Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.362
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664378

RESUMEN

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Asunto(s)
Colon , Fibras de la Dieta , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Mucosa Intestinal , Receptores de Superficie Celular , Animales , Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ratones , Colon/metabolismo , Colon/microbiología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Femenino , Ratones Endogámicos C57BL , Moco/metabolismo , Trasplante de Microbiota Fecal , Simbiosis , Propionatos/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Adulto
2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38613515

RESUMEN

Angus-crossbred steers (n = 400; 369.7 ±â€…7.6 kg) were used to determine the influence of trace mineral (TM) source and chromium propionate (Cr Prop) supplementation on performance, carcass characteristics, and ruminal and plasma variables in finishing steers. Steers were blocked by body weight (BW) and randomly assigned within block to treatments in a 2 × 2 factorial arrangement, with factors being: 1) TM source (STM or HTM) and 2) Cr supplementation (0 or 0.25 mg Cr/kg DM, -Cr or + Cr, respectively). Treatments consisted of the addition of: 1) sulfate TM (STM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), 2) STM and 0.25 mg Cr/kg DM from Cr Prop, 3) hydroxychloride TM (HTM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), and 4) HTM and 0.25 mg Cr/kg DM from Cr Prop. Each treatment consisted of 10 replicate pens with 10 steers per pen. Body weights were obtained on consecutive days at the initiation and termination of the 154-d study. Steers were fed a steam-flaked corn-based finishing diet. Ractopamine hydrochloride was fed for the last 31 d of the study. Ruminal fluid and blood samples were obtained from one steer per pen on days 28 and 84 for ruminal volatile fatty acids (VFA) and plasma TM and glucose analysis. Steers were slaughtered at the end of the study and individual carcass data were collected. No Cr × TM source interactions (P = 0.48) were detected. Steers supplemented with HTM had greater (P = 0.04) hot carcass weight (HCW), dressing percentage (DP), longissimus muscle (LM) area, and USDA yield grade (YG), and tended (P = 0.12) to have greater average daily gain (ADG) than those receiving STM. Average daily gain, gain:feed, dressing percentage, and longissimus muscle area were greater (P = 0.04) for + Cr steers compared to-Cr steers. Hot carcass weight tended (P = 0.06) to be greater for + Cr steers. Ruminal acetate concentrations at 28 d were lesser (P = 0.01) for HTM vs. STM steers, and greater (P = 0.04) for + Cr steers compared to-Cr steers. Plasma concentrations of Zn, Cu, and Mn were not affected by TM source or Cr supplementation. Steers supplemented with Cr had greater (P = 0.05) plasma glucose concentrations than-Cr steers at 28 but not at 84 d. Results of this study indicate replacing STM with HTM improved carcass characteristics in finishing steers, and Cr Prop supplementation improved steer performance and carcass characteristics.


Trace minerals (TM) are supplemented to finishing cattle diets to prevent TM deficiencies. Sources of TM differ in their bioavailability and effect on rumen fermentation. Chromium is a TM required in low concentrations to enhance insulin activity. We tested the effect of TM source (hydroxychloride; HTM vs. sulfate; STM) and supplemental Cr propionate (Cr Prop) on performance and carcass characteristics of finishing steers. Providing 0.25 mg of supplemental Cr/kg DM, from Cr Prop, improved gain, feed efficiency, and carcass characteristics in steers. Steers supplemented with HTM tended to gain faster and had improved carcass characteristics of economic importance compared to those supplemented with STM.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Propionatos , Oligoelementos , Animales , Bovinos/fisiología , Bovinos/crecimiento & desarrollo , Masculino , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Dieta/veterinaria , Oligoelementos/farmacología , Oligoelementos/administración & dosificación , Propionatos/farmacología , Propionatos/administración & dosificación , Rumen/efectos de los fármacos , Rumen/metabolismo , Composición Corporal/efectos de los fármacos , Cromo/farmacología , Cromo/administración & dosificación , Fenómenos Fisiológicos Nutricionales de los Animales , Distribución Aleatoria , Carne/análisis
3.
Sci Total Environ ; 926: 171890, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521280

RESUMEN

A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Anaerobiosis , Fósforo , Carbono , Propionatos , Desnitrificación , Reactores Biológicos/microbiología , Nitrógeno , Acetatos , Glucosa
4.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38513071

RESUMEN

This experiment was conducted to evaluate the effects of including a mixed-dimensional attapulgite clay (MDA) into a naturally moldly diet for Hu lambs. Fifty male Hu lambs with similar initial body weight (28.24 ±â€…1.80 kg) were randomly allocated into five dietary treatments: a basal diet containing naturally occurring mycotoxins with 0, 0.5, 1.0, and 2.0 kg/t MDA, and basal diet with a commercial mycotoxin adsorbent Solis with montmorillonite as the major component at 1 kg/t. Both MDA and Solis increased average daily gain (ADG) and dry matter intake (DMI; P ≤ 0.004), and there was no difference in growth performance between MDA and Solis (P ≥ 0.26). The final body weight, DMI, and ADG were linearly increased with increasing MDA supplementation (P < 0.01). Lambs treated with both MDA and Solis demonstrated greater apparent digestibility of dry matter (DM), organic matter (OM), and energy compared with the control group (P ≤ 0.03), and there were no differences in nutrient digestibilities between MDA and Solis (P ≥ 0.38). Digestibility of CP was linearly increased with the increasing MDA supplementation (P = 0.01). Neither MDA nor Solis affected rumen total volatile fatty acid (TVFA) concentration (P ≥ 0.39), but decreased the acetate-to-propionate ratio and molar proportion of n-butyrate (P ≤ 0.01), and MDA also increased the concentration of ammonia (P = 0.003). Besides, increasing MDA supplementation linearly reduced the acetate-to-propionate ratio and molar proportion of n-butyrate (P = 0.01), but linearly and quadratically increased the concentration of ammonia (P ≥ 0.003). These results showed that the incorporation of MDA into a naturally moldy diet of Hu lambs yielded comparable results to the Solis product, with higher growth performance and nutrient digestibility but lower acetate-to-propionate ratio observed. In conclusion, including ≥ 1 kg/t of MDA in high mycotoxin risk diets for growing lambs improves feed intake and rumen fermentation.


The issue of mycotoxin-contaminated animal feed has consistently presented a significant challenge in relation to animal health and production. The mixed-dimensional attapulgite clay (MDA) has been proven effective in binding polar mycotoxins such as aflatoxin, while also effectively adsorbing hydrophobic or weakly polar mycotoxins such as zearalenone (ZEN) and ochratoxin. Therefore, this study was undertaken to assess the impact of MDA inclusion in mycotoxin-contaminated diets on performance and rumen fermentation variables in lambs. The results indicated that MDA not only significantly improved the growth performance and nutrient digestibility of Hu lambs but also enhanced the molar proportion of propionate and ammonia concentration, and reduced the acetate to propionate ratio and the molar proportion of n-butyrate.


Asunto(s)
Compuestos de Magnesio , Micotoxinas , Rumen , Compuestos de Silicona , Ovinos , Animales , Masculino , Arcilla , Rumen/metabolismo , Propionatos/metabolismo , Fermentación , Amoníaco/metabolismo , Digestión , Dieta/veterinaria , Oveja Doméstica , Ingestión de Alimentos , Acetatos/metabolismo , Butiratos/metabolismo , Peso Corporal , Alimentación Animal/análisis
5.
Trop Anim Health Prod ; 56(2): 97, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453787

RESUMEN

Phytonutrients (PTN) namely saponins (SP) and condensed tannins (CT) have been demonstrated to assess the effect of rumen fermentation and methane mitigation. Phytonutrient pellet containing mangosteen, rambutan, and banana flower (MARABAC) and lemongrass including PTN, hence these plant-phytonutrients supplementation could be an alternative plant with a positive effect on rumen fermentation. The aim of this experiment was to evaluate the effect of supplementation of MARABAC and lemongrass (Cymbopogon citratus) powder on in vitro fermentation modulation and the ability to mitigate methane production. The treatments were arranged according to a 3 × 3 Factorial arrangement in a completely randomized design. The two experimental factors consisted of MARABAC pellet levels (0%, 1%, and 2% of the total substrate) and lemongrass supplementation levels (0%, 1%, and 2% of the total substrate). The results of this study revealed that supplementation with MARABAC pellet and lemongrass powder significantly improved gas production kinetics (P < 0.01) and rumen fermentation end-products especially the propionate production (P < 0.01). While rumen methane production was subsequently reduced by both factors. Additionally, the in vitro dry matter degradability (IVDMD) and organic matter degradability (IVOMD) were greatly improved (P < 0.05) by the respective treatments. MARABAC pellet and lemongrass powder combination showed effective methane mitigation by enhancing rumen fermentation end-products especially the propionate concentration and both the IVDMD and IVOMD, while mitigated methane production. The combined level of both sources at 2% MARABAC pellet and 2% lemongrass powder of total substrates offered the best results. Therefore, MARABAC pellet and lemongrass powder supplementation could be used as an alternative source of phytonutrient in dietary ruminant.


Asunto(s)
Cymbopogon , Suplementos Dietéticos , Animales , Fermentación , Técnicas In Vitro/veterinaria , Metano/metabolismo , Nutrientes , Fitoquímicos/metabolismo , Polvos/metabolismo , Propionatos/metabolismo , Rumen/metabolismo
6.
ACS Infect Dis ; 10(4): 1201-1211, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457660

RESUMEN

Tuberculosis (TB) is the leading infectious disease caused by Mycobacterium tuberculosis and the second-most contagious killer after COVID-19. The emergence of drug-resistant TB has caused a great need to identify and develop new anti-TB drugs with novel targets. Indole propionic acid (IPA), a structural analog of tryptophan (Trp), is active against M. tuberculosis in vitro and in vivo. It has been verified that IPA exerts its antimicrobial effect by mimicking Trp as an allosteric inhibitor of TrpE, which is the first enzyme in the Trp synthesis pathway of M. tuberculosis. However, other Trp structural analogs, such as indolmycin, also target tryptophanyl-tRNA synthetase (TrpRS), which has two functions in bacteria: synthesis of tryptophanyl-AMP by catalyzing ATP + Trp and producing Trp-tRNATrp by transferring Trp to tRNATrp. So, we speculate that IPA may also target TrpRS. In this study, we found that IPA can dock into the Trp binding pocket of M. tuberculosis TrpRS (TrpRSMtb), which was further confirmed by isothermal titration calorimetry (ITC) assay. The biochemical analysis proved that TrpRS can catalyze the reaction between IPA and ATP to generate pyrophosphate (PPi) without Trp as a substrate. Overexpression of wild-type trpS in M. tuberculosis increased the MIC of IPA to 32-fold, and knock-down trpS in Mycolicibacterium smegmatis made it more sensitive to IPA. The supplementation of Trp in the medium abrogated the inhibition of M. tuberculosis by IPA. We demonstrated that IPA can interfere with the function of TrpRS by mimicking Trp, thereby impeding protein synthesis and exerting its anti-TB effect.


Asunto(s)
Mycobacterium tuberculosis , Propionatos , Triptófano-ARNt Ligasa , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/química , Triptófano-ARNt Ligasa/metabolismo , ARN de Transferencia de Triptófano/metabolismo , Indoles/farmacología , Adenosina Trifosfato
7.
Microb Cell Fact ; 23(1): 91, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532467

RESUMEN

BACKGROUND: Propionic acid fermentation from renewable feedstock suffers from low volumetric productivity and final product concentration, which limits the industrial feasibility of the microbial route. High cell density fermentation techniques overcome these limitations. Here, propionic acid (PA) production from glucose and a crude glycerol/glucose mixture was evaluated using Acidipropionibacterium acidipropionici, in high cell density (HCD) batch fermentations with cell recycle. The agro-industrial by-product, heat-treated potato juice, was used as N-source. RESULTS: Using 40 g/L glucose for nine consecutive batches yielded an average of 18.76 ± 1.34 g/L of PA per batch (0.59 gPA/gGlu) at a maximum rate of 1.15 gPA/L.h, and a maximum biomass of 39.89 gCDW/L. Succinic acid (SA) and acetic acid (AA) were obtained as major by-products and the mass ratio of PA:SA:AA was 100:23:25. When a crude glycerol/glucose mixture (60 g/L:30 g/L) was used for 6 consecutive batches with cell recycle, an average of 35.36 ± 2.17 g/L of PA was obtained per batch (0.51 gPA/gC-source) at a maximum rate of 0.35 g/L.h, and reaching a maximum biomass concentration of 12.66 gCDW/L. The PA:SA:AA mass ratio was 100:29:3. Further addition of 0.75 mg/L biotin as a supplement to the culture medium enhanced the cell growth reaching 21.89 gCDW/L, and PA productivity to 0.48 g/L.h, but also doubled AA concentration. CONCLUSION: This is the highest reported productivity from glycerol/glucose co-fermentation where majority of the culture medium components comprised industrial by-products (crude glycerol and HTPJ). HCD batch fermentations with cell recycling are promising approaches towards industrialization of the bioprocess.


Asunto(s)
Glucosa , Glicerol , Propionatos , Propionibacteriaceae , Fermentación , Ácido Acético , Propionibacterium
8.
Phytomedicine ; 128: 155468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471315

RESUMEN

BACKGROUND: Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE: The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN: The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS: First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS: In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION: Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.


Asunto(s)
Autofagia , Curcumina , Ovario , Estrés Oxidativo , Serina-Treonina Quinasas TOR , Animales , Femenino , Ratones , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Curcumina/farmacología , Células de la Granulosa/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Nitrocompuestos , Ovario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Propionatos/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
9.
J Dairy Sci ; 107(1): 288-300, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38353472

RESUMEN

A systematic literature review of in vitro studies was performed to identify methane (CH4) mitigation interventions with a potential to reduce CH4 emission in vivo. Data from 277 peer-reviewed studies published between 1979 and 2018 were reviewed. Individual CH4 mitigation interventions were classified into 14 categories of feed additives based on their type, chemical composition, and mode of action. Response variables evaluated were absolute CH4 emission (number of treatment means comparisons = 1,325); total volatile fatty acids (n = 1,007), acetate (n = 783), propionate (n = 792), and butyrate (n = 776) concentrations; acetate to propionate ratio (n = 675); digestibility of dry matter (n = 489), organic matter (n = 277), and neutral detergent fiber (n = 177). Total gas production was used as an explanatory variable in the model for CH4 production. Relative mean difference between treatment and control means reported in the studies was calculated and used for statistical analysis. The robust variance estimation method was used to analyze the effects of CH4 mitigation interventions. In vitro CH4 production was decreased by antibodies (-38.9%), chemical inhibitors (-29.2%), electron sinks (-18.9%), essential oils (-18.2%), plant extracts (-14.5%), plant inclusion (-11.7%), saponins (-14.8%), and tannins (-14.5%). Overall effects of direct-fed microbials, enzymes, macroalgae, and organic acids supplementation did not affect CH4 production in the current meta-analysis. When considering the effects of individual mitigation interventions containing a minimum number of 4 degrees of freedom within feed additives categories, Enterococcus spp. (i.e., direct-fed microbial), nitrophenol (i.e., electron sink), and Leucaena spp. (i.e., tannins) decreased CH4 production by 20.3%, 27.1%, and 23.5%, respectively, without extensively, or only slightly, affecting ruminal fermentation and digestibility of nutrients. It should be noted, however, that although the total number of publications (n = 277) and treatment means comparisons (n = 1,325 for CH4 production) in the current analysis were high, data for most mitigation interventions were obtained from less than 5 observations (e.g., maximum number of observations was 4, 7, and 22 for nitrophenol, Enterococcus spp., and Leucaena spp., respectively), because of limited data available in the literature. These should be further evaluated in vitro and in vivo to determine their true potential to decrease enteric CH4 production, yield, and intensity. Some mitigation interventions (e.g., magnesium, Heracleum spp., nitroglycerin, ß-cyclodextrin, Leptospermum pattersoni, Fructulus Ligustri, Salix caprea, and Sesbania grandiflora) decreased in vitro CH4 production by over 50% but did not have enough observations in the database. These should be more extensively investigated in vitro, and the dose effect must be considered before adoption of mitigation interventions in vivo.


Asunto(s)
Dieta , Leche , Femenino , Animales , Dieta/veterinaria , Leche/química , Lactancia , Propionatos/metabolismo , Metano/metabolismo , Taninos/farmacología , Rumen/metabolismo , Acetatos/análisis , Nitrofenoles/análisis , Nitrofenoles/metabolismo , Nitrofenoles/farmacología , Fermentación , Digestión , Alimentación Animal/análisis
10.
Carbohydr Polym ; 330: 121805, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368082

RESUMEN

This study explores the structural modification of glucomannan extracted from Artemisia sphaerocephala Krasch seeds (60S) to assess the impact of acetyl groups on its prebiotic characteristics. The structural changes were examined, with a focus on the degree of acetyl group substitution (DS). Both deacetylation and acetylation had limited influence on the molecular properties of 60S. Despite these modifications, the apparent viscosity of all samples remained consistently low. In vitro fermentation experiments revealed that Escherichia-Shigella decreased as DS increased, while Bacteroides ovatus was enriched. Acetylation had no significant impact on the utilization rate of 60S but led to a reduction in the production of propionic acid. Furthermore, untargeted metabolomics analysis confirmed the changes in propionic acid levels. Notably, metabolites such as N-acetyl-L-tyrosine, γ-muricholic acid, and taurocholate were upregulated by acetylated derivatives. Overall, acetyl groups are speculated to play a pivotal role in the prebiotic properties of 60S.


Asunto(s)
Artemisia , Artemisia/química , Mananos/farmacología , Mananos/metabolismo , Propionatos/metabolismo
11.
Cell Rep ; 43(3): 113865, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412096

RESUMEN

Microbial metabolites that can modulate neurodegeneration are promising therapeutic targets. Here, we found that the short-chain fatty acid propionate protects against α-synuclein-induced neuronal death and locomotion defects in a Caenorhabditis elegans model of Parkinson's disease (PD) through bidirectional regulation between the intestine and neurons. Both depletion of dietary vitamin B12, which induces propionate breakdown, and propionate supplementation suppress neurodegeneration and reverse PD-associated transcriptomic aberrations. Neuronal α-synuclein aggregation induces intestinal mitochondrial unfolded protein response (mitoUPR), which leads to reduced propionate levels that trigger transcriptional reprogramming in the intestine and cause defects in energy production. Weakened intestinal metabolism exacerbates neurodegeneration through interorgan signaling. Genetically enhancing propionate production or overexpressing metabolic regulators downstream of propionate in the intestine rescues neurodegeneration, which then relieves mitoUPR. Importantly, propionate supplementation suppresses neurodegeneration without reducing α-synuclein aggregation, demonstrating metabolic rescue of neuronal proteotoxicity downstream of protein aggregates. Our study highlights the involvement of small metabolites in the gut-brain interaction in neurodegenerative diseases.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Caenorhabditis elegans/metabolismo , Animales Modificados Genéticamente/metabolismo , Propionatos/farmacología , Propionatos/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Suplementos Dietéticos , Intestinos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo
12.
Carbohydr Polym ; 329: 121789, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286556

RESUMEN

Pectin, predominantly present within plant cell walls, is a dietary fiber that potentially induces distinct health effects depending on its molecular structure. Such structure-dependent health effects of pectin-derived galacturonic acid oligosaccharides (GalA-OS) are yet largely unknown. This study describes the influence of methyl-esterification and ∆4,5-unsaturation of GalA-OS through defined sets of GalA-OS made from pectin using defined pectinases, on the fermentability by individual fecal inocula. The metabolite production, OS utilization, quantity and size, methyl-esterification and saturation of remaining GalA-OS were monitored during the fermentation of GalA-OS. Fermentation of all GalA-OS predominantly induced the production of acetate, butyrate and propionate. Metabolization of unsaturated GalA-OS (uGalA-OS) significantly increased butyrate formation compared to saturated GalA-OS (satGalA-OS), while satGalA-OS significantly increased propionate formation. Absence of methyl-esters within GalA-OS improved substrate metabolization during the first 18 h of fermentation (99 %) compared to their esterified analogues (51 %). Furthermore, HPAEC and HILIC-LC-MS revealed accumulation of specific methyl-esterified GalA-OS, confirming that methyl-esterification delays fermentation. Fermentation of structurally distinct GalA-OS results in donor specific microbiota composition with uGalA-OS specifically stimulating the butyrate-producer Clostridium Butyricum. This study concludes that GalA-OS fermentation induces highly structure-dependent changes in the gut microbiota, further expanding their potential use as prebiotics.


Asunto(s)
Pectinas , Propionatos , Fermentación , Pectinas/química , Oligosacáridos/química , Heces , Butiratos
13.
Circ Res ; 134(4): 371-389, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38264909

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Propionatos , Sirtuina 3 , Humanos , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico/fisiología , NAD , Sirtuina 3/genética , Indoles/farmacología , Niacinamida
14.
Phytother Res ; 38(2): 1089-1103, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168755

RESUMEN

Autism spectrum disorder (ASD) is a multifaceted neuropsychiatric condition for which effective drug therapy for core clinical symptoms remains elusive. Lotusine, known for its neuroprotective properties in the treatment of neurological disorders, holds potential in addressing ASD. Nevertheless, its specific efficacy in ASD remains uncertain. This study aims to investigate the therapeutic potential of lotusine in ASD and elucidate the underlying molecular mechanisms. We induced an ASD mouse model through intracerebroventricular-propionic acid (ICV-PPA) injection for 7 days, followed by lotusine administration for 5 days. The efficacy of lotusine was evaluated through a battery of behavioral tests, including the three-chamber social test. The underlying mechanisms of lotusine action in ameliorating ASD-like behavior were investigated in the medial prefrontal cortex (mPFC) using whole-cell patch-clamp recordings, western blotting, immunofluorescence staining, molecular docking, and cellular thermal shift assay. The efficacy and mechanisms of lotusine were further validated in vitro. Lotusine effectively alleviated social deficits induced by ICV-PPA injection in mice by counteracting the reduction in miniature excitatory postsynaptic current frequency within the mPFC. Moreover, lotusine enhanced neuronal activity and ameliorated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor dysfunction in ICV-PPA infusion mice by upregulating c-fos, p-GluA1 Ser 845, and p-GluA1 Ser 831 protein levels within the mPFC. Our findings also suggest that lotusine may exert its effects through modulation of the D1 dopamine receptor (DRD1). Furthermore, the rescuing effects of lotusine were nullified by a DRD1 antagonist in PC12 cells. In summary, our results revealed that lotusine ameliorates ASD-like behavior through targeted modulation of DRD1, ultimately enhancing excitatory synaptic transmission. These findings highlight the potential of lotusine as a nutritional supplement in the treatment of ASD.


Asunto(s)
Trastorno del Espectro Autista , Dopamina , Isoquinolinas , Propionatos , Ratas , Ratones , Animales , Dopamina/metabolismo , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Simulación del Acoplamiento Molecular , Receptores de Dopamina D1/metabolismo , Corteza Prefrontal/metabolismo , Modelos Animales de Enfermedad
15.
Adv Healthc Mater ; 13(11): e2303667, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38178648

RESUMEN

Currently, cisplatin resistance has been recognized as a multistep cascade process for its clinical chemotherapy failure. Hitherto, it remains challenging to develop a feasible and promising strategy to overcome the cascade drug resistance (CDR) issue for achieving fundamentally improved chemotherapeutic efficacy. Herein, a novel self-assembled nanoagent is proposed, which is constructed by Pt(IV) prodrug, cyanine dye (cypate), and gadolinium ion (Gd3+), for systematically conquering the cisplatin resistance by employing near-infrared (NIR) light activated mild-temperature hyperthermia in tumor targets. The proposed nanoagents exhibit high photostability, GSH/H+-responsive dissociation, preferable photothermal conversion, and enhanced cellular uptake performance. In particular, upon 785-nm NIR light irradiation, the generated mild temperature of ≈ 43 °C overtly improves the cell membrane permeability and drug uptake, accelerates the disruption of intracellular redox balance, and apparently enhances the formation of Pt-DNA adducts, thereby effectively overcoming the CDR issue and achieves highly improved therapeutic efficacy for cisplatin-resistant tumor ablation.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Hipertermia Inducida , Indoles , Propionatos , Cisplatino/farmacología , Cisplatino/química , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Animales , Hipertermia Inducida/métodos , Ratones , Línea Celular Tumoral , Rayos Infrarrojos , Gadolinio/química , Gadolinio/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Profármacos/química , Profármacos/farmacología , Ratones Endogámicos BALB C , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones Desnudos , Carbocianinas/química , Carbocianinas/farmacología
16.
Curr Top Med Chem ; 24(5): 416-436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38279744

RESUMEN

P-coumaric acid is an important phenolic compound that is mainly found in fruits, vegetables, grains, and fungi and is also abundant in Chinese herbal medicines. In this review, the pharmacological research progress of p-coumaric acid in recent years was reviewed, with emphasis on its role and mechanism in oxidative stress-related diseases, such as inflammation, cardiovascular diseases, diabetes, and nervous system diseases. Studies have shown that p-coumaric acid has a positive effect on the prevention and treatment of these diseases by inhibiting oxidative stress. In addition, p-coumaric acid also has anti-tumor, antibacterial, anti-aging skin and other pharmacological effects. This review will provide reference and inspiration for further research on the pharmacological effects of p-coumaric acid.


Asunto(s)
Ácidos Cumáricos , Estrés Oxidativo , Propionatos , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/química , Estrés Oxidativo/efectos de los fármacos , Humanos , Propionatos/farmacología , Propionatos/química , Animales , Antioxidantes/farmacología , Antioxidantes/química , Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
17.
Mol Neurobiol ; 61(3): 1237-1270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37698833

RESUMEN

A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.


Asunto(s)
Productos Biológicos , Enfermedad de Huntington , Fármacos Neuroprotectores , Ratas , Animales , Enfermedad de Huntington/metabolismo , Ratas Wistar , Acetilcolinesterasa , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Productos Biológicos/uso terapéutico , Nitrocompuestos/farmacología , Propionatos/farmacología , Propionatos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad
18.
J Dairy Sci ; 107(2): 840-856, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37730175

RESUMEN

The objective of this study was to evaluate the effects of cashew nut shell extract (CNSE) and monensin on ruminal in vitro fermentation, CH4 production, and ruminal bacterial community structure. Treatments were as follows: control (CON, basal diet without additives); 2.5 µM monensin (MON); 0.1 mg CNSE granule/g DM (CNSE100); and 0.2 mg CNSE granule/g DM (CNSE200). Each treatment was incubated with 52 mL of buffered ruminal content and 500 mg of total mixed ration for 24 h using serum vials. The experiment was performed as a complete randomized block design with 3 runs. Run was used as a blocking factor. Each treatment had 5 replicates, in which 2 were used to determine nutrient degradability, and 3 were used to determine pH, NH3-N, volatile fatty acids, lactate, total gas, CH4 production, and bacterial community composition. Treatment responses for all data, excluding bacterial abundance, were analyzed with the GLIMMIX procedure of SAS v9.4. Treatment responses for bacterial community structure were analyzed with a PERMANOVA test run with the R package vegan. Orthogonal contrasts were used to test the effects of (1) additive inclusion (ADD: CON vs. MON, CNSE100, and CNSE200); (2) additive type (MCN: MON vs. CNSE100 and CNSE200); and (3) CNSE dose (DOS: CNSE100 vs. CNSE200). We observed that pH, acetate, and acetate:propionate ratio in the CNSE100 treatment were lower compared with CNSE200, and propionate in the CNSE100 treatment was greater compared with CNSE200. Compared with MON, CNSE treatments tended to decrease total lactate concentration. Total gas production of CON was greater by 2.63% compared with all treatments, and total CH4 production was reduced by 10.64% in both CNSE treatments compared with MON. Also, compared with MON, in vitro dry matter degradabilities in CNSE treatments were lower. No effects were observed for NH3-N or in vitro neutral detergent fiber degradability. Finally, the relative abundances of Prevotella, Treponema, and Schwartzia were lower, whereas the relative abundances of Butyrivibrio and Succinivibrio were greater in all treatments compared with CON. Overall, the inclusion of CNSE decreased CH4 production compared with MON, making CNSE a possible CH4 mitigation additive in dairy cattle diets.


Asunto(s)
Anacardium , Monensina , Bovinos , Femenino , Animales , Monensina/farmacología , Monensina/metabolismo , Lactancia , Propionatos/metabolismo , Fermentación , Nueces , Digestión , Dieta/veterinaria , Bacterias , Acetatos/farmacología , Metano/metabolismo , Lactatos/metabolismo , Extractos Vegetales/farmacología , Rumen/metabolismo , Alimentación Animal/análisis
19.
Int J Biol Macromol ; 257(Pt 1): 128603, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056733

RESUMEN

An intelligent and active food packaging film based on chitosan (CS), pectin (P), calcium propionate (CP), and curcumin-ß-cyclodextrin complex (Cur-ß-CD) was prepared. The CS/P/CP/Cur-ß-CD film exhibited improved hydrophobicity (74.78 ± 0.53°), water vapor (4.55 ± 0.16 × 10-11 g·(m·s·Pa)-1), and oxygen (1.50 ± 0.06 × 10-12 g·(m·s·Pa)-1) barrier properties, as well as antioxidant (72.34 ± 3.79 % for DPPH and 86.05 ± 0.14 % for ABTS) and antibacterial (79.41 ± 2.89 % for E. coli and 83.82 ± 3.96 % for S. aureus) activities. The release of CP and Cur could be triggered by pectinase, with their cumulative release reaching 92.62 ± 1.20 % and 42.24 ± 1.15 %, respectively. The CS/P/CP/Cur-ß-CD film showed delayed alterations in surface color, pH value, total volatile bases nitrogen, total viable counts, thiobarbituric acid reactive substance, hardness, and springiness of pork. Additionally, the fluorescence intensity of the film gradually decreased. In conclusion, we have developed a pH-responsive film with pectinase-triggered release function, providing a new concept for the design of multi-signal responsive intelligent food packaging.


Asunto(s)
Quitosano , Curcumina , Carne de Cerdo , Propionatos , Carne Roja , beta-Ciclodextrinas , Animales , Porcinos , Curcumina/farmacología , Curcumina/química , Pectinas , Poligalacturonasa , Carne Roja/análisis , Quitosano/química , Escherichia coli , Staphylococcus aureus , Fluorescencia , Embalaje de Alimentos , beta-Ciclodextrinas/química , Concentración de Iones de Hidrógeno
20.
Poult Sci ; 103(1): 103215, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992621

RESUMEN

The objective of this study was to evaluate the effects of dietary chromium (Cr), as Cr propionate (Cr Prop), on measures of insulin sensitivity in turkeys. Plasma glucose and nonesterified fatty acid (NEFA), and liver glycogen concentrations were used as indicators of insulin sensitivity. One-day-old Nicholas Large White female poults (n = 336) were randomly assigned to dietary treatments consisting of 0 (control), 0.2, 0.4, or 0.6 mg supplemental Cr/kg diet. Each treatment consisted of 12 replicate cages with 7 turkeys per cage. Final BW were taken on d 34, and on d 35 two birds from each cage were sampled for plasma glucose and NEFA, and liver glycogen determination at the initiation (fed state) and termination (fasted state) of a 24-h fast. Following a 24-h fast, 2 turkeys per cage were refed (refed state) their treatment diet for 4 h, and then harvested. Feed/gain and ADG did not differ between control and Cr-supplemented turkeys over the 34-d study, but feed intake tended (P = 0.071) to be greater for controls than turkeys receiving 0.4 mg Cr/kg diet. Fed turkeys had greater plasma glucose (P = 0.002) and liver glycogen (P = 0.001) concentrations, and lower (P = 0.001) NEFA concentrations than fasted birds. Turkeys refed after fasting had greater (P = 0.001) plasma glucose and liver glycogen concentrations, and lower (P = 0.001) plasma NEFA levels than fed turkeys. Liver glycogen and plasma NEFA concentrations did not differ among control and Cr-supplemented birds in the fed, fasted, or refed state. Plasma glucose concentrations were not affected by treatment in fed or fasted turkeys. Turkeys supplemented with 0.2 or 0.4 mg Cr/kg and refed after fasting had lower (quadratic, P = 0.038) plasma glucose concentrations than controls. Plasma glucose concentrations in refed birds did not differ among Cr-supplemented turkeys. The lower plasma glucose concentration in Cr-supplemented turkeys following refeeding is consistent with Cr enhancing insulin sensitivity.


Asunto(s)
Resistencia a la Insulina , Animales , Femenino , Glucemia , Propionatos/farmacología , Pavos , Glucógeno Hepático , Ácidos Grasos no Esterificados , Pollos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA