Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 589(7841): 270-275, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33116299

RESUMEN

There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Colon/citología , Evaluación Preclínica de Medicamentos/métodos , Pulmón/citología , Organoides/efectos de los fármacos , Organoides/virología , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/prevención & control , Colon/efectos de los fármacos , Colon/virología , Aprobación de Drogas , Femenino , Xenoinjertos/efectos de los fármacos , Humanos , Técnicas In Vitro , Pulmón/efectos de los fármacos , Pulmón/virología , Masculino , Ratones , Organoides/citología , Organoides/metabolismo , SARS-CoV-2/genética , Estados Unidos , United States Food and Drug Administration , Tropismo Viral , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
2.
Artif Organs ; 45(6): 548-558, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33264436

RESUMEN

The new coronavirus (2019-nCoV) or the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was officially declared by the World Health Organization (WHO) as a pandemic in March 2020. To date, there are no specific antiviral drugs proven to be effective in treating SARS-CoV-2, requiring joint efforts from different research fronts to discover the best route of treatment. The first decisions in drug discovery are based on 2D cell culture using high-throughput screening. In this context, spheroids and organoids emerge as a reliable alternative. Both are scaffold-free 3D engineered constructs that recapitulate key cellular and molecular events of tissue physiology. Different studies have already shown their advantages as a model for different infectious diseases, including SARS-CoV-2 and for drug screening. The use of these 3D engineered tissues as an in vitro model can fill the gap between 2D cell culture and in vivo preclinical assays (animal models) as they could recapitulate the entire viral life cycle. The main objective of this review is to understand spheroid and organoid biology, highlighting their advantages and disadvantages, and how these scaffold-free engineered tissues can contribute to a better comprehension of viral infection by SARS-CoV-2 and to the development of in vitro high-throughput models for drug screening.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Organoides/fisiología , Esferoides Celulares/fisiología , Ingeniería de Tejidos/métodos , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Organoides/virología , SARS-CoV-2 , Esferoides Celulares/virología , Andamios del Tejido
3.
Cell Stem Cell ; 27(6): 876-889.e12, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33232663

RESUMEN

SARS-CoV-2 infection has led to a global health crisis, and yet our understanding of the disease and potential treatment options remains limited. The infection occurs through binding of the virus with angiotensin converting enzyme 2 (ACE2) on the cell membrane. Here, we established a screening strategy to identify drugs that reduce ACE2 levels in human embryonic stem cell (hESC)-derived cardiac cells and lung organoids. Target analysis of hit compounds revealed androgen signaling as a key modulator of ACE2 levels. Treatment with antiandrogenic drugs reduced ACE2 expression and protected hESC-derived lung organoids against SARS-CoV-2 infection. Finally, clinical data on COVID-19 patients demonstrated that prostate diseases, which are linked to elevated androgen, are significant risk factors and that genetic variants that increase androgen levels are associated with higher disease severity. These findings offer insights on the mechanism of disproportionate disease susceptibility in men and identify antiandrogenic drugs as candidate therapeutics for COVID-19.


Asunto(s)
Andrógenos/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Gravedad del Paciente , Receptores de Coronavirus/metabolismo , Transducción de Señal , Adulto , Antagonistas de Andrógenos , Andrógenos/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Antivirales/uso terapéutico , COVID-19/complicaciones , Células Cultivadas , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Organoides/efectos de los fármacos , Organoides/virología , Factores de Riesgo , Factores Sexuales , Células Vero , Tratamiento Farmacológico de COVID-19
4.
Theranostics ; 10(16): 7034-7052, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32641977

RESUMEN

This review provides an update for the international research community on the cell modeling tools that could accelerate the understanding of SARS-CoV-2 infection mechanisms and could thus speed up the development of vaccines and therapeutic agents against COVID-19. Many bioengineering groups are actively developing frontier tools that are capable of providing realistic three-dimensional (3D) models for biological research, including cell culture scaffolds, microfluidic chambers for the culture of tissue equivalents and organoids, and implantable windows for intravital imaging. Here, we review the most innovative study models based on these bioengineering tools in the context of virology and vaccinology. To make it easier for scientists working on SARS-CoV-2 to identify and apply specific tools, we discuss how they could accelerate the discovery and preclinical development of antiviral drugs and vaccines, compared to conventional models.


Asunto(s)
Antivirales/aislamiento & purificación , Antivirales/farmacología , Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Vacunas Virales/aislamiento & purificación , Vacunas Virales/farmacología , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/inmunología , Bioingeniería/métodos , Bioingeniería/tendencias , Reactores Biológicos , COVID-19 , Vacunas contra la COVID-19 , Técnicas de Cultivo de Célula , Simulación por Computador , Infecciones por Coronavirus/inmunología , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Evaluación de Medicamentos/métodos , Evaluación de Medicamentos/tendencias , Farmacorresistencia Viral , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Modelos Biológicos , Organoides/citología , Organoides/virología , Neumonía Viral/inmunología , SARS-CoV-2 , Nanomedicina Teranóstica
5.
Antiviral Res ; 180: 104823, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32485209

RESUMEN

Although rotavirus infection is usually acute and self-limiting, it can cause chronic infection with severe diseases in immunocompromised patients, including organ transplantation recipients and cancer patients irrespective of pediatric or adult patients. Since no approved medication against rotavirus infection is available, this study screened a library of safe-in-man broad-spectrum antivirals. We identified gemcitabine, a widely used anti-cancer drug, as a potent inhibitor of rotavirus infection. We confirmed this effect in 2D cell cultures and 3D cultured human intestinal organoids with both laboratory-adapted rotavirus strains and five clinical isolates. Supplementation of UTP or uridine largely abolished the anti-rotavirus activity of gemcitabine, suggesting its function through inhibition of pyrimidine biosynthesis pathway. Our results support repositioning of gemcitabine for treating rotavirus infection, especially for infected cancer patients.


Asunto(s)
Antivirales/farmacología , Desoxicitidina/análogos & derivados , Pirimidinas/biosíntesis , Rotavirus/efectos de los fármacos , Animales , Vías Biosintéticas , Células CACO-2 , Desoxicitidina/farmacología , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Intestinos/efectos de los fármacos , Intestinos/virología , Macaca mulatta/virología , Organoides/efectos de los fármacos , Organoides/virología , Infecciones por Rotavirus/virología , Bibliotecas de Moléculas Pequeñas , Gemcitabina
6.
Cell Rep ; 21(2): 517-532, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29020636

RESUMEN

The human cerebral cortex possesses distinct structural and functional features that are not found in the lower species traditionally used to model brain development and disease. Accordingly, considerable attention has been placed on the development of methods to direct pluripotent stem cells to form human brain-like structures termed organoids. However, many organoid differentiation protocols are inefficient and display marked variability in their ability to recapitulate the three-dimensional architecture and course of neurogenesis in the developing human brain. Here, we describe optimized organoid culture methods that efficiently and reliably produce cortical and basal ganglia structures similar to those in the human fetal brain in vivo. Neurons within the organoids are functional and exhibit network-like activities. We further demonstrate the utility of this organoid system for modeling the teratogenic effects of Zika virus on the developing brain and identifying more susceptibility receptors and therapeutic compounds that can mitigate its destructive actions.


Asunto(s)
Antirretrovirales/farmacología , Corteza Cerebral/citología , Evaluación Preclínica de Medicamentos/métodos , Organoides/virología , Cultivo Primario de Células/métodos , Virus Zika/efectos de los fármacos , Línea Celular , Corteza Cerebral/virología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/virología , Humanos , Neuronas/citología , Neuronas/metabolismo , Neuronas/virología , Organoides/citología , Organoides/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Tirosina Quinasa c-Mer/metabolismo
7.
Cell Stem Cell ; 21(2): 274-283.e5, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28736217

RESUMEN

Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients.


Asunto(s)
Antivirales/uso terapéutico , Encéfalo/virología , Evaluación Preclínica de Medicamentos/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Organoides/virología , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/fisiología , Adolescente , Alcaloides de Amaryllidaceae/farmacología , Amodiaquina/farmacología , Animales , Antivirales/farmacología , Línea Celular , Niño , Femenino , Feto/efectos de los fármacos , Feto/virología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones SCID , Células-Madre Neurales/efectos de los fármacos , Organoides/efectos de los fármacos , Virus Zika/efectos de los fármacos , Infección por el Virus Zika/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA