Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Food Res Int ; 184: 114243, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609222

RESUMEN

Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.


Asunto(s)
Lipidómica , Lipólisis , Ácidos Grasos , Ácidos Grasos no Esterificados , Ácido Linoleico , Aceite de Salvado de Arroz
2.
Food Chem ; 447: 138941, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38461726

RESUMEN

Herbal teas and beverages have gained global attention because they are rich in natural bioactive compounds, which are known to have diverse biological effects, including antioxidant and anticarcinogenic properties. However, the lipidomic profiles of herbal teas remain unclear. In this study, we applied an untargeted lipidomics approach using high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry to comprehensively profile, compare, and identify unknown lipids in four herbal teas: dokudami, kumazasa, sugina, and yomogi. A total of 341 molecular species from five major classes of lipids were identified. Multivariate principal component analysis revealed distinct lipid compositions for each of the herbs. The fatty acid α-linolenic acid (FA 18:3) was found to be abundant in kumazasa, whereas arachidonic acid (FA 20:4) was the most abundant in sugina. Interestingly, novel lipids were discovered for the first time in plants; specifically, short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) with 4-hydroxy phenyl nonanoic acid as the structural core. This study provides insight into the lipidomic diversity and potential bioactive lipid components of herbal teas, offering a foundation for further research into their health-promoting properties and biological significance.


Asunto(s)
Tés de Hierbas , Tés de Hierbas/análisis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida con Espectrometría de Masas , Bebidas/análisis , Lipidómica/métodos
3.
Food Chem ; 447: 138946, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38498952

RESUMEN

Rice bran, recognized for its rich lipids and health-beneficial bioactive compounds, holds considerable promise in applications such as rice bran oil production. However, its susceptibility to lipid hydrolysis and oxidation during storage presents a significant challenge. In response, we conducted an in-depth metabolic profiling of rice bran over a storage period of 14 days. We focused on the identification of bioactive compounds and functional lipid species (25 acylglycerols and 53 phospholipids), closely tracking their dynamic changes over time. Our findings revealed significant reductions in these lipid molecular species, highlighting the impact of rancidity processes. Furthermore, we identified 19 characteristic lipid markers and elucidated that phospholipid and glycerolipid metabolism were key metabolic pathways involved. By shedding light on the mechanisms driving lipid degradation in stored rice bran, our study significantly advanced the understanding of lipid stability. These information provided valuable insights for countering rancidity and optimizing rice bran preservation strategies.


Asunto(s)
Lipidómica , Oryza , Hidrólisis , Oxidación-Reducción , Fosfolípidos , Lipólisis , Aceite de Salvado de Arroz
4.
Food Chem ; 447: 139046, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38518620

RESUMEN

The objective of this study was to systematically elucidate the effects of conventional (Cold Pressing, CP; Hot Pressing, HP; Soxhlet Extraction; SE) and novel methods (Microwave-Assisted Extraction, MAE) on the physicochemical properties, bio-active substances, flavor and lipidomics of Camellia oleifera oil (COO). The cold-pressed COO contained the highest contents of squalene (176.38 mg/kg), α-tocopherol (330.52 mg/kg), polyphenols (68.33 mg/kg) and phytosterols (2782.55 mg/kg). Oleic acid was observed as the predominant fatty acid with the content of approximately 80%. HS-GC-IMS identified 47 volatile compounds, including 11 aldehydes, 11 ketones, 11 alcohols, 2 acids, 8 esters, 2 pyrazines, 1 furan, and 1 thiophene. A total of 5 lipid classes and 30 lipid subclasses of 339 lipids were identifed, among which TGs and DGs were observed as the major lipids. In summary, both cold-pressed and microwave-assisted technologies provided high-quality COO with high content of bio-active substances and diglycerides/triglycerides.


Asunto(s)
Camellia , Lipidómica , Aceites de Plantas/química , Ácidos Grasos , Ácido Oléico , Camellia/química
5.
Clin Transl Sci ; 17(3): e13745, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488489

RESUMEN

The purpose of this study was to investigate changes in the lipidome of patients with sepsis to identify signaling lipids associated with poor outcomes that could be linked to future therapies. Adult patients with sepsis were enrolled within 24h of sepsis recognition. Patients meeting Sepsis-3 criteria were enrolled from the emergency department or intensive care unit and blood samples were obtained. Clinical data were collected and outcomes of rapid recovery, chronic critical illness (CCI), or early death were adjudicated by clinicians. Lipidomic analysis was performed on two platforms, the Sciex™ 5500 device to perform a lipidomic screen of 1450 lipid species and a targeted signaling lipid panel using liquid-chromatography tandem mass spectrometry. For the lipidomic screen, there were 274 patients with sepsis: 192 with rapid recovery, 47 with CCI, and 35 with early deaths. CCI and early death patients were grouped together for analysis. Fatty acid (FA) 12:0 was decreased in CCI/early death, whereas FA 17:0 and 20:1 were elevated in CCI/early death, compared to rapid recovery patients. For the signaling lipid panel analysis, there were 262 patients with sepsis: 189 with rapid recovery, 45 with CCI, and 28 with early death. Pro-inflammatory signaling lipids from ω-6 poly-unsaturated fatty acids (PUFAs), including 15-hydroxyeicosatetraenoic (HETE), 12-HETE, and 11-HETE (oxidation products of arachidonic acid [AA]) were elevated in CCI/early death patients compared to rapid recovery. The pro-resolving lipid mediator from ω-3 PUFAs, 14(S)-hydroxy docosahexaenoic acid (14S-HDHA), was also elevated in CCI/early death compared to rapid recovery. Signaling lipids of the AA pathway were elevated in poor-outcome patients with sepsis and may serve as targets for future therapies.


Asunto(s)
Ácidos Grasos Omega-3 , Sepsis , Adulto , Humanos , Lipidómica , Ácidos Grasos , Espectrometría de Masas
6.
J Pharm Biomed Anal ; 242: 116059, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422672

RESUMEN

Central precocious puberty (CPP) is a prevalent endocrine disorder that primarily affects children, specifically females, and is associated with various physical and psychological complications. Although Kangzao granules (KZG) are efficacious in managing CPP, the underlying mechanisms remain unclear. Therefore, this study aimed to elucidate the therapeutic mechanisms of KZG using network pharmacology, molecular docking, pharmacodynamics, and pathway validation. A putative compound-target-pathway network was constructed using Cytoscape, before KEGG and Gene Ontology enrichment analyses were conducted. Moreover, molecular docking was performed using AutoDockTools. Quality control of the 10 key components of KZG was carried out using UHPLC-ESI/LTQ-Orbitrap-MS/MS, and hypothalamic lipids were analyzed using UHPLC-Q-Exactive Orbitrap MS/MS. In total, 87 bioactive compounds that targeting 110 core proteins to alleviate CPP were identified in KZG. Lipidomic analysis revealed 18 differential lipids among the CPP, KZG, and control groups, wherein fatty acids were significantly reduced in the model group; however, these changes were effectively counteracted by KZG treatment. Molecular docking analysis revealed a strong binding affinity between flavonoids and RAC-alpha serine/threonine-protein kinase (AKT) when docked into the crystal structure. Moreover, a substantial disruption in lipid metabolism was observed in the model group; however, treatment with KZG efficiently reversed these alterations. Furthermore, the phosphoinositide 3-kinase/AKT signaling pathway was identified as a pivotal regulator of hypothalamic lipid metabolism regulator. Overall, this study highlights the effectiveness of a multidisciplinary approach that combines network pharmacology, lipidomics, molecular docking, and experimental validation in the elucidation of the therapeutic mechanisms of KZG in CPP treatment.


Asunto(s)
Medicamentos Herbarios Chinos , Pubertad Precoz , Humanos , Niño , Femenino , Animales , Ratas , Farmacología en Red , Lipidómica , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Pubertad Precoz/tratamiento farmacológico , Espectrometría de Masas en Tándem , Ácidos Grasos , Hipotálamo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
7.
J Nutr ; 154(4): 1130-1140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38237669

RESUMEN

BACKGROUND: Fish oil with the ω-3 fatty acids EPA and DHA is an FDA-approved treatment of patients with severe hypertriglyceridemia. Furthermore, EPA is an FDA-approved treatment of patients with high risk of cardiovascular disease (CVD); however, the cardioprotective mechanisms are unclear. OBJECTIVES: We aimed to determine if fish oil supplementation is cardioprotective due to beneficial modifications in HDL particles. METHODS: Seven fish oil naïve subjects without a history of CVD were recruited to take a regimen of fish oil (1125 mg EPA and 875 mg DHA daily) for 30 d, followed by a 30-d washout period wherein no fish oil supplements were taken. HDL isolated from fasting whole blood at each time point via 2-step ultracentrifugation (ucHDL) was assessed for proteome, lipidome, cholesterol efflux capacity (CEC), and anti-inflammatory capacity. RESULTS: Following fish oil supplementation, the HDL-associated proteins immunoglobulin heavy constant γ1, immunoglobulin heavy constant α1, apolipoprotein D, and phospholipid transfer protein decreased compared to baseline (P < 0.05). The HDL-associated phospholipid families sphingomyelins, phosphatidylcholines, and phosphatidylserines increased after fish oil supplementation relative to baseline (P < 0.05). Compared to baseline, fish oil supplementation increased serum HDL's CEC (P = 0.002). Fish oil-induced changes (Post compared with Baseline) in serum HDL's CEC positively correlated with plasma EPA levels (R2 = 0.7256; P = 0.015). Similarly, fish oil-induced changes in ucHDL's CEC positively correlated with ucHDL's ability to reduce interleukin 10 (R2 = 0.7353; P = 0.014) and interleukin 6 mRNA expression (R2 = 0.6322; P =0.033) in a human macrophage cell line. CONCLUSIONS: Overall, fish oil supplementation improved HDL's sterol efflux capacity through comprehensive modifications to its proteome and lipidome.


Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Adulto , Humanos , Aceites de Pescado/farmacología , Proteoma , Lipidómica , Lipoproteínas HDL , Suplementos Dietéticos , Inmunoglobulinas , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Triglicéridos
8.
J Cosmet Dermatol ; 23(4): 1452-1464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214419

RESUMEN

BACKGROUND: The skin condition of women is different at different ages, and skin surface lipids are also different. According to the "7-7 theory" of the Huangdi Neijing, the physiological condition of women changes significantly every 7 years, and women aged 22-28 are in the "4-7" stage as mentioned in the "7-7 theory" of the Huangdi Neijing. Women's skin is in different states at different ages and produces different lipids. OBJECTIVES: To explore the key lipids that contribute to skin differences between women aged 22-28 and 29-35 years, and to explore the relationship with physiological parameters and daily routine. METHODS: Differential lipids were detected and screened between 22-28 year old (group D1) and 29-35 year old (group D2) dry-skinned women using UPLC-Q-TOF-MS and correlated between the two groups with questionnaires and physiological parameters based on basic information, lifestyle habits, work situation, and emotional stress. RESULTS: The results showed that all of the eight major classes of lipids had the highest expression in the D2 group, with the largest differences in glycerophospholipids, glycerol esters, and fatty acids. The BMI value of D2 group was higher than that of D1 group, the skin elasticity index (R2) and brightness index (L, a, ITA values) were lower than that of D1 group, and Cer (d18:0/16:0) was positively correlated with the R2, L, a, and ITA, and LMSP01080056 (N,N-dimethyl-Safingol) was positively correlated with the b-value, the LMSPGP03020013, LMSPGP03020014, LMSP03020024 were significantly negatively correlated with R2. CONCLUSIONS: Cer(d18:0/16:0) is a neurosphingol that inhibits elastase expression. N,N-dimethyl-Safingol readily undergoes oxidation to form yellow-brown solids. The macromolecular structure and excessive carbonyl structure of [LMGP0302] are susceptible to cross-linking and carbonyl stress reactions, which accelerate skin aging and reduce skin elasticity, and thus, they may be key lipids contributing to skin differences between the two age groups.


Asunto(s)
Lipidómica , Lípidos , Esfingosina/análogos & derivados , Humanos , Femenino , Adulto Joven , Adulto , Lípidos/análisis , Ácidos Grasos/metabolismo , Piel/metabolismo
9.
Food Chem ; 442: 138462, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38245985

RESUMEN

Yak milk is essential to maintain the normal physiological functions of herders in Tibetan areas of China. However, the lipid components of yak colostrum (YC) and mature milk (YM) have not been systematically studied. We employed a quantitative lipidomics to comprehensively describe the alterations in the milk lipid profile of lactating yaks. Herein, totally 851 lipids from 28 lipid subclasses in YC and YM were identified and screened for 43 significantly different lipids (SDLs; variable importance in projection > 1, fold change < 0.5 or > 2 with P < 0.05), with cholesterol ester (CE, 16:0) and triacylglycerol (TAG, 54:6 (20:5), 50:1 (16:0), 56:6 (20:5)) were the potential lipid biomarkers. Fourteen SDLs were modulated downwards, and 29 SDLs were modulated upwards in YM. Moreover, by analyzing lipid metabolic pathways in these SDLs, glycerophospholipid metabolism was the most critical. Our results furnish integral lipid details for evaluating yak milk's nutritional quality.


Asunto(s)
Calostro , Leche , Embarazo , Femenino , Animales , Bovinos , Calostro/metabolismo , Lactancia/metabolismo , Lipidómica/métodos , Cromatografía Líquida de Alta Presión , Triglicéridos/metabolismo
10.
J Ethnopharmacol ; 324: 117748, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38216103

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is one of the main cardiovascular diseases (CVDs) leading to an increase in global mortality, and its key pathological features are lipid accumulation and oxidative stress. Huang-Lian-Jie-Du decoction (HLJDD), a representative formula for clearing heat and detoxifying, has been shown to reduce aortic lipid plaque and improve AS. However, multiple components and multiple targets of HLJDD pose a challenge in comprehending its comprehensive mechanism in the treatment of AS. AIM OF THE STUDY: This study was designed to illustrate the anti-AS mechanisms of HLJDD in an apolipoprotein E-deficient (ApoE-/-) mouse model from a metabolic perspective. MATERIALS AND METHODS: ApoE-/- mice were kept on a high-fat diet (HFD) to induce AS. Serum total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were determined to evaluate the influence of HLJDD on dyslipidemia. Oil red O was used to stain mouse aortic lipid plaques, and hematoxylin and eosin (HE) staining was used to assess the pathological changes in the aortic roots. Metabolomics and lipidomics combined with serum pharmacochemistry were performed to research the HLJDD mechanism of alleviating AS. RESULTS: In this study, HLJDD treatment improved serum biochemical levels and histopathological conditions in AS mice. A total of 6 metabolic pathways (arginine biosynthesis, glycerophospholipid, sphingolipid, arachidonic acid, linoleic acid, and glycerolipid metabolism) related to 25 metabolic biomarkers and 41 lipid biomarkers were clarified, and 22 prototype components migrating to blood were identified after oral administration of HLJDD. CONCLUSION: HLJDD improved AS induced by HFD in ApoE-/- mice. The effects of HLJDD were mainly attributed to regulating lipid metabolism by regulating the metabolic pathways of glycerophospholipids, sphingolipids, arachidonic acid, linoleic acid, and glycerolipids and reducing the levels of oxidative stress by upregulating arginine biosynthesis.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Ratones , Animales , Lipidómica , Ácido Araquidónico , Ácido Linoleico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metabolómica , Aterosclerosis/tratamiento farmacológico , Apolipoproteínas E/genética , Biomarcadores , Colesterol , Arginina
11.
Food Chem ; 439: 138059, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039608

RESUMEN

Lipids are widespread in nature and play a pivotal role as a source of energy and nutrition for the human body. Vegetable oils (VOs) constitute a significant category in the food industry, containing various lipid components that have garnered attention for being natural, environmentally friendly and health-promoting. The review presented the classification of raw materials (RMs) from oil crops and quality analysis techniques of VOs, with the aim of improving comprehension and facilitating in-depth research of VOs. Brief descriptions were provided for four categories of VOs, and quality analysis techniques for both RMs and VOs were generalized. Furthermore, this study discussed the applications of lipidomics technology in component analysis, processing and utilization, quality determination, as well as nutritional function assessment of VOs. Through reviewing RMs and quality analysis techniques of VOs, this study aims to encourage further refinement and development in the processing and utilization of VOs, offering valuable references for theoretical and applied research in food chemistry and food science.


Asunto(s)
Lipidómica , Aceites de Plantas , Humanos , Valor Nutritivo , Alimentos
12.
Food Res Int ; 175: 113725, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129041

RESUMEN

The oxidative degradation of lipids in vegetable oils during thermal processing may present a risk to human health. However, not much is known about the evolution of lipids and their non-volatile derivatives in vegetable oils under different thermal processing conditions. In the present study, a pseudotargeted oxidative lipidomics approach was developed and the evolution of lipids and their non-volatile derivatives in palm oil, rapeseed oil, soybean oil, and flaxseed oil under different thermal processing conditions was investigated. The results showed that thermal processing resulted in the oxidative degradation of TGs in vegetable oils, which generated oxTGs, DGs, and FFAs, as well as TGs with smaller molecular weights. The lower the fatty acid saturation, the more severe the oxidative degradation of vegetable oils and thermal processing at high temperatures should be avoided if possible. From the accumulation of oxTGs concentrations, the hazards during thermal processing at high temperatures were, in descending order, soybean oil, rapeseed oil, flaxseed oil, and palm oil. The non-volatile potential markers were screened in palm oil, rapeseed oil, soybean oil, and flaxseed oil for 1, 7, 5, and 2 markers related to thermal processing time, respectively. The study provided suggestions for the consumption of vegetable oils from multiple perspectives and identified markers for monitored oxidative degradation of vegetable oils.


Asunto(s)
Aceites de Plantas , Aceite de Soja , Humanos , Aceite de Brassica napus , Aceite de Linaza , Lipidómica , Aceite de Palma , Estrés Oxidativo
13.
J Biol Chem ; 300(1): 105563, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101568

RESUMEN

Intermediary metabolites and flux through various pathways have emerged as key determinants of post-translational modifications. Independently, dynamic fluctuations in their concentrations are known to drive cellular energetics in a bi-directional manner. Notably, intracellular fatty acid pools that drastically change during fed and fasted states act as precursors for both ATP production and fatty acylation of proteins. Protein fatty acylation is well regarded for its role in regulating structure and functions of diverse proteins; however, the effect of intracellular concentrations of fatty acids on protein modification is less understood. In this regard, we unequivocally demonstrate that metabolic contexts, viz. fed and fasted states, dictate the extent of global fatty acylation. Moreover, we show that presence or absence of glucose that influences cellular and mitochondrial uptake/utilization of fatty acids and affects palmitoylation and oleoylation, which is consistent with their intracellular abundance in fed and fasted states. Employing complementary approaches including click-chemistry, lipidomics, and imaging, we show the top-down control of cellular metabolic state. Importantly, our results establish the crucial role of mitochondria and retrograde signaling components like SIRT4, AMPK, and mTOR in orchestrating protein fatty acylation at a whole cell level. Specifically, pharmacogenetic perturbations that alter either mitochondrial functions and/or retrograde signaling affect protein fatty acylation. Besides illustrating the cross-talk between carbohydrate and lipid metabolism in mediating bulk post-translational modification, our findings also highlight the involvement of mitochondrial energetics.


Asunto(s)
Acilación , Ácidos Grasos , Metabolismo de los Lípidos , Procesamiento Proteico-Postraduccional , Proteínas , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Química Clic , Ayuno/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Lipidómica , Lipoilación , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/química , Proteínas/metabolismo , Sirtuinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
14.
Cardiovasc Diabetol ; 22(1): 312, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957697

RESUMEN

BACKGROUND: Metabolic cardiomyopathy (MCM), characterized by intramyocardial lipid accumulation, drives the progression to heart failure with preserved ejection fraction (HFpEF). Although evidence suggests that the mammalian silent information regulator 1 (Sirt1) orchestrates myocardial lipid metabolism, it is unknown whether its exogenous administration could avoid MCM onset. We investigated whether chronic treatment with recombinant Sirt1 (rSirt1) could halt MCM progression. METHODS: db/db mice, an established model of MCM, were supplemented with intraperitoneal rSirt1 or vehicle for 4 weeks and compared with their db/ + heterozygous littermates. At the end of treatment, cardiac function was assessed by cardiac ultrasound and left ventricular samples were collected and processed for molecular analysis. Transcriptional changes were evaluated using a custom PCR array. Lipidomic analysis was performed by mass spectrometry. H9c2 cardiomyocytes exposed to hyperglycaemia and treated with rSirt1 were used as in vitro model of MCM to investigate the ability of rSirt1 to directly target cardiomyocytes and modulate malondialdehyde levels and caspase 3 activity. Myocardial samples from diabetic and nondiabetic patients were analysed to explore Sirt1 expression levels and signaling pathways. RESULTS: rSirt1 treatment restored cardiac Sirt1 levels and preserved cardiac performance by improving left ventricular ejection fraction, fractional shortening and diastolic function (E/A ratio). In left ventricular samples from rSirt1-treated db/db mice, rSirt1 modulated the cardiac lipidome: medium and long-chain triacylglycerols, long-chain triacylglycerols, and triacylglycerols containing only saturated fatty acids were reduced, while those containing docosahexaenoic acid were increased. Mechanistically, several genes involved in lipid trafficking, metabolism and inflammation, such as Cd36, Acox3, Pparg, Ncoa3, and Ppara were downregulated by rSirt1 both in vitro and in vivo. In humans, reduced cardiac expression levels of Sirt1 were associated with higher intramyocardial triacylglycerols and PPARG-related genes. CONCLUSIONS: In the db/db mouse model of MCM, chronic exogenous rSirt1 supplementation rescued cardiac function. This was associated with a modulation of the myocardial lipidome and a downregulation of genes involved in lipid metabolism, trafficking, inflammation, and PPARG signaling. These findings were confirmed in the human diabetic myocardium. Treatments that increase Sirt1 levels may represent a promising strategy to prevent myocardial lipid abnormalities and MCM development.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Animales , Humanos , Ratones , Diabetes Mellitus/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/prevención & control , Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo , Lipidómica , Lípidos , Miocitos Cardíacos/metabolismo , PPAR gamma/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Volumen Sistólico , Triglicéridos/metabolismo , Función Ventricular Izquierda
15.
Artículo en Inglés | MEDLINE | ID: mdl-37827069

RESUMEN

Fructus Psoraleae (FP), one of the important traditional Chinese medicines, is widely used in clinic and has been reported to be hepatotoxic. However, there is no report on the mechanism of FP-induced hepatotoxicity based on the theory of You Gu Wu Yun. In this study, plasma samples of rats with different kidney deficiency syndromes were investigated using a lipidomics approach based on UPLC/Q-TOF-MS technique. Firstly, multivariate statistical analysis, VIP value test, statistical test and other methods were used to find the lipid metabolites in the two syndrome model groups that were different from the normal group. The screening of differential lipid metabolites revealed that there were 12 biomarkers between the blank group and the kidney-yang deficiency model group as well as 16 differential metabolites between the kidney-yin deficiency model group, and finally a total of 17 relevant endogenous metabolites were identified, which could be used as differential lipid metabolites to distinguish between kidney-yin deficiency and kidney-yang deficiency evidence. Secondly, the relative content changes of metabolites in rats after administration of FP decoction were further compared to find the substances associated with toxicity after administration, and the diagnostic ability of the identified biomarkers was evaluated using a receiver operating characteristic curve (ROC). Results a total of 14 potential differential lipid metabolites, including LysoPC(20:0/0:0) and LysoPC(16:0/0:0), which may be related to hepatotoxicity in rats with kidney-yin deficiency syndrome were further screened, namely, the potential active lipid metabolites related to hepatotoxicity in rats induced by FP. Finally, cluster analysis, MetPA analysis and KEGG database were used to analyze metabolic pathways. It was discovered that the metabolism of glycerophospholipid and sphingolipid may be strongly related to the mechanism of hepatotoxicity brought on by FP. Overall, we described the lipidomics changes in rats treated with FP decoction and screened out 14 lipid metabolites related to hepatotoxicity in rats with kidney-yin deficiency, which served as a foundation for the theory of "syndrome differentiation and treatment" in traditional Chinese medicine and a guide for further investigation into the subsequent mechanism.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Trastornos del Metabolismo de los Lípidos , Ratas , Animales , Ratas Sprague-Dawley , Deficiencia Yin/metabolismo , Medicamentos Herbarios Chinos/farmacología , Deficiencia Yang , Lipidómica , Metabolismo de los Lípidos , Riñón/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Biomarcadores/metabolismo , Lípidos
16.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836594

RESUMEN

Periploca forrestii Schltr. (P. forrestii) is a classical medicinal plant and is commonly used in traditional medicine for the treatment of rheumatoid arthritis, soft tissue injuries, and traumatic injuries. The aim of this study was to evaluate the anti-arthritic effects of three fractions of P. forrestii alcoholic extracts (PAE), P. forrestii water extracts (PWE), and total flavonoids from P. forrestii (PTF) on Freund's complete adjuvant (FCA)-induced arthritis in rats, and to use a non-targeted lipidomic method to investigate the mechanism of action of the three fractions of P. forrestii in the treatment of rheumatoid arthritis. To assess the effectiveness of anti-rheumatoid arthritis, various indicators were measured, including joint swelling, histopathological changes in the joints, serum cytokines (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6)), and the joint inflammatory substance prostaglandin E2 (PGE2). Finally, ultra-performance liquid chromatography-quadrupole-orbitrap-high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS) was used to determine the non-targeted lipid histology of the collected rat serum and urine samples to investigate the possible mechanism of action. PWE, PAE, and PTF were all effective in treating FCA-induced rheumatoid arthritis. The administered groups all reduced joint swelling and lowered serum inflammatory factor levels in rats. In the screening of lipid metabolite differences between serum and urine of the rat model group and the normal group, a total of 52 different metabolites were screened, and the levels of lipid metabolites in PWE, PAE, and PTF were significantly higher than those in the normal group after administration. In addition, PWE, PAE, and PTF may have significant therapeutic effects on FCA-induced arthritis by modulating nicotinic acid, nicotinamide, and histidine metabolic pathways.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Periploca , Ratas , Animales , Periploca/química , Extractos Vegetales/análisis , Ratas Sprague-Dawley , Lipidómica , Artritis Reumatoide/tratamiento farmacológico , Colágeno/uso terapéutico , Interleucina-6 , Adyuvantes Inmunológicos/uso terapéutico , Adyuvante de Freund , Adyuvantes Farmacéuticos , Lípidos/uso terapéutico , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología
17.
Nutrients ; 15(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686765

RESUMEN

A high phosphorus intake has been associated with various metabolic disorders, including chronic kidney disease, cardiovascular disease, and osteoporosis. Recent studies have demonstrated the effects of dietary phosphorus on lipid and glucose metabolism. This study investigated the impact of a high-phosphorus diet on mouse skeletal muscle lipid composition and gene transcription. Adult male mice (n = 12/group) received either a diet with an adequate (0.3%) or a high (1.2%) phosphorus concentration for 6 weeks. The lipidome analysis showed that among the 17 analyzed lipid classes, the concentrations of three classes were reduced in the high phosphorus group compared to the adequate phosphorus group. These classes were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and lysophosphatidylcholine (LPC) (p < 0.05). Out of the three hundred and twenty-three individual lipid species analyzed, forty-nine showed reduced concentrations, while three showed increased concentrations in the high phosphorus group compared to the adequate phosphorus group. The muscle transcriptome analysis identified 142 up- and 222 down-regulated transcripts in the high phosphorus group compared to the adequate phosphorus group. Gene set enrichment analysis identified that genes that were up-regulated in the high phosphorus group were linked to the gene ontology terms "mitochondria" and "Notch signaling pathway", whereas genes that were down-regulated were linked to the "PI3K-AKT pathway". Overall, the effects of the high-phosphorus diet on the muscle lipidome and transcriptome were relatively modest, but consistently indicated an impact on lipid metabolism.


Asunto(s)
Lipidómica , Transcriptoma , Masculino , Animales , Ratones , Fosfatidilinositol 3-Quinasas , Músculo Esquelético , Fósforo , Lisofosfatidilcolinas
18.
Molecules ; 28(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687178

RESUMEN

Bear bile powder is an essential, traditional and valuable Chinese herbal medicine that clears heat, calms the liver, and improves eyesight. Early studies have shown that bear bile powder has lipid-lowering activity, but due to the scarcity of natural bear bile powder resources, it has yet to be used on a large scale. Researchers have found that tauroursodeoxycholic acid (TUDCA) is the primary characteristic bioactive substance of bear bile powder. This study aimed to investigate the therapeutic effect of TUDCA on high-fat diet (HFD)-induced hyperlipidemia. A hyperlipidemia model was established by feeding mice high-fat chow, following the intervention of different concentrations of TUDCA (25/50/100 mg/kg) orally, the hallmark biochemical indexes (total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)), histopathological examination (hematoxylin-eosin (HE) staining and oil red O (ORO) staining), and metabolomic analysis of serum and liver. The results showed that TUDCA could downregulate total TC, TG, LDL-C, upregulate HDL-C, reduce fat deposition in hepatocytes, reverse hepatocyte steatosis, and exhibit prominent lipid-lowering activity. In addition, it may play a therapeutic role by regulating glycerophospholipid metabolism.


Asunto(s)
Lipidómica , Ursidae , Animales , Ratones , LDL-Colesterol , Polvos , Metabolómica , HDL-Colesterol
19.
PLoS One ; 18(9): e0291292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37683041

RESUMEN

Extracellular vesicles (EVs) (exossomes, microvesicles and apoptotic bodies) have been well acknowledged as mediators of intercellular communications in prokaryotes and eukaryotes. Lipids are essential molecular components of EVs but at the moment the knowledge about the lipid composition and the function of lipids in EVs is limited and as for now none lipidomic studies in Giardia EVs was described. Therefore, the focus of the current study was to conduct, for the first time, the characterization of the polar lipidome, namely phospholipid and sphingolipid profiles of G. lamblia trophozoites, microvesicles (MVs) and exosomes, using C18-Liquid Chromatography-Mass Spectrometry (C18-LC-MS) and Tandem Mass Spectrometry (MS/MS). A total of 162 lipid species were identified and semi-quantified, in the trophozoites, or in the MVs and exosomes belonging to 8 lipid classes, including the phospholipid classes phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), cardiolipins (CL), the sphingolipid classes sphingomyelin (SM) and ceramides (Cer), and cholesterol (ST), and 3 lipid subclasses that include lyso PC (LPC), lyso PE (LPE) and lyso PG (LPG), but showing different abundances. This work also identified, for the first time, in G. lamblia trophozoites, the lipid classes CL, Cer and ST and subclasses of LPC, LPE and LPG. Univariate and multivariate analysis showed clear discrimination of lipid profiles between trophozoite, exosomes and MVs. The principal component analysis (PCA) plot of the lipidomics dataset showed clear discrimination between the three groups. Future studies focused on the composition and functional properties of Giardia EVs may prove crucial to understand the role of lipids in host-parasite communication, and to identify new targets that could be exploited to develop novel classes of drugs to treat giardiasis.


Asunto(s)
Vesículas Extracelulares , Gastrópodos , Giardia lamblia , Giardiasis , Animales , Lipidómica , Espectrometría de Masas en Tándem , Giardia , Ceramidas , Lecitinas , Fosfolípidos , Esfingolípidos , Cardiolipinas
20.
J Lipid Res ; 64(11): 100445, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37730162

RESUMEN

Optimal dietary intake of omega-3 long-chain polyunsaturated fatty acids (n3-LCPUFAs) is critical to human health across the lifespan. However, omega-3 index (O3I) determination is not routinely assessed due to complicated procedures for n3-LCPUFA analysis from the phospholipid (PL) fraction of erythrocytes. Herein, a high-throughput method for lipidomics based on multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry was applied to identify circulating PLs as surrogate biomarkers of O3I in two randomized placebo-controlled trials. An untargeted lipidomic data workflow using a subgroup analysis of serum extracts from sunflower oil versus high-dose fish oil (FO)-supplemented participants revealed that ingested n3-LCPUFAs were primarily distributed as their phosphatidylcholines (PCs) relative to other PL classes. In both high-dose FO (5.0 g/day) and EPA-only trials (3.0 g/day), PC (16:0_20:5) was the most responsive PL, whereas PC (16:0_22:6) was selective to DHA-only supplementation. We also demonstrated that the sum concentration of both these PCs in fasting serum or plasma samples was positively correlated to the O3I following FO (r = 0.708, P = 1.02 × 10-11, n = 69) and EPA- or DHA-only supplementation (r = 0.768, P = 1.01 × 10-33, n = 167). Overall, DHA was more effective in improving the O3I (ΔO3I = 4.90 ± 1.33%) compared to EPA (ΔO3I = 2.99 ± 1.19%) in young Canadian adults who had a poor nutritional status with an O3I (3.50 ± 0.68%) at baseline. Our method enables the rapid assessment of the O3I by directly measuring two circulating PC species in small volumes of blood, which may facilitate screening applications for population and precision health.


Asunto(s)
Ácidos Grasos Omega-3 , Lipidómica , Adulto , Humanos , Ácido Eicosapentaenoico , Fosfatidilcolinas , Ácidos Docosahexaenoicos , Canadá , Aceites de Pescado , Suplementos Dietéticos , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA