Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Turk Neurosurg ; 34(1): 148-159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282594

RESUMEN

AIM: To evaluate the effects of the combination of nimodipine and dexamethasone in subarachnoid hemorrhage (SAH). MATERIAL AND METHODS: In this study, 35 female adult Wistar Albino rats were randomly assigned to four groups: Sham (n=8), SAH with no treatment (n=9), SAH with nimodipine (n=9, oral gavage, 12 mg/kg, BID) treatment, and SAH with combined therapy with nimodipine and dexamethasone (n=9, intraperitoneally, 1mg/kg, BID). The "cisterna magna double injection of autologous blood" model was used. The animals were euthanized 5 days after the first injection. RESULTS: Of the total, five rats died before euthanasia. The SAH+Nontreatment group showed the worst score in neurological examinations, and the most severe histopathological findings were noted in terms of vasospasm. The SAH+Nimodipine group showed the best neurological score and the closest histopathological results to those of the Sham group, whereas adding dexamethasone to nimodipine treatment (the SAH+Nimodipine+Dexamethasone group) worsened the neurological and histopathological outcomes. CONCLUSION: We thus concluded that the therapeutic effects of nimodipine were impaired when combined with dexamethasone. We thus hypothesized that dexamethasone possibly induces the CYP3A4-enzyme that metabolizes nimodipine. However, it should be noted that our results are based on laboratory findings obtained on a small sample, therefore further studies with drug-drug interaction on a larger sample size through CYP3A4-enzyme and clinical confirmation are warranted.


Asunto(s)
Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Femenino , Ratas , Animales , Nimodipina/farmacología , Hemorragia Subaracnoidea/tratamiento farmacológico , Vasodilatadores/farmacología , Citocromo P-450 CYP3A/uso terapéutico , Ratas Wistar , Dexametasona/uso terapéutico , Vasoespasmo Intracraneal/tratamiento farmacológico , Vasoespasmo Intracraneal/etiología
2.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6107-6114, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114218

RESUMEN

This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1ß(IL-1ß), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1ß, and cleaved IL-1ß) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1ß, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1ß, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1ß, and cleaved IL-1ß and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1ß, and cleaved IL-1ß and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.


Asunto(s)
FN-kappa B , Daño por Reperfusión , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína X Asociada a bcl-2 , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Sprague-Dawley , Caspasa 1/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Nimodipina/farmacología , Interleucina-6 , Ratas Wistar , Transducción de Señal , Infarto de la Arteria Cerebral Media , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Daño por Reperfusión/prevención & control , Superóxido Dismutasa/metabolismo
3.
Fundam Clin Pharmacol ; 37(1): 107-115, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35989463

RESUMEN

Peripheral nerve injuries (PNI/s) are common orthopedic conditions, characterized by motor and sensory deficits in the damaged region. There is growing evidence that the L-type calcium channel antagonist nimodipine has neuroprotective and neuroregenerative effects in animal models of neurological disorders. The efficacy of nimodipine on improving motor function and sensation following a sciatic nerve crush model was investigated in male Wistar rats as a model of PNI. At different time periods following damage, we evaluated motor function, sensory recovery, electrophysiology, histomorphometry, and gene expression. Moreover, we used histological and mass ratio analysis of the gastrocnemius muscle to assess atrophy. Our findings suggest that the nimodipine improves motor and sensory function more quickly in the damaged region 2, 4, and 6 weeks after 1 week of treatment. Nimodipine treatment also increased the number of myelinated fibers while decreasing their thickness, as shown by histomorphometry. Additionally, nimodipine treatment increases the mRNA levels of neurotrophic factors (BDNF and NGF), which are known to contribute to the regeneration of injured neurons. The impact of nimodipine in PNI recovery may be due to its stimulation of the CREB signaling pathway and suppression of pro-inflammatory factor production.


Asunto(s)
Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Ratas , Animales , Masculino , Nimodipina/farmacología , Ratas Wistar , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/patología , Neuropatía Ciática/patología , Nervio Ciático , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología
4.
J Ethnopharmacol ; 300: 115691, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36087844

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The plant Erigeron breviscapus (Vant.) Hand.-Mazz.,a Chinese herbal medicine with multiple pharmacological effects and clinical applications, has been traditionally used in the treatment of paralysis caused by stroke and joint pain from rheumatism by the Yi minority people of Southwest China for generations.However, its mechanism involves many factors and has not been fully clarified. AIM OF THE STUDY: Taking intestinal flora as the target, the protective effect of extract(breviscapine) of E. breviscapus on cerebral ischemia and its possible mechanism were discussed from the perspective of brain inflammatory pathway and intestinal CYP3A4, which depends on intestinal flora. MATERIALS AND METHODS: In this study, we first verified the binding ability between major active ingredient of Erigeron breviscapus and the core target TLR4 protein by molecular docking using Vina software.We established a rat model of cerebral ischemia-reperfusion injury in vivo.The neurological function of rats was scored by Bederson score table, the cerebral infarction volume was detected by TTC staining, and the serum NSE level was detected by ELASA. 16S rRNA sequencing was used to detect the intestinal flora of rats in each group.The expression levels of cerebral TLR4/MyD88/NF-κB and CYP3A4 mRNA and protein in different intestinal segments were detected by qRT-PCR and Western blot. RESULTS: Compared with the model group, the neurological injury score, infarct volume and serum NSE concentration of breviscapine low, medium and high dose groups and nimodipine groups decreased significantly. Meanwhile, breviscapine could significantly reduce the expression level of the TLR4/MyD88/NF-κB in brain tissue and CYP3A4 in different intestinal segments of rats with cerebral ischemia-reperfusion injury. In addition, breviscapine also significantly ameliorated intestinal flora dysbiosis of rats with cerebral ischemia-reperfusion injury. CONCLUSIONS: Breviscapine can protect rats from cerebral ischemia-reperfusion injury by regulating intestinal flora, inhibiting brain TLR4/MyD88/NF-κB inflammatory pathway and intestinal CYP3A4 expression.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Erigeron , Microbioma Gastrointestinal , Daño por Reperfusión , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Erigeron/genética , Erigeron/metabolismo , Flavonoides , Simulación del Acoplamiento Molecular , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Nimodipina/farmacología , ARN Mensajero/metabolismo , ARN Ribosómico 16S , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
5.
J Mol Neurosci ; 72(10): 2125-2135, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36028602

RESUMEN

The transporter hypothesis is one of the most popular hypotheses of drug-resistant epilepsy (DRE). P-glycoprotein (P-gp), a channel protein at the blood-brain barrier (BBB), plays an important role in the transport of some anti-seizure drugs from brain tissue into vessels, which reduces drug concentrations and diminishes the effects of drug treatment. We performed this study to test whether P-gp is overexpressed in DRE and identify ways to prevent and reverse DRE. In this study, we established a phenytoin (PHT)-resistant mouse model and revealed that P-gp was overexpressed at the BBB in PHT-resistant mice. The P-gp inhibitor nimodipine decreased the resistance of phenytoin. Antioxidative preventive treatment with N-acetylcysteine (NAC) prevented the mice from entering a PHT-resistant state, and NAC therapy tended to reverse PHT resistance into sensitivity. We were also able to induce PHT resistance by activating the Nrf2/P-gp pathway, which indicates that oxidative stress plays an important role in drug resistance. Taken together, these findings suggest that antioxidative therapy may be a promising strategy for overcoming DRE.


Asunto(s)
Epilepsia Refractaria , Fenitoína , Animales , Ratones , Fenitoína/farmacología , Fenitoína/uso terapéutico , Barrera Hematoencefálica/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Acetilcisteína/metabolismo , Nimodipina/farmacología , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Encéfalo/metabolismo , Epilepsia Refractaria/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2064-2073, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35531722

RESUMEN

To study the protective effect of Ershiwuwei Zhenzhu Pills on ischemic stroke rats. Ninety 4-weeks-old SPF male SD rats were randomly divided into 6 groups(n=15):sham operation group, model group, nimodipine group(12 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills high-dose group(400 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills medium-dose group(200 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills low-dose group(100 mg·kg~(-1)).The permanent middle cerebral artery occlusion model(PMCAO) was established in the model group, nimodipine group, and Ershiwuwei Zhenzhu Pills groups by the improved thread plug method, while the sham operation group did not insert the thread plug.Nimodipine group and Ershiwuwei Zhenzhu Pills groups were given intragastric administration once a day for 24 days before the modeling operation, and once 1 hour before the modeling operation, while sham operation group and model group were given equal volumes of distilled water.The neuroethology of the surviving rats was measured; The volume of cerebral infarction in rats was measured by TTC method; The histopathology of rat brain was observed by HE method; The expression levels of tumor necrosis factor α(TNF-α),interleukin-1ß(IL-1ß),interleukin-6(IL-6),malondialdehyde(MDA),superoxide dismutase(SOD) and catalase(CAT) in serum were detected by ELISA;The mRNA expressions of Notch 1,Jagged 1,Hes 1 and Bcl-2 in rat brain were detected by RT-PCR;Western blot was used to detect the expression levels of caspase-3 protein in rat brain; the expression levels of vascular endothelial growth factor(VEGF) and CD34 positive cells in rat brain were detected by immunofluorescence.The low, medium and high dose groups of Ershiwuwei Zhenzhu Pills and nimodipine group could significantly reduce the neurobehavioral score and cerebral infarction volume of rats with permanent middle cerebral artery occlusion, reduce the morphological changes of nerve cells, decrease the expression of TNF-α,IL-1ß and IL-6 in rat serum, increase the activity of SOD and CAT,and reduce the level of MDA.Furthermore, the expression levels of Notch l, Jagged l, Hes l and Bcl-2 mRNA were significantly increased, and the expression level of caspase-3 protein was decreased.Meanwhile, the number of VEGF and CD34 positive cells increased in the treatment group.The differences were statistically significant. Ershiwuwei Zhenzhu Pills has a protective effect on ischemic stroke rats, and its mechanism may be related to anti-inflammation, anti-oxidation, promotion of nerve cell proliferation, inhibition nerve cell apoptosis and promotion of angiogenesis.


Asunto(s)
Medicamentos Herbarios Chinos , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico , Animales , Caspasa 3/metabolismo , Medicamentos Herbarios Chinos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Interleucina-6/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Masculino , Nimodipina/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628594

RESUMEN

Ototoxicity is one of the main dose-limiting side effects of cisplatin chemotherapy and impairs the quality of life of tumor patients dramatically. Since there is currently no established standard therapy targeting hearing loss in cisplatin treatment, the aim of this study was to investigate the effect of nimodipine and its role in cell survival in cisplatin-associated hearing cell damage. To determine the cytotoxic effect, the cell death rate was measured using undifferentiated and differentiated UB/OC-1 and UB/OC-2 cells, after nimodipine pre-treatment and stress induction by cisplatin. Furthermore, immunoblot analysis and intracellular calcium measurement were performed to investigate anti-apoptotic signaling, which was associated with a reduced cytotoxic effect after nimodipine pre-treatment. Cisplatin's cytotoxic effect was significantly attenuated by nimodipine up to 61%. In addition, nimodipine pre-treatment counteracted the reduction in LIM Domain Only 4 (LMO4) by cisplatin, which was associated with increased activation of Ak strain transforming/protein kinase B (Akt), cAMP response element-binding protein (CREB), and signal transducers and activators of transcription 3 (Stat3). Thus, nimodipine presents a potentially well-tolerated substance against the ototoxicity of cisplatin, which could result in a significant improvement in patients' quality of life.


Asunto(s)
Antineoplásicos , Ototoxicidad , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/efectos adversos , Antineoplásicos/metabolismo , Apoptosis , Cisplatino/farmacología , Células Ciliadas Auditivas/metabolismo , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Nimodipina/farmacología , Calidad de Vida , Regulación hacia Arriba
8.
Artículo en Chino | WPRIM | ID: wpr-928146

RESUMEN

To study the protective effect of Ershiwuwei Zhenzhu Pills on ischemic stroke rats. Ninety 4-weeks-old SPF male SD rats were randomly divided into 6 groups(n=15):sham operation group, model group, nimodipine group(12 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills high-dose group(400 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills medium-dose group(200 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills low-dose group(100 mg·kg~(-1)).The permanent middle cerebral artery occlusion model(PMCAO) was established in the model group, nimodipine group, and Ershiwuwei Zhenzhu Pills groups by the improved thread plug method, while the sham operation group did not insert the thread plug.Nimodipine group and Ershiwuwei Zhenzhu Pills groups were given intragastric administration once a day for 24 days before the modeling operation, and once 1 hour before the modeling operation, while sham operation group and model group were given equal volumes of distilled water.The neuroethology of the surviving rats was measured; The volume of cerebral infarction in rats was measured by TTC method; The histopathology of rat brain was observed by HE method; The expression levels of tumor necrosis factor α(TNF-α),interleukin-1β(IL-1β),interleukin-6(IL-6),malondialdehyde(MDA),superoxide dismutase(SOD) and catalase(CAT) in serum were detected by ELISA;The mRNA expressions of Notch 1,Jagged 1,Hes 1 and Bcl-2 in rat brain were detected by RT-PCR;Western blot was used to detect the expression levels of caspase-3 protein in rat brain; the expression levels of vascular endothelial growth factor(VEGF) and CD34 positive cells in rat brain were detected by immunofluorescence.The low, medium and high dose groups of Ershiwuwei Zhenzhu Pills and nimodipine group could significantly reduce the neurobehavioral score and cerebral infarction volume of rats with permanent middle cerebral artery occlusion, reduce the morphological changes of nerve cells, decrease the expression of TNF-α,IL-1β and IL-6 in rat serum, increase the activity of SOD and CAT,and reduce the level of MDA.Furthermore, the expression levels of Notch l, Jagged l, Hes l and Bcl-2 mRNA were significantly increased, and the expression level of caspase-3 protein was decreased.Meanwhile, the number of VEGF and CD34 positive cells increased in the treatment group.The differences were statistically significant. Ershiwuwei Zhenzhu Pills has a protective effect on ischemic stroke rats, and its mechanism may be related to anti-inflammation, anti-oxidation, promotion of nerve cell proliferation, inhibition nerve cell apoptosis and promotion of angiogenesis.


Asunto(s)
Animales , Masculino , Ratas , Caspasa 3/metabolismo , Medicamentos Herbarios Chinos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Interleucina-6/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Nimodipina/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Life Sci ; 286: 120048, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655604

RESUMEN

AIMS: Clinically, Cerebralcare Granule® (CG) has been widely utilized to treat various types of headache, chronic cerebral insufficiency and other diseases, and the effect is significant. Clinical studies have shown that CG can significantly relieve vascular dementia (VaD), however, the molecular mechanisms haven't been established. To clear the therapeutic mechanisms of CG against VaD, a hypothesis was proposed that CG could treat neurovascular injury by inhibiting the production of lipocalin-2 (LCN 2). MAIN METHODS: 90 dementia rats were selected by water maze test and randomly divided into 6 groups, including nimodipine (NM), CG L (low dose) (0.314 g kg-1), CG H (high dose) (0.628 g kg-1), and combined group (CG + NM). And in vitro neuronal cell OGD modeling to evaluate the effect of CG on JAK2/STAT3. KEY FINDINGS: CG could significantly shorten the escape latency of two-vessel occlusion (2-VO) rats, increase their exploratory behavior, alleviate the symptoms of VaD and improve the ultrastructural pathological damage of neurovascular unit and accelerate the recovery of cerebral blood perfusion. CG combined with NM is better than NM alone. It was further showed that CG could inhibit the pathogenicity of LCN 2 through JAK2/STAT3 pathway and suppress the production of inflammatory cytokines. It plays a role in the protection of cerebral microvasculature and BBB in 2-VO rats. SIGNIFICANCE: Taken together, there data has supported notion that CG can protect the integrity of cerebral blood vessels and BBB and improve cognitive impairment through mainly inhibiting LCN 2, which provides scientific evidence for clinical application.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Medicamentos Herbarios Chinos/metabolismo , Lipocalina 2/metabolismo , Animales , Arterias Carótidas/efectos de los fármacos , China , Disfunción Cognitiva/fisiopatología , Demencia Vascular/prevención & control , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Lipocalina 2/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nimodipina/metabolismo , Nimodipina/farmacología , Ratas , Ratas Sprague-Dawley
10.
J Pharm Pharmacol ; 73(2): 272-280, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33793797

RESUMEN

OBJECTIVES: Stroke is one of the leading causes of disability and death worldwide, and ischaemic stroke is the most common subtype. Moreover, we found that L-borneol has an obvious therapeutic effect on cerebral ischaemia. This study aimed to investigate the potential mechanism of L-borneol in permanent middle cerebral artery occlusion (pMCAO) rats via the mitochondrial calcium uniporter (MCU)-related apoptosis cascade. METHODS: A pMCAO model was used to simulate cerebral ischaemia, and neurological function was evaluated. Cerebral infarction was observed by TTC staining. HE staining was also used to reflect the pathophysiological changes in the rat hippocampus and cortex. Furthermore, MCU-related signals and apoptosis signalling pathways were detected at both the gene and protein levels. RESULTS: The neurological function scores of the high-dose L-borneol (H-B) group, medium-dose L-borneol (M-B) group and low-dose L-borneol (L-B) group were significantly lower than that of the model group at 24 h (P < 0.05, P < 0.01). High and medium doses of L-borneol could reverse the cerebral infarction area, similar to Nimotop. After HE staining, the cells in the H-B group and M-B group were neatly and densely arranged, with largely normal morphological structures. High-dose L-borneol could significantly reduce the gene and protein levels of Apaf-1, Bad and Caspase-3 and increase the expression of Bcl-2 (P < 0.05, P < 0.01). In addition, the MCU expression of the H-B group was significantly decreased compared with that of the model group at both the gene and protein levels (P < 0.05, P < 0.01). The expression of IDH2 was similar to that of MCU but not MEP (P < 0.05, P < 0.01). CONCLUSION: L-borneol can achieve brain protection by downregulating the excessive expression of MCU-related signalling pathway and further inhibiting the apoptosis of neurons during pMCAO.


Asunto(s)
Apoptosis/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Canfanos/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/patología , Canales de Calcio/metabolismo , Canfanos/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Infarto de la Arteria Cerebral Media , Isocitrato Deshidrogenasa/genética , Masculino , Fármacos Neuroprotectores/administración & dosificación , Nimodipina/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
11.
Eur J Pharmacol ; 900: 174038, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33737008

RESUMEN

Subarachnoid hemorrhage (SAH) due to rupture of an intracranial aneurysm leads to vasospasm resulting in delayed cerebral ischemia. Therapeutic options are currently limited to hemodynamic optimization and nimodipine, which have marginal clinical efficacy. Nitric oxide (NO) modulates cerebral blood flow through activation of the cGMP-Protein Kinase G (PKG) pathway. Our hypothesis is that SAH results in downregulation of signaling components in the NO-PKG pathway which could explain why treatments for vasospasm targeting this pathway lack efficacy and that treatment with a cell permeant phosphopeptide mimetic of downstream effector prevents delayed vasospasm after SAH. Using a rat endovascular perforation model, reduced levels of NO-PKG pathway molecules were confirmed. Additionally, it was determined that expression and phosphorylation of a PKG substrate: Vasodilator-stimulated phosphoprotein (VASP) was downregulated. A family of cell permeant phosphomimetic of VASP (VP) was wasdesigned and shown to have vasorelaxing property that is synergistic with nimodipine in intact vascular tissuesex vivo. Hence, treatment targeting the downstream effector of the NO signaling pathway, VASP, may bypass receptors and signaling elements leading to vasorelaxation and that treatment with VP can be explored as a therapeutic strategy for SAH induced vasospasm and ameliorate neurological deficits.


Asunto(s)
Fosfopéptidos/uso terapéutico , Hemorragia Subaracnoidea/tratamiento farmacológico , Vasodilatadores/uso terapéutico , Vasoespasmo Intracraneal/tratamiento farmacológico , Animales , Moléculas de Adhesión Celular/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/efectos de los fármacos , Regulación hacia Abajo , Diseño de Fármacos , Sinergismo Farmacológico , Proteínas de Microfilamentos/efectos de los fármacos , Proteínas de Microfilamentos/metabolismo , Imitación Molecular , Nimodipina/farmacología , Óxido Nítrico/metabolismo , Fosfopéptidos/farmacocinética , Fosfoproteínas/efectos de los fármacos , Fosfoproteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Hemorragia Subaracnoidea/metabolismo , Porcinos , Vasodilatadores/farmacocinética
12.
J Zhejiang Univ Sci B ; 22(2): 123-135, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33615753

RESUMEN

Ischemic stroke presents a leading cause of mortality and morbidity worldwide. Theaflavic acid (TFA) is a theaflavin isolated from black tea that exerts a potentially neuro-protective effect. However, the dynamic properties of TFA-mediated protection remain largely unknown. In the current study, we evaluated the function of TFA in the mitochondria apoptotic pathway using mathematical modeling. We found that TFA-enhanced B-cell lymphoma 2 (Bcl-2) overexpression can theoretically give rise to bistability. The bistability is highly robust against parametric stochasticity while also conferring considerable variability in survival threshold. Stochastic simulations faithfully match the TFA dose response pattern seen in experimental studies. In addition, we identified a dose- and time-dependent synergy between TFA and nimodipine, a clinically used neuro-protective drug. This synergistic effect was enhanced by bistability independent of temporal factors. Precise application of pulsed doses of TFA can also promote survival compared with sustained TFA treatment. These data collectively demonstrate that TFA treatment can give rise to bistability and that synergy between TFA and nimodipine may offer a promising strategy for developing therapeutic neuro-protection against ischemic stroke.


Asunto(s)
Benzopiranos/farmacología , Mitocondrias , Fármacos Neuroprotectores/farmacología , Nimodipina/farmacología , Té/química , Animales , Apoptosis , Sinergismo Farmacológico , Modelos Biológicos , Células PC12 , Proteínas Proto-Oncogénicas c-bcl-2 , Ratas
13.
Turk Neurosurg ; 31(1): 8-17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31124573

RESUMEN

AIM: To investigate whether Nimodipine (N) and Nigella sativa (NS) oil have protective, antioxidant effects in brain injury caused by experimental head trauma. MATERIAL AND METHODS: Fifty albino Wistar rats were randomly divided into 5 groups that underwent experimental head trauma. Oxidative parameters were compared in the serum and brain tissue of the different groups. In addition, apoptosis and caspase-3 immunoreactivity were evaluated by histopathological examination. RESULTS: Serum total antioxidant status (TAS) levels were significantly increased in N and N+NS groups when compared with controls (p=0.001, p < 0.01). Tissue TAS levels were significantly higher in the NS and N+NS groups compared to controls (p=0.001, p < 0.01). Total oxidant status levels in the brain tissue were significantly higher in the NS group than in the control group (p=0.021). CONCLUSION: N and NS were shown to significantly reduce the occurrence of oxidative stress in secondary brain injury due to head trauma. We also found that apoptosis levels decreased in response to N, NS and N+NS treatments after head trauma.


Asunto(s)
Antioxidantes/farmacología , Lesiones Traumáticas del Encéfalo , Nimodipina/farmacología , Estrés Oxidativo/efectos de los fármacos , Aceites de Plantas/farmacología , Animales , Apoptosis/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/etiología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Traumatismos Craneocerebrales/complicaciones , Masculino , Nigella sativa , Ratas , Ratas Wistar
15.
J Vector Borne Dis ; 57(1): 78-84, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33818460

RESUMEN

BACKGROUND & OBJECTIVES: Pentavalent antimonials are the standard treatment for cutaneous leishmaniasis (CL), however, treatment failures are frequent. Nimodipine, a calcium channel blocker is known to show promising antiprotozoal effects. Here, we investigated the antileishmanial effect of Nimodipine in both in vitro and in vivo BALB/c mice model of CL. We also compared the in vivo effect with amphotericin B and meglumine antimoniate in the experimental CL mice model. METHODS: Colorimetric alamar blue assay and J774 A.1 mouse macrophage cells were used to determine the effect of nimodipine on promastigotes and amastigotes viability, respectively. Then, the in vivo activity of nimodipine was compared to that of conventional therapies in both the early and established courses of Leishmania major infection in susceptible non-healing BALB/c mice. RESULTS: Nimodipine was highly active against promastigotes and amastigotes of L. major with IC50 values of 49.40 and 15.03 µM, respectively. In the early model, the combination therapy with meglumine antimoniate and nimodipine showed no parasites in the spleen or footpad of animals. The footpad thickness was significantly lower in mice treated with either nimodipine (1 mg/kg or 2.5 mg/kg) or amphotericin B compared to the control group in the established lesions model. However, no complete remission was observed in the footpad lesion of any of the treatment groups (nimodipine, amphotericin B, meglumine antimoniate, and combination therapy). INTERPRETATION & CONCLUSION: The effect of nimodipine was comparable to that of amphotericin B and meglumine antimoniate in early and established CL lesion models. Since nimodipine is more cost-effective than conventional therapies, our results merit further investigation in other animal models and voluntary human subjects.


Asunto(s)
Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Nimodipina/farmacología , Nimodipina/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Leishmania major/patogenicidad , Leishmaniasis Cutánea/parasitología , Estadios del Ciclo de Vida/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C
16.
Curr Neuropharmacol ; 18(1): 65-82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31560289

RESUMEN

Nimodipine is a dihydropyridine calcium channel antagonist that blocks the flux of extracellular calcium through L-type, voltage-gated calcium channels. While nimodipine is FDAapproved for the prevention and treatment of neurological deficits in patients with aneurysmal subarachnoid hemorrhage (aSAH), it affects myriad cell types throughout the body, and thus, likely has more complex mechanisms of action than simple inhibition of cerebral vasoconstriction. Newer understanding of the pathophysiology of delayed ischemic injury after a variety of acute neurologic injuries including aSAH, traumatic brain injury (TBI) and ischemic stroke, coupled with advances in the drug delivery method for nimodipine, have reignited interest in refining its potential therapeutic use. In this context, this review seeks to establish a firm understanding of current data on nimodipine's role in the mechanisms of delayed injury in aSAH, TBI, and ischemic stroke, and assess the extensive clinical data evaluating its use in these conditions. In addition, we will review pivotal trials using locally administered, sustained release nimodipine and discuss why such an approach has evaded demonstration of efficacy, while seemingly having the potential to significantly improve clinical care.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Bloqueadores de los Canales de Calcio/uso terapéutico , Nimodipina/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Humanos , Nimodipina/farmacología , Accidente Cerebrovascular/tratamiento farmacológico
17.
Bioorg Chem ; 91: 103205, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31446330

RESUMEN

In this work we describe the synthesis, Ca+2 channel blockade capacity and antioxidant power of N3,N5-bis(2-(5-methoxy-1H-indol-3-yl)ethyl)-2,6-dimethyl-4-aryl-1,4-dihydropyridine-3,5-dicarboxamides 1-9, a number of multi-target small 1,4-dihydropyridines (DHP), designed by juxtaposition of melatonin and nimodipine. As a result, we have identified antioxidant DHP 7 (Ca2+ channel blockade: 55%, and 8.78 Trolox/Equivalents), the most balanced DHP analyzed here, for potential Alzheimer's disease therapy.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/química , Calcio/metabolismo , Dihidropiridinas/farmacología , Neuroblastoma/tratamiento farmacológico , Humanos , Melatonina/farmacología , Neuroblastoma/patología , Nimodipina/farmacología , Células Tumorales Cultivadas
18.
Arq Neuropsiquiatr ; 77(1): 39-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30758441

RESUMEN

OBJECTIVE: We investigated the protective effect of the extract of the Camellia japonica L. flower on cerebral ischemia-reperfusion injury in rats. METHODS: The rat ischemia-reperfusion injury was induced by middle cerebral artery occlusion for 90 minutes and reperfusion for 48 hours. The animals received an intravenous injection once a day of 20, 40, 80 mg/kg extract of C. japonica for three consecutive days before the ischemia reperfusion. The learning and memory function, the infarct volume, serum malondialdehyde (MDA) level and lactate dehydrogenase activity, and extravasation of immunoglobulin G (IgG) into cerebral parenchyma were assessed as the cell damage index. RESULTS: Pretreatment with extract of C. japonica markedly reduced the infarct volume, serum malondialdehyde level and lactate dehydrogenase activity, and markedly inhibited the extravasation of IgG. Moreover, pretreatment with extract of C. japonica may also inhibit the learning and memory deficits induced by an ischemia-reperfusion injury. CONCLUSION: It was concluded that pretreatment with extract of C. japonica has a protective effect on cerebral ischemia-reperfusion injury in rats.


Asunto(s)
Isquemia Encefálica/prevención & control , Camellia/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Daño por Reperfusión/prevención & control , Animales , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina G/sangre , L-Lactato Deshidrogenasa/análisis , Masculino , Malondialdehído/sangre , Nimodipina/farmacología , Distribución Aleatoria , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Natación/fisiología , Factores de Tiempo , Resultado del Tratamiento
19.
Arq. neuropsiquiatr ; 77(1): 39-46, Jan. 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-983876

RESUMEN

ABSTRACT Objective: We investigated the protective effect of the extract of the Camellia japonica L. flower on cerebral ischemia-reperfusion injury in rats. Methods: The rat ischemia-reperfusion injury was induced by middle cerebral artery occlusion for 90 minutes and reperfusion for 48 hours. The animals received an intravenous injection once a day of 20, 40, 80 mg/kg extract of C. japonica for three consecutive days before the ischemia reperfusion. The learning and memory function, the infarct volume, serum malondialdehyde (MDA) level and lactate dehydrogenase activity, and extravasation of immunoglobulin G (IgG) into cerebral parenchyma were assessed as the cell damage index. Results: Pretreatment with extract of C. japonica markedly reduced the infarct volume, serum malondialdehyde level and lactate dehydrogenase activity, and markedly inhibited the extravasation of IgG. Moreover, pretreatment with extract of C. japonica may also inhibit the learning and memory deficits induced by an ischemia-reperfusion injury. Conclusion: It was concluded that pretreatment with extract of C. japonica has a protective effect on cerebral ischemia-reperfusion injury in rats.


RESUMO Objetivo: Investigamos o efeito protetor do extrato da flor de Camellia japonica L. (ECJ) na lesão de reperfusão isquêmica cerebral (I/R) em ratos. Métodos: A lesão de I/R de rato foi induzida por uma oclusão da artéria cerebral média por 90 minutos e reperfusão por 48 horas. Os animais receberam uma injeção intravenosa uma vez ao dia de 20, 40, 80 mg/kg de ECJ por três dias consecutivos antes da I/R. A função de aprendizagem e memória, o volume do infarto, o nível sérico de malondialdeído (MDA), a atividade da desidrogenase láctica e o extravasamento de imunoglobulina (IgG) no parênquima cerebral foram avaliados como índices de dano celular. Resultados: O pré-tratamento com ECJ reduziu acentuadamente o volume do infarto, o nível sérico de MDA e a atividade da desidrogenase láctica, e inibiu marcadamente o extravasamento de IgG. Além disso, o pré-tratamento com ECJ também poderia inibir os déficits de aprendizado e memória induzidos pela lesão de I/R. Conclusão: O pré-tratamento com ECJ tem um efeito protetor contra lesão cerebral de I/R em ratos.


Asunto(s)
Animales , Masculino , Femenino , Extractos Vegetales/farmacología , Daño por Reperfusión/prevención & control , Isquemia Encefálica/prevención & control , Fármacos Neuroprotectores/farmacología , Camellia/química , Natación/fisiología , Factores de Tiempo , Inmunoglobulina G/sangre , Nimodipina/farmacología , Distribución Aleatoria , Reproducibilidad de los Resultados , Resultado del Tratamiento , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , L-Lactato Deshidrogenasa/análisis , Malondialdehído/sangre
20.
Fluids Barriers CNS ; 15(1): 14, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29720231

RESUMEN

Prior research on 3-week hydrocephalic rats showed that behavioral deficits and white matter damage could be reduced by treatment with Ca2+ channel blocker nimodipine. We hypothesized that treatment with nimodipine would be also beneficial to young ferrets with kaolin-induced hydrocephalus. Hydrocephalus was induced at 14 days of age and animals were treated either with vehicle, low dose nimodipine (3.2 mg/kg/day), or high dose nimodipine (16 mg/kg/day) for 2 weeks from 38 to 52 days age. Hydrocephalic ferrets developed progressive ventriculomegaly, behavioral changes, and in some cases cortical blindness. These changes were not ameliorated by nimodipine. Histological examination showed damage in periventricular white matter, corpus callosum thinning, axonal damage, reactive astroglial changes, and suppressed cell proliferation compared to non-hydrocephalic controls. Treatment with nimodipine was not beneficial for any of the pathological changes mentioned above; only low dose nimodipine treatment was associated with normalized content of glial fibrillary acidic protein, despite larger ventricles. We conclude that young hydrocephalic ferrets experience behavioral impairments and structural brain damage that are not consistently improved by intermittent nimodipine treatment. Continuous delivery should be considered in further preclinical studies.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Hidrocefalia/tratamiento farmacológico , Nimodipina/farmacología , Animales , Animales Recién Nacidos , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Hurones , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/patología , Caolín , Masculino , Insuficiencia del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA