Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Med Food ; 27(3): 222-230, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38190487

RESUMEN

Skeletal muscles are important for body movement, postural maintenance, and energy metabolism. Muscle atrophy is caused by various factors, including lack of exercise, age, genetics, and malnutrition, leading to the loss of muscle mass. The Akt/FoxO signaling pathway plays a key role in the regulation of muscle protein synthesis and degradation. Whole wheat contains functional ingredients that may indirectly contribute to muscle health and function and can help prevent or slow the progression of muscle atrophy. In this study, the protective effects of three wheat cultivars (Seodun, Ol, and Shinmichal 1) against hydrogen peroxide-induced muscle atrophy in C2C12 cells were investigated. We found that whole-wheat treatment reduced reactive oxygen species production, prevented glutathione depletion, and increased myotube diameter, thereby reducing muscle atrophy by activating myoblast differentiation. Generally, "Shinmichal 1" exhibited the highest activation of the Akt/FoxO signaling pathway. In contrast, "Seodun" showed similar or slightly higher activities than those of the H2O2-treated only group. In conclusion, whole wheat exerts a protective effect against muscle atrophy by activating the Akt/FoxO signaling pathway. This study indicates that whole wheat may help prevent muscle atrophy.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Triticum , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Triticum/metabolismo , Peróxido de Hidrógeno/efectos adversos , Transducción de Señal , Atrofia Muscular/etiología , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas
2.
Curr Drug Targets ; 24(16): 1282-1291, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37957908

RESUMEN

INTRODUCTION: Rosa webbiana (RW) Wall Ex. Royle is used in traditional medicine in Pakistan for the treatment of several diseases including jaundice. To date, only neuroprotective potential of the plant has been evaluated. OBJECTIVE: The current study was designed to isolate bioactive compound(s) and investigate its possible radical scavenging, anti-inflammatory and hepatoprotective activities. METHODS: Column chromatography was done to isolate compounds from the chloroform fraction of RW. The compound was characterized by mass spectrometry, 1H-NMR, and 2D-NMR spectroscopy. Radical scavenging activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) assays, while anti-inflammatory potential was evaluated via xylene-induced ear edema and carrageenan-induced paw edema models. For hepatoprotection, CCl4-induced model in mice was used. RESULTS: A triterpene compound (3α, 21ß-dihydroxy-olean-12-ene) was isolated from RW fruits (ARW1). The compound exhibited DPPH and H2O2 scavenging activities 61 ± 1.31% and 66 ± 0.48% respectively at 500 µg/ml. ARW1 (at 50 mg/kg) exhibited 62.9 ± 0.15% inhibition of xylene-induced ear edema and 66.6 ± 0.17% carrageenan-induced paw edema in mice. In CCl4-induced hepatotoxic mice, ARW1 significantly countered elevation in alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin (T.B), and reduction in total protein (T.P) levels. Liver histomorphological study supported the serum biochemical profile for hepatoprotection. Moreover, ARW1 significantly attenuated the toxic changes in body and liver weight induced by CCl4. CONCLUSION: The compound ARW1 exhibited anti-radical, anti-inflammatory and hepatoprotective effects. The anti-inflammatory and hepatoprotective activities may be attributed to anti-oxidant potential of the compound.


Asunto(s)
Extractos Vegetales , Rosa , Ratones , Animales , Carragenina/efectos adversos , Carragenina/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Xilenos/efectos adversos , Xilenos/metabolismo , Peróxido de Hidrógeno/efectos adversos , Peróxido de Hidrógeno/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Hígado/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/prevención & control , Triterpenos Pentacíclicos/metabolismo , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico
3.
Biomed Res ; 44(5): 199-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779032

RESUMEN

Myogenesis is required to generate skeletal muscle tissue and to maintain skeletal muscle mass. Decreased myogenesis under various pathogenic conditions results in muscular atrophy. Through a small screening of Japanese traditional (Kampo) medicines, hachimijiogan (HJG) was shown to promote the myogenic differentiation of C2C12 myoblasts through the upregulation of myogenin. In tumor-bearing cancer-cachectic mice, HJG was also found to have a protective effect against cancer-cachectic muscle wasting. This effect was significant when HJG was administered in combination with aerobic exercise by treadmill running. Moreover, HJG ameliorated the cellular atrophy of C2C12 myotubes induced by treatment with conditioned medium derived from a colon-26 cancer cell culture. In addition, HJG suppressed H2O2-dependent myotube atrophy, suggesting that HJG could reverse the atrophic phenotypes by eliminating reactive oxygen species.


Asunto(s)
Caquexia , Medicina Kampo , Neoplasias , Síndrome Debilitante , Animales , Ratones , Neoplasias del Colon/tratamiento farmacológico , Peróxido de Hidrógeno/efectos adversos , Peróxido de Hidrógeno/farmacología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/patología , Caquexia/etiología , Síndrome Debilitante/etiología , Neoplasias/complicaciones , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología
4.
Fitoterapia ; 169: 105607, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37442485

RESUMEN

The clinical treatment of ulcerative colitis (UC) faces great challenges due to lifetime medication. In this study, Gingerol oil was extracted and purified by the process easily scale-up and cost effective, with productivity 2.72 ± 0.38% (w/w, versus crude drugs). The quality control of gingerol oil was fully established by HPLC fingerprint with 4 common peaks identified as 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol. The similarities of 6 batches of gingerol oil are within 0.931-0.999. The protective effects of gingerol oil are equivalent to or even stronger than that of 6-gingerol on inflammation and oxidative stress of HT-29 cells induced by lipopolysaccharide and H2O2, as well as on UC in mice caused by dextran sulfate sodium salt (DSS). Our research conclusions coincide well with the holistic view of Traditional Chinese Medicine and network pharmacology. The absorption kinetics of gingerol oil were conducted using the in situ intestinal perfusion in rats and comparable absorption were achieved in the jejunum, ileum and colon segments within 2 h. Thus, gingerol oil colon targeting pellets were prepared by extrusion-spherization technique. The cumulative dissolution behaviors and mechanisms were observed and analyzed by fitting to dissolution model. Our studies provided reliable theoretical and experimental support for the gingerol oil as reliable therapeutic choice of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratas , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Peróxido de Hidrógeno/efectos adversos , Estructura Molecular , Colon , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
5.
Biomed Res Int ; 2022: 1405821, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060147

RESUMEN

Sonneratia caseolaris is a widely distributed mangrove plant having much therapeutic importance in traditional medicine. This plant is reported for possessing numerous compounds that are already used for many therapeutic purposes. After finding the presence of antioxidant components in the qualitative antioxidative assay, we went to conduct quantitative tests where the total contents of phenolics, flavonoids, and tannins were estimated as 122 mg GAE/gm, 613 mg QE/gm, and 30 mg GAE/gm, respectively. In DPPH free radical, H2O2, and superoxide radical scavenging assay, the SC50 values were found to be 87, 66, and 192 µg/ml, respectively. In FeCl3 reducing power assay, the RC50 of SC extract and ascorbic acid were 80 and 28 µg/ml, respectively. This extract revealed a significant peripheral analgesic effect in the acetic acid-induced writhing model in mice by reducing the writhing impulse by about 21% and 39% at 250 and 500 mg/kg doses, respectively, and a central analgesic effect in the tail immersion method by elongating the time up to about 22% and 37% at the same doses. In the anti-inflammatory test in mice, this extract reduced the paw edema size over the observed period in a dose-dependent manner. It also showed a significant reduction in the elevated rectal temperature of mice in the observing period in Brewer's yeast-induced pyrexia model. In silico analysis revealed better binding characteristics of ellagic acid and luteolin among other compounds with various receptors that might be responsible for antioxidative and anti-inflammatory properties. From our observation, we suppose that SC fruits might be a potential source of drug leads for various inflammatory disorders.


Asunto(s)
Antipiréticos , Lythraceae , Analgésicos/química , Animales , Antiinflamatorios/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antipiréticos/química , Antipiréticos/farmacología , Bangladesh , Fiebre/tratamiento farmacológico , Frutas , Peróxido de Hidrógeno/efectos adversos , Ratones , Extractos Vegetales/química
6.
Nutrients ; 13(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34959841

RESUMEN

Gongjin-dan (GJD) is a multiherbal formula produced from 10 medicinal herbs and has been traditonally used as an oriental medicine to treat cardiovascular diseases, alcoholic hepatitis, mild dementia, and anemia. Additionally, increasing evidence suggests that GJD exerts neuroprotective effects by suppressing inflammation and oxidative stress-induced events to prevent neurological diseases. However, the mechanism by which GJD prevents oxidative stress-induced neuronal injury in a mature neuron remains unknown. Here, we examined the preventive effect and mechanism of GJD on primary cortical neurons exposed to hydrogen peroxide (H2O2). In the neuroprotection signaling pathway, Sirtuin1 is involved in neuroprotective action as a therapeutic target for neurological diseases. After pre-treatment with GJD at three concentrations (10, 25, and 50 µg/mL) and stimulation by H2O2 (30 µM) for 24 h, the influence of GJD on Sirtuin1 activation was assessed using immunocytochemistry, real-time PCR, western blotting, and flow cytometry. GJD effectively ameliorated H2O2-induced neuronal death against oxidative damage through Sirtuin1 activation. In addition, GJD-induced Sirtuin1 activation accelerated elongation of new axons and formation of synapses via increased expression of nerve growth factor and brain-derived neurotrophic factor, as well as regeneration-related genes. Thus, GJD shows potential for preventing neurological diseases via Sirtuin1 activation.


Asunto(s)
Proyección Neuronal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Animales , Corteza Cerebral/crecimiento & desarrollo , Peróxido de Hidrógeno/efectos adversos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley
7.
Nutrients ; 13(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34835946

RESUMEN

Oxidative stress-mediated neuronal damage is associated with the pathogenesis and development of neurodegenerative diseases. Chrysanthemum indicum has antioxidant properties. However, the neuroprotective effects and the cellular mechanism of C. indicum ethanol extract (CIE) against oxidative damage in hippocampal neuronal cells have not been clearly elucidated. Therefore, this study investigated whether CIE has protective effects against hydrogen peroxide (H2O2)-induced oxidative toxicity in HT22 cells. CIE pretreatment significantly improved neuronal cell viability. Moreover, the formation of intracellular reactive oxygen species and apoptotic bodies, and mitochondrial depolarization were significantly reduced in HT22 cells with H2O2-induced oxidative toxicity. Furthermore, CIE increased the phosphorylation of tropomyosin-related kinase receptor B (TrkB), protein kinase B (Akt), cAMP response element-binding protein, the expression of brain-derived neurotrophic factor, antioxidant enzymes, and the nuclear translocation of nuclear factor erythroid 2-related factor 2 by activating the TrkB/Akt signaling pathway. In contrast, the addition of K252a, a TrkB inhibitor, or MK-2206, an Akt-selective inhibitor, reduced the neuroprotective and antioxidant effects of CIE. Taken together; CIE exhibits neuroprotective and antioxidant effects against oxidative damage. Therefore, it can be a potential agent for treating oxidative stress-related neurodegenerative diseases.


Asunto(s)
Chrysanthemum , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Antioxidantes , Línea Celular , Supervivencia Celular/efectos de los fármacos , Etanol/farmacología , Hipocampo/citología , Humanos , Peróxido de Hidrógeno/efectos adversos , Glicoproteínas de Membrana/metabolismo , Neuronas/citología , Síndromes de Neurotoxicidad/etiología , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor trkB/metabolismo
8.
J Emerg Med ; 61(5): 536-539, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34518049

RESUMEN

BACKGROUND: Identification of portal venous gas on radiographic imaging is well documented after the ingestion of hydrogen peroxide, as is its resolution after hyperbaric therapy. Although hyperbaric therapy may resolve the gastrointestinal symptoms associated with the presence of portal venous gas, the principle rationale for performing hyperbaric therapy is to prevent subsequent central nervous system oxygen embolization. CASE REPORT: We describe a patient with portal venous gas identified by computed tomography after the ingestion of 3% hydrogen peroxide, managed without hyperbaric therapy, who subsequently developed portal venous thrombosis. We are not aware of this complication being previously described from hydrogen peroxide ingestion. The case is complicated by the coexistence of a self-inflicted stab wound, leading to exploratory laparotomy in a patient predisposed to arterial vascular occlusion. Why Should an EmergencyPhysicianBeAware of This? Emergency physicians will encounter patients after the ingestion of hydrogen peroxide who, despite not having symptoms of central nervous system emboli, have portal venous gas identified on radiographic imaging. Being aware that the principle rationale for prophylactic utilization of hyperbaric therapy is to prevent subsequent central nervous system emboli, and that in at least one case, delayed-onset portal venous thrombosis has occurred without hyperbaric therapy may help contribute to clinical decision-making.


Asunto(s)
Embolia Aérea , Oxigenoterapia Hiperbárica , Trombosis de la Vena , Ingestión de Alimentos , Embolia Aérea/etiología , Embolia Aérea/terapia , Humanos , Peróxido de Hidrógeno/efectos adversos , Vena Porta/diagnóstico por imagen , Trombosis de la Vena/etiología
9.
Molecules ; 26(11)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198860

RESUMEN

In this study, the lactobacillus fermentation process of pomegranate (Punica granatum L.) peel and Schisandra chinensis (Turcz.) Baill (PP&SC) was optimized by using the response surface method (RSM) coupled with a Box-Behnken design. The optimum fermentation condition with the maximal yield of ellagic acid (99.49 ± 0.47 mg/g) was as follows: 1:1 (w:w) ratio of pomegranate peel to Schisandra chinensis, 1% (v:v) of strains with a 1:1 (v:v) ratio of Lactobacillus Plantarum to Streptococcus Thermophilus, a 37 °C fermentation temperature, 33 h of fermentation time, 1:20 (g:mL) of a solid-liquid ratio and 3 g/100 mL of a glucose dosage. Under these conditions, the achieved fermentation broth (FB) showed stronger free radical scavenging abilities than the water extract (WE) against the ABTS+, DPPH, OH- and O2- radicals. The cytotoxicity and the protective effect of FB on the intracellular ROS level in HaCaT cells were further detected by the Cell Counting Kit-8 (CCK-8) assay. The results showed that FB had no significant cytotoxicity toward HaCaT cells when its content was no more than 8 mg/mL. The FB with a concentration of 8 mg/mL had a good protective effect against oxidative damage, which can effectively reduce the ROS level to 125.94% ± 13.46% (p < 0.001) compared with 294.49% ± 11.54% of the control group in H2O2-damaged HaCaT cells. The outstanding antioxidant ability and protective effect against H2O2-induced oxidative damage in HaCaT cells promote the potential for the FB of PP&SC as a functional raw material of cosmetics.


Asunto(s)
Antioxidantes/farmacología , Factores Biológicos/farmacología , Peróxido de Hidrógeno/efectos adversos , Lactobacillus/fisiología , Granada (Fruta)/microbiología , Schisandra/microbiología , Antioxidantes/química , Factores Biológicos/química , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Ácido Elágico/química , Ácido Elágico/farmacología , Fermentación , Células HaCaT , Humanos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Granada (Fruta)/química , Especies Reactivas de Oxígeno/metabolismo , Schisandra/química
10.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073582

RESUMEN

Oxidative stress occurs in a variety of clinical liver diseases and causes cellular damage and mitochondrial dysfunction. The clearance of damaged mitochondria by mitophagy may facilitate mitochondrial biogenesis and enhance cell survival. Although the supplementation of docosahexaenoic acid (DHA) has been recognized to relieve the symptoms of various liver diseases, the antioxidant effect of DHA in liver disease is still unclear. The purpose of our research was to investigate the antioxidant effect of DHA in the liver and the possible role of mitophagy in this. In vitro, H2O2-induced injury was caused in AML12 cells. The results showed that DHA repressed the level of reactive oxygen species (ROS) induced by H2O2 and stimulated the cellular antioxidation response. Most notably, DHA restored oxidative stress-impaired autophagic flux and promoted protective autophagy. In addition, PINK/Parkin-mediated mitophagy was activated by DHA in AML12 cells and alleviated mitochondrial dysfunction. The ERK1/2 signaling pathway was inhibited during oxidative stress but reactivated by DHA treatment. It was proven that the expression of ERK1/2 was involved in the regulation of mitophagy by the ERK1/2 inhibitor. We further proved these results in vivo. DHA effectively alleviated the liver oxidative damage caused by CCl4 and enhanced antioxidation capacity; intriguingly, autophagy was also activated. In summary, our data demonstrated that DHA protected hepatocytes from oxidative damage through GPR120/ERK-mediated mitophagy.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Hepatocitos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitofagia/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Línea Celular , Hepatocitos/patología , Peróxido de Hidrógeno/efectos adversos , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Mitocondrias Hepáticas/patología , Oxidación-Reducción/efectos de los fármacos
11.
Oxid Med Cell Longev ; 2021: 6660616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936383

RESUMEN

Oxidative stress can cause the excessive generation of reactive oxygen species (ROS) and has various adverse effects on muscular mitochondria. Qiangji Jianli decoction (QJJLD) is an effective traditional Chinese medicine (TCM) that is widely applied to improve muscle weakness, and it has active constituents that prevent mitochondrial dysfunction. To investigate the protective mechanism of QJJLD against hydrogen peroxide- (H2O2-) mediated mitochondrial dysfunction in L6 myoblasts. Cell viability was determined with MTT assay. Mitochondrial ultrastructure was detected by transmission electron microscope (TEM). ROS and mitochondrial membrane potential (MMP) were analyzed by fluorescence microscope and flow cytometry. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) level were determined by WST-1, TBA, and DTNB methods, respectively. The mRNA and protein levels were measured by quantitative real-time PCR (qRT-PCR) and Western blot. The cell viability was decreased, and the cellular ROS level was increased when L6 myoblasts were exposed to H2O2. After treatment with QJJLD-containing serum, the SOD and GSH-Px activities were increased. MDA level was decreased concurrently. ROS level was decreased while respiratory chain complex activity and ATP content were increased in L6 myoblasts. MMP loss was attenuated. Mitochondrial ultrastructure was also improved. Simultaneously, the protein expressions of p-AMPK, PGC-1α, NRF1, and TFAM were upregulated. The mRNA and protein expressions of Mfn1/2 and Opa1 were also upregulated while Drp1 and Fis1 were downregulated. These results suggest that QJJLD may alleviate mitochondrial dysfunction through the regulation of mitochondrial dynamics and biogenesis, the inhibition of ROS generation, and the promotion of mitochondrial energy metabolism.


Asunto(s)
Antígenos de Superficie/metabolismo , ADN Mitocondrial/efectos adversos , Medicamentos Herbarios Chinos/uso terapéutico , Peróxido de Hidrógeno/efectos adversos , Proteínas de Neoplasias/metabolismo , Animales , Medicamentos Herbarios Chinos/farmacología , Humanos , Dinámicas Mitocondriales/efectos de los fármacos , Mioblastos/metabolismo , Biogénesis de Organelos , Ratas
12.
Amino Acids ; 53(7): 1021-1032, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991253

RESUMEN

Intestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate-dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Cistina/farmacología , Peróxido de Hidrógeno/efectos adversos , Inflamación/prevención & control , Mucosa Intestinal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Células CACO-2 , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Oxidantes/efectos adversos
13.
Poult Sci ; 100(2): 918-925, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33518145

RESUMEN

Oxidative stress has always been a hot topic in poultry science. However, studies concerning the effects of redox status and glucose metabolism induced by hydrogen peroxide (H2O2) in the breast muscle of broilers have been rarely reported. This study was aimed to evaluate the impact of intraperitoneal injection of H2O2 on oxidative damage and glycolysis metabolism of breast muscle in broilers. We also explored the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway to provide possible mechanism of the redox imbalance. Briefly, a total of 320 one-day-old Arbor Acres chicks were randomly divided into 5 treatments with 8 replicates of 8 birds each (noninjected control, 0.75% saline-injected, 2.5, 5.0, and 10.0% H2O2-injected treatments). Saline group was intraperitoneally injected with physiological saline (0.75%) and H2O2 groups received an intraperitoneal injection of H2O2. The dosage of the injection was 1.0 mL/kg BW. All birds in the saline and H2O2 groups were injected on days 16 and 37 of the experimental period. At 42 d of age, 40 birds (8 cages per group and one chicken per cage) were selected to be stunned electrically (50 V, alternating current, 400 Hz for 5 s each one), and then immediately slaughtered via exsanguination. The results showed that broilers in the H2O2 injection group linearly exhibited higher contents of reactive oxygen species, carbonyl and malondialdehyde, and lower total antioxidant capacity and glutathione peroxidase activities. With the content of H2O2 increased, the H2O2 groups linearly downregulated the mRNA expressions of GPX, CAT, HMOX1, NQO1, and Nrf2 and its downstream target genes. In addition, H2O2 increased serum activities of creatine kinase and lactate dehydrogenase. Meanwhile, in the pectoral muscle, the glycogen content was linearly decreased, and the lactate content was linearly increased in muscle of broilers injected with H2O2. In addition, the activities of glycolytic enzymes including pyruvate kinase, hexokinase, and lactate dehydrogenase were linearly increased after exposure to H2O2. In conclusion, H2O2 injection could impair antioxidant status and enhance anaerobic metabolism of breast muscle in broilers.


Asunto(s)
Pollos , Peróxido de Hidrógeno/efectos adversos , Oxidantes/efectos adversos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Músculos Pectorales/metabolismo , Animales , Antioxidantes/metabolismo , Pollos/metabolismo , Suplementos Dietéticos , Músculos Pectorales/efectos de los fármacos , Distribución Aleatoria
14.
Mutagenesis ; 36(2): 177-185, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33512444

RESUMEN

The present study aimed to evaluate the effect of the manool diterpene on genomic integrity. For this purpose, we evaluated the influence of manool on genotoxicity induced by mutagens with different mechanisms of action, as well as on colon carcinogenesis. The results showed that manool (0.5 and 1.0 µg/ml) significantly reduced the frequency of micronuclei induced by doxorubicin (DXR) and hydrogen peroxide in V79 cells but did not influence genotoxicity induced by etoposide. Mice receiving manool (1.25 mg/kg) exhibited a significant reduction (79.5%) in DXR-induced chromosomal damage. The higher doses of manool (5.0 and 20 mg/kg) did not influence the genotoxicity induced by DXR. The anticarcinogenic effect of manool (0.3125, 1.25 and 5.0 mg/kg) was also observed against preneoplastic lesions chemically induced in rat colon. A gradual increase in manool doses did not cause a proportional reduction of preneoplastic lesions, thus demonstrating the absence of a dose-response relationship. The analysis of serum biochemical indicators revealed the absence of hepatotoxicity and nephrotoxicity of treatments. To explore the chemopreventive mechanisms of manool via anti-inflammatory pathways, we evaluated its effect on nitric oxide (NO) production and on the expression of the NF-kB gene. At the highest concentration tested (4 µg/ml), manool significantly increased NO production when compared to the negative control. On the other hand, in the prophylactic treatment model, manool (0.5 and 1.0 µg/ml) was able to significantly reduce NO levels produced by macrophages stimulated with lipopolysaccharide. Analysis of NF-kB in hepatic and renal tissues of mice treated with manool and DXR revealed that the mutagen was unable to stimulate expression of the gene. In conclusion, manool possesses antigenotoxic and anticarcinogenic effects and its anti-inflammatory potential might be related, at least in part, to its chemopreventive activity.


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Diterpenos/farmacología , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Lesiones Precancerosas/tratamiento farmacológico , Animales , Anticarcinógenos/química , Línea Celular , Neoplasias del Colon/inducido químicamente , Cricetinae , Modelos Animales de Enfermedad , Diterpenos/química , Relación Dosis-Respuesta a Droga , Doxorrubicina/efectos adversos , Etopósido/efectos adversos , Peróxido de Hidrógeno/efectos adversos , Masculino , Ratones , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Extractos Vegetales/farmacología , Lesiones Precancerosas/inducido químicamente , Ratas , Ratas Wistar , Salvia officinalis/química
15.
Molecules ; 27(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011291

RESUMEN

Excessive oxidative stress plays a role in hepatotoxicity and the pathogenesis of hepatic diseases. In our previous study, the phenolic extract of beluga lentil (BLE) showed the most potent in vitro antioxidant activity among extracts of four common varieties of lentils; thus, we hypothesized that BLE might protect liver cells against oxidative stress-induced cytotoxicity. BLE was evaluated for its protective effects against oxidative stress-induced hepatotoxicity in AML12 mouse hepatocytes and BALB/c mice. H2O2 treatment caused a marked decrease in cell viability; however, pretreatment with BLE (25-100 µg/mL) for 24 h significantly preserved the viability of H2O2-treated cells up to about 50% at 100 µg/mL. As expected, BLE dramatically reduced intracellular reactive oxygen species (ROS) levels in a dose-dependent manner in H2O2-treated cells. Further mechanistic studies demonstrated that BLE reduced cellular ROS levels, partly by increasing expression of antioxidant genes. Furthermore, pretreatment with BLE (400 mg/kg) for 2 weeks significantly reduced serum levels of alanine transaminase and triglyceride by about 49% and 40%, respectively, and increased the expression and activity of glutathione peroxidase in CCl4-treated BALB/c mice. These results suggest that BLE protects liver cells against oxidative stress, partly by inducing cellular antioxidant system; thus, it represents a potential source of nutraceuticals with hepatoprotective effects.


Asunto(s)
Antioxidantes/farmacología , Lens (Planta)/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antioxidantes/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas , Modelos Animales de Enfermedad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Peróxido de Hidrógeno/efectos adversos , Hígado/patología , Ratones , Extractos Vegetales/química , Sustancias Protectoras , Especies Reactivas de Oxígeno/metabolismo
16.
Front Immunol ; 11: 599735, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193455

RESUMEN

Background: Ulva prolifera extract contains a variety of functional active substances. Whether these substances had any beneficial effects on the small intestine of weaned piglets under oxidative stress remained unknown. Method: We explored the effects of U. prolifera extract on oxidative stress and related mechanisms in weaned piglets and intestinal porcine epithelial cells (IPEC-J2) challenged with hydrogen peroxide. Results: U. prolifera extract was found to mainly consist of polyphenols and unsaturated fatty acids. U. prolifera extract increased total antioxidant capacity and superoxide dismutase (SOD) activity, while it decreased malondialdehyde content, in the serum of weaned piglets challenged with hydrogen peroxide. Moreover, U. prolifera extract increased mRNA expression of SOD and catalase, as well as the intestinal expression of nuclear NF-E2-related factor 2 (Nrf2), both in vitro and in vivo. Furthermore, U. prolifera extract decreased reactive oxygen species and improved mitochondrial respiration in IPEC-J2 cells treated with hydrogen peroxide. However, AMPK inhibition did not affect nuclear Nrf2 expression and only partially affected the effects of U. prolifera extract on oxidative stress. Conclusion: We suggest that U. prolifera extract alleviates oxidative stress via Nrf2 signaling, but independent of AMPK pathway in weaned piglets challenged with hydrogen peroxide. These results shed new insight into the potential applications of U. prolifera extract as a therapeutic agent for the prevention and treatment of oxidative stress-induced intestinal diseases.


Asunto(s)
Peróxido de Hidrógeno/efectos adversos , Mucosa Intestinal/inmunología , Factor 2 Relacionado con NF-E2/inmunología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Porcinos/inmunología , Ulva/química , Animales , Línea Celular , Células Epiteliales/inmunología , Peróxido de Hidrógeno/farmacología , Extractos Vegetales/química , Enfermedades de los Porcinos/tratamiento farmacológico , Enfermedades de los Porcinos/inmunología
17.
Int J Med Mushrooms ; 22(2): 183-195, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32479006

RESUMEN

The objective of this study was to explore the effect of magnesium acetate (MA) addition on the endo-polyphenol yield by Phellinus baumii and establish a feasible additive strategy. The optimal three-point MA addition strategy (0.05 g/L concentration of MA added at 0 h and 6 h, 0.9 g/L concentration of MA added at 12 h) was employed to obtain maximum endo-polyphenol yield. The maximum endo-polyphenol production was reached at 1.22 g/L, which was 1.39-fold higher than that of the control. Additionally, the endo-polyphenol showed stronger antioxidant activity in vitro compared with the control, including DPPH· scavenging capacity (78.76%) and Trolox equivalent antioxidant capacity (TEAC) (32.28 µmol Trolox/g sample). HPLC analysis showed that the endo-polyphenol production of the crude ethanol extracts was significantly higher than that of the control. Hispidin was isolated and identified from the ethanol extract of the culture mycelia from Ph. baumii with the three-point MA addition strategy. Hispidin showed a strong ability to scavenge DPPH free radicals and TEAC, equivalent to positive (vitamin C) value of 89.41% and 75.98%, respectively. Furthermore, hispidin protected H2O2-induced PC12 cells injured by decreased oxidative stress level. These results indicated that the MA multi-stage addition strategy was dependable, and could be used to develop new natural antioxidants for foods or medicines.


Asunto(s)
Acetatos/efectos adversos , Antioxidantes/farmacología , Basidiomycota/química , Mezclas Complejas/farmacología , Compuestos de Magnesio/efectos adversos , Polifenoles/farmacología , Pironas/farmacología , Agaricales , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Cromanos/efectos adversos , Cromatografía Líquida de Alta Presión , Mezclas Complejas/química , Mezclas Complejas/aislamiento & purificación , Radicales Libres/efectos adversos , Peróxido de Hidrógeno/efectos adversos , Micelio/química , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Polifenoles/química , Polifenoles/aislamiento & purificación , Pironas/química , Pironas/aislamiento & purificación , Ratas
18.
Nutrients ; 12(5)2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397683

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with an unclear cause. It appears that multiple factors participate in the process of neuronal damage including oxidative stress and accumulation of the protein amyloid ß (Aß) in the brain. The search for a treatment for this disorder is essential as current medications are limited to alleviating symptoms and palliative effects. The aim of this study is to investigate the effects of mint extracts on selected mechanisms implicated in the development of AD. To enable a thorough investigation of mechanisms, including effects on ß-secretase (the enzyme that leads to the formation of Aß), on Aß aggregation, and on oxidative stress and apoptosis pathways, a neuronal cell model, SH-SY5Y cells, was selected. Six Mentha taxa were investigated for their in vitro ß-secretase (BACE) and Aß-aggregation inhibition activities. Moreover, their neuroprotective effects on H2O2-induced oxidative stress and apoptosis in SH-SY5Y cells were evaluated through caspase activity. Real-time PCR and Western blot analysis were carried out for the two most promising extracts to determine their effects on signalling pathways in SH-SY5Y cells. All mint extracts had strong BACE inhibition activity. M. requienii extracts showed excellent inhibition of Aß-aggregation, while other extracts showed moderate inhibition. M. diemenica and M. requienii extracts lowered caspase activity. Exposure of SH-SY5Y cells to M. diemenica extracts resulted in a decrease in the expression of pro-apoptotic protein, Bax, and an elevation in the anti-apoptotic protein, Bcl-xL, potentially mediated by down-regulation of the ASK1-JNK pathway. These results indicate that mint extracts could prevent the formation of Aß and also could prevent their aggregation if they had already formed. M. diemenica and M. requienii extracts have potential to suppress apoptosis at the cellular level. Hence, mint extracts could provide a source of efficacious compounds for a therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/efectos adversos , Mentha/química , Fármacos Neuroprotectores , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Enfermedad de Alzheimer/etiología , Secretasas de la Proteína Precursora del Amiloide/efectos adversos , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Apoptosis/genética , Línea Celular , Humanos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
19.
Biomed Res Int ; 2020: 8379358, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32462021

RESUMEN

MATERIALS AND METHODS: The petroleum ether (petrol), dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butyl alcohol (n-BuOH) fractions were isolated from alcohol extracts of D. moldavica L. Total phenolic and flavonoid contents and in vitro antioxidant activities of different fractions were evaluated. H9c2 cells were then treated with D. moldavica L. extracts before challenging with H2O2. Cell viability was determined by colorimetric assay, and ELISA was used to measure the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD). Apoptosis levels and mitochondrial membrane potential were measured by flow cytometry. The expressions of cell apoptosis regulatory proteins caspase-3, Bax, and Bcl-2 were determined by western blotting. RESULTS: Our results demonstrated that the EtOAc fraction from D. moldavica L. ethanol extract, which is rich in phenolic and flavonoid active constituents, had the strongest free radical scavenging activity. Additionally, this fraction increased H2O2-induced reduction in cell viability, SOD activity, and mitochondrial membrane potential. It also reduced H2O2-induced elevation in ROS production, contents of LDH and MDA, and H9c2 apoptosis. We further found that the EtOAc fraction increased Bcl-2 expression, while it decreased caspase-3 and Bax expressions induced by H2O2 in H9c2 cells. CONCLUSIONS: Our data revealed that the EtOAc fraction from D. moldavica L. ethanol extract ameliorates H2O2-induced cardiotoxicity via antiapoptotic and antioxidant mechanisms.


Asunto(s)
Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/efectos adversos , Lamiaceae/química , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Animales , Antioxidantes/farmacología , Caspasa 3 , Línea Celular , Supervivencia Celular/efectos de los fármacos , Flavonoides/farmacología , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fenoles/farmacología , Proteínas Proto-Oncogénicas c-bcl-2 , Ratas , Superóxido Dismutasa/metabolismo
20.
Molecules ; 25(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316264

RESUMEN

Plantago asiatica L. is widely distributed in Eastern Asia and a commonly used drug in China, Korea, and Japan for diuretic and antiphlogistic purposes. In this experiment, the present study was performed to isolate antioxidant molecules based on the DPPH scavenging activity assay and discover the bioactive compounds which contributed to performing the function of Plantago asiatica L. Each faction was chosen for further isolation guided by DPPH scavenging activity assay. Afterwards, two potential bioactive molecules, aesculetin and apigenin, were isolated for in vitro antioxidant activity in cells. Hydrogen-peroxide-induced oxidative stress led to decreased cell viability, impaired intercellular junction, and damage to the cell membrane and DNA. Furthermore, aesculetin ameliorated decreased cell viability induced by hydrogen peroxide via upregulation of antioxidant related genes, and apigenin also protected against H2O2 mainly by improving the glutathione (GSH) antioxidant system, such as increasing the activity of glutathione peroxidase (GPX), glutathione reductase (GR), and the ration of GSH/glutathione disulfide (GSSG). Above all, these findings suggest that aesculetin and apigenin may be bioactive compounds for antioxidant function in Plantago asiatica L.


Asunto(s)
Antioxidantes/aislamiento & purificación , Apigenina/farmacología , Extractos Vegetales/análisis , Plantago/química , Umbeliferonas/farmacología , Antioxidantes/farmacología , Apigenina/aislamiento & purificación , Compuestos de Bifenilo/química , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Picratos/química , Umbeliferonas/aislamiento & purificación , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA