastroenteritis and diarrhea. Antibacterial resistance is growing and expanding. The aim of this review article is to report anti-Campylobacter medicinal plants. For this purpose, the search terms consisting of Campylobacter, medicinal plants, essential oil, extract, and traditional medicine were used to retrieve the relevant articles published in the journals indexed in Information Sciences Institute, Web of Science, PubMed, Scopus, Google Scholar, and Scientific Information Databases. Then, the findings of eligible articles were analyzed. According to the analysis, 71 medicinal plants were found to exert anti-Campylobacter effect. The active compounds of these plants are possibly nature-based antibiotic agents that are effective on Campylobacter. If these compounds are isolated, purified, and studied in pharmaceutical investigations, they can be used to produce nature-based, anti-Campylobacter antibiotics.


Asunto(s)
Antibacterianos/farmacología , Campylobacter/efectos de los fármacos , Extractos Vegetales/farmacología , Plantas Medicinales/química , Antibacterianos/química , Antibacterianos/uso terapéutico , Campylobacter/aislamiento & purificación , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/prevención & control , Humanos , Medicina Tradicional , Aceites Volátiles/química , Aceites Volátiles/farmacología , Fenoles/química , Fenoles/farmacología , Fenoles/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Plantas Medicinales/metabolismo
18.
Microb Drug Resist ; 25(7): 1080-1086, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31021299

RESUMEN

Aims: To determine the prevalence and the antibiotic resistance patterns of Campylobacter jejuni isolated from pediatric diarrhea patients in central Iran. Materials and Methods: Stool specimens (n = 230) were investigated using a modified Gram stain, two specific culture media, and C. jejuni-specific PCR. Antibiotic resistance profiles and relevant resistance genes were determined. Genetic relationships among a selection of the isolates were studied by Fla typing. Results: Out of the 230 diarrhea samples, 48 (20.8%) cases of C. jejuni were identified using modified Gram stain, 45 (19.5%) using the culture media, and 76 (33%) cases were identified using PCR. The highest antibiotic resistance rates were observed in 37 (82.2%) strains against tetracycline, in 32 (71.1%) against ciprofloxacin, and in 31 (68.8%) against erythromycin. Twenty (44.4%) isolates were resistant to ciprofloxacin and erythromycin simultaneously. Genotypic investigations found 36 (97.3%) strains carrying the tet (o) gene, 31 (96.8%) harboring the cmeB gene, 22 (68.7%) strains with the gyrA6 gene, 20 (64.5%) strains containing a 23S rRNA mutation, and 21 (65.6%) strains with the qnrS gene. Fla typing of a random subset of 14 strains revealed 11 different types showing the genomic diversity of the isolates. Strains sharing the same Fla type could be easily distinguished by their resistance gene profile. Conclusions: This is the first study to demonstrate that genetically diverse quinolone-macrolide-resistant C. jejuni is an important cause of gastroenteritis in children from central Iran. Pediatricians should consider these resistance features once the antibiotic prescription is necessary for prevention of possible complications, especially in those under 5 years of age. Of note, most cases of Campylobacter diarrhea are self-limiting and antibiotics should only be prescribed in those cases where severe complications evolve.


Asunto(s)
Infecciones por Campylobacter/microbiología , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/aislamiento & purificación , Farmacorresistencia Bacteriana/genética , Gastroenteritis/microbiología , Macrólidos/uso terapéutico , Quinolonas/uso terapéutico , Antibacterianos/uso terapéutico , Infecciones por Campylobacter/tratamiento farmacológico , Campylobacter jejuni/genética , Niño , Preescolar , Ciprofloxacina/uso terapéutico , Estudios Transversales , ADN Bacteriano/genética , Diarrea/tratamiento farmacológico , Diarrea/microbiología , Eritromicina/uso terapéutico , Femenino , Flagelina/genética , Gastroenteritis/tratamiento farmacológico , Genotipo , Humanos , Lactante , Irán , Masculino , Pruebas de Sensibilidad Microbiana/métodos , ARN Ribosómico 23S/genética , Tetraciclina/uso terapéutico
19.
PLoS One ; 14(4): e0214471, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30943226

RESUMEN

Increased global regulation and restrictions on the non-therapeutic use of antibiotics in the poultry industry means that there is a need to identify alternatives that prevent infection while still conveying the growth and performance benefits afforded by their use. Biochars are produced by the incomplete pyrolysis of organic materials, with reports of use as a feed supplement and activity against pathogenic bacteria. In the current study the dose-dependent effects of biochar dietary inclusion in layer diets at 1%, 2% and 4% w/w were investigated to determine a) the efficacy of biochar as an anti-pathogenic additive on the intestinal microbiota and b) the optimal inclusion level. Biochar inclusion for anti-pathogenic effects was found to be most beneficial at 2% w/w. Poultry pathogens such as Gallibacterium anatis and campylobacters, including Campylobacter hepaticus, were found to be significantly lower in biochar fed birds. A shift in microbiota was also associated with the incorporation of 2% w/w biochar in the feed in two large scale trials on two commercial layer farms. Biochar inclusion for anti-pathogenic effects was found to be most beneficial at 2% w/w. Differential effects of the timing of biochar administration (supplementation beginning at hatch or at point of lay) were also evident, with greater impact on community microbial structure at 48 weeks of age when birds were fed from hatch rather than supplemented at point of lay.


Asunto(s)
Alimentación Animal , Infecciones por Campylobacter/veterinaria , Campylobacter , Carbón Orgánico/química , Hepatopatías/veterinaria , Enfermedades de las Aves de Corral/prevención & control , Ciencias de la Nutrición Animal , Animales , Infecciones por Campylobacter/prevención & control , Pollos/microbiología , Suplementos Dietéticos , Femenino , Microbioma Gastrointestinal , Hepatopatías/microbiología , Hepatopatías/prevención & control , Microbiota , Enfermedades de las Aves de Corral/microbiología
20.
PLoS One ; 14(3): e0212946, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30845147

RESUMEN

Campylobacter jejuni is a zoonotic agent responsible for the foodborne gastroenteritis campylobacteriosis. Control of C. jejuni load in the poultry primary production is recognized as an avenue to reduce human exposure to the pathogen. As for now, no commercially applicable control methods exist at the farm. Several studies tested egg yolk powders, potentiated or not against C. jejuni, as feed additives for chicken and suggested that the quantity and quality of the antibodies presence in the yolk are determinant factors for the full success of this approach. Unfortunately, data from these studies inconsistently showed a reduction of cecal C. jejuni carriage. Our first goal wwas to characterize (quantification by ELISA, agglutination test, bacterial antigen recognition profiles by Western blot, bactericidal effect by serum killing assays and C. jejuni mobility by soft agar migation) the antibodies extracted from egg yolk powders originating from different egg production protocols. Secondly, these powders were microencapsulated and recharacterized. Finally the protected powders were tested as a feed additive to destabilize C. jejuni colonization in an in vivo assay. Despite the in vitro results indicating the ability of the egg yolk powders to recognize Campylobacter and potentially alter its colonization of the chicken caecum, these results were not confirmed in the in vivo trial despite that specific caecal IgY directed toward Campylobacter were detected in the groups receiving the protected powders. More research is needed on Campylobacter in order to effectively control this pathogen at the farm.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Infecciones por Campylobacter/prevención & control , Campylobacter jejuni/inmunología , Yema de Huevo/inmunología , Aditivos Alimentarios/administración & dosificación , Alimentación Animal , Animales , Anticuerpos Antibacterianos/administración & dosificación , Antígenos Bacterianos/inmunología , Carga Bacteriana/efectos de los fármacos , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/aislamiento & purificación , Ciego/microbiología , Pollos/microbiología , Composición de Medicamentos , Evaluación Preclínica de Medicamentos , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Inmunoglobulinas/administración & dosificación , Inmunoglobulinas/inmunología , Productos Avícolas/envenenamiento , Polvos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA