Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Phytother Res ; 38(5): 2496-2517, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447978

RESUMEN

We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.


Asunto(s)
Miocitos Cardíacos , Quercetina , Sirtuinas , Quercetina/farmacología , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratones , Sirtuinas/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitofagia/efectos de los fármacos
2.
J Med Chem ; 64(17): 12723-12737, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34428039

RESUMEN

Eukaryotes have evolved two major pathways to repair potentially lethal DNA double-strand breaks. Homologous recombination represents a precise, DNA-template-based mechanism available during the S and G2 cell cycle phase, whereas non-homologous end joining, which requires DNA-dependent protein kinase (DNA-PK), allows for fast, cell cycle-independent but less accurate DNA repair. Here, we report the discovery of BAY-8400, a novel selective inhibitor of DNA-PK. Starting from a triazoloquinoxaline, which had been identified as a hit from a screen for ataxia telangiectasia and Rad3-related protein (ATR) inhibitors with inhibitory activity against ATR, ATM, and DNA-PK, lead optimization efforts focusing on potency and selectivity led to the discovery of BAY-8400. In in vitro studies, BAY-8400 showed synergistic activity of DNA-PK inhibition with DNA damage-inducing targeted alpha therapy. Combination of PSMA-targeted thorium-227 conjugate BAY 2315497 treatment of human prostate tumor-bearing mice with BAY-8400 oral treatment increased antitumor efficacy, as compared to PSMA-targeted thorium-227 conjugate monotherapy.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proteína Quinasa Activada por ADN/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Proteína Quinasa Activada por ADN/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Hepatocitos/efectos de los fármacos , Humanos , Ratones , Estructura Molecular , Fosfatidilinositol 3-Quinasas/genética , Ratas , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cell Death Dis ; 11(7): 602, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732911

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and has the highest mortality rate among cancers and high resistance to radiation and cytotoxic chemotherapy. Although some targeted therapies can partially inhibit oncogenic mutation-driven proliferation of GBM cells, therapies harnessing synthetic lethality are 'coincidental' treatments with high effectiveness in cancers with gene mutations, such as GBM, which frequently exhibits DNA-PKcs mutation. By implementing a highly efficient high-throughput screening (HTS) platform using an in-house-constructed genome-wide human microRNA inhibitor library, we demonstrated that miR-1193 inhibition sensitized GBM tumor cells with DNA-PKcs deficiency. Furthermore, we found that miR-1193 directly targets YY1AP1, leading to subsequent inhibition of FEN1, an important factor in DNA damage repair. Inhibition of miR-1193 resulted in accumulation of DNA double-strand breaks and thus increased genomic instability. RPA-coated ssDNA structures enhanced ATR checkpoint kinase activity, subsequently activating the CHK1/p53/apoptosis axis. These data provide a preclinical theory for the application of miR-1193 inhibition as a potential synthetic lethal approach targeting GBM cancer cells with DNA-PKcs deficiency.


Asunto(s)
Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Proteína Quinasa Activada por ADN/deficiencia , Glioblastoma/enzimología , Glioblastoma/genética , MicroARNs/metabolismo , Mutaciones Letales Sintéticas/genética , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Inestabilidad Genómica , Humanos , MicroARNs/genética , Modelos Biológicos , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor de Transcripción YY1/metabolismo
4.
Biomed Pharmacother ; 129: 110427, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32574974

RESUMEN

Triptolide is a multi-functional natural small molecular compound extracted from a traditional Chinese medicinal herb. Triptolide and its derivatives exhibit cytotoxicity through inducing DNA damage, therefore increasing sensitivity to DNA-damage based chemotherapy or radiotherapy in different types of cells. However, the regulatory mechanism of genotoxicity by triptolide, and the loss of genome integrity induced by triptolide are not fully understood. Here, we measured the effects of triptolide on genome integrity in a human fibroblast line HCA2-hTERT using the neutral comet assay. We demonstrated that treating cells with triptolide induced genomic instability in HCA2-hTERT cells. Furthermore, we observed the accumulation of γH2AX foci in triptolide treated cells than control cells at 24 h post ionizing radiation. Further mechanistic studies indicated that triptolide inhibited the enzymatic activity of DNA-PKcs, the critical nonhomologous end joining factor. In vitro kinase activity assays showed that triptolide suppressed the kinase activity of DNA-PKcs and molecular docking also predicted a potential interaction between triptolide and DNA-PKcs. As a consequence, we found that triptolide treatment enhanced the interaction between DNA-PKcs and KU80 and hampered the following recruitment of 53BP1. Altogether, our finding provides a new perspective about the toxicity of triptolide in non-cancer cells and highlights the necessity of taking genome effects of triptolide and its derivatives into consideration in the future clinical and research applications.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Diterpenos/toxicidad , Fibroblastos/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Fenantrenos/toxicidad , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Compuestos Epoxi/toxicidad , Fibroblastos/enzimología , Fibroblastos/patología , Histonas/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Fosforilación , Telomerasa/genética , Telomerasa/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
5.
Nat Commun ; 9(1): 4342, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337542

RESUMEN

Oncolytic virotherapy is a promising therapeutic strategy that uses replication-competent viruses to selectively destroy malignancies. However, the therapeutic effect of certain oncolytic viruses (OVs) varies among cancer patients. Thus, it is necessary to overcome resistance to OVs through rationally designed combination strategies. Here, through an anticancer drug screening, we show that DNA-dependent protein kinase (DNA-PK) inhibition sensitizes cancer cells to OV M1 and improves therapeutic effects in refractory cancer models in vivo and in patient tumour samples. Infection of M1 virus triggers the transcription of interferons (IFNs) and the activation of the antiviral response, which can be abolished by pretreatment of DNA-PK inhibitor (DNA-PKI), resulting in selectively enhanced replication of OV M1 within malignancies. Furthermore, DNA-PK inhibition promotes the DNA damage response induced by M1 virus, leading to increased tumour cell apoptosis. Together, our study identifies the combination of DNA-PKI and OV M1 as a potential treatment for cancers.


Asunto(s)
Antivirales/farmacología , Daño del ADN , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Virus Oncolíticos/fisiología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Terapia Combinada , Proteína Quinasa Activada por ADN/metabolismo , Evaluación Preclínica de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Viroterapia Oncolítica , Inhibidores de Proteínas Quinasas/farmacología , Ratas
6.
Cell Death Dis ; 8(11): e3167, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29120412

RESUMEN

MicroRNAs (miRNAs) have been suggested to repress transcription via binding the 3'-untranslated regions of mRNAs. However, the involvement and details of miRNA-mediated epigenetic regulation, particularly in targeting genomic DNA and mediating epigenetic regulation, remain largely uninvestigated. In the present study, transcription factor CCAAT/enhancer binding protein delta (CEBPD) was responsive to the anticancer drug bortezomib, a clinical and highly selective drug for leukemia treatment, and contributed to bortezomib-induced cell death. Interestingly, following the identification of CEBPD-induced miRNAs, we found that miR-744, miR-3154 and miR-3162 could target CpG islands in the 5'-flanking region of the CEBPD gene. We previously demonstrated that the Yin Yang 1 (YY1)/polycomb group (PcG) protein/DNA methyltransferase (DNMT) complex is important for CCAAT/enhancer binding protein delta (CEBPD) gene inactivation; we further found that Argonaute 2 (Ago2) interacts with YY1 and binds to the CEBPD promoter. The miRNA/Ago2/YY1/PcG group protein/DNMT complex linked the inactivation of CEBPD and genes adjacent to its 5'-flanking region, including protein kinase DNA-activated catalytic polypeptide (PRKDC), minichromosome maintenance-deficient 4 (MCM4) and ubiquitin-conjugating enzyme E2 variant 2 (UBE2V2), upon bortezomib treatment. Moreover, we revealed that miRNA binding is necessary for YY1/PcG group protein/DNMT complex-mediated epigenetic gene silencing and is associated with bortezomib-induced methylation on genomic DNA. The present study successfully characterized the interactions of the miRNA/Ago2/YY1/PcG group protein/DNMT complex and provided new insights for miRNA-mediated epigenetic regulation in bortezomib-induced leukemic cell arrest and cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Bortezomib/farmacología , Leucemia/fisiopatología , MicroARNs/metabolismo , Regiones no Traducidas 3' , Antineoplásicos/farmacología , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Línea Celular Tumoral , Islas de CpG , Metilación de ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Silenciador del Gen , Humanos , Leucemia/metabolismo , Ligasas/genética , Ligasas/metabolismo , MicroARNs/genética , Componente 4 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 4 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transcripción Genética/efectos de los fármacos , Enzimas Ubiquitina-Conjugadoras , Factor de Transcripción YY1/química , Factor de Transcripción YY1/metabolismo
7.
Biomed Pharmacother ; 83: 693-703, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27470570

RESUMEN

DNA-dependent protein kinase (DNA-PK) is a key enzyme in non-homologous DNA end joining (NHEJ) repair pathway. The targeted inhibition of such enzyme would furnish a valuable option for cancer treatment. In this study we report the development of validation of enzyme homology model, and the subsequent use of this model to perform docking-based virtual screening against a database of FDA-approved drugs. The nominated highest ranking hits (Praziquantel and Dutasteride) were subjected to biological investigation. Additionally, molecular dynamic study was carried-out for binding mode exploration. Results of the biological evaluation revealed that both compounds inhibit the DNA-PK enzymatic activity at relatively high concentration levels with an IC50 of 17.3µM for praziquantel and >20µM for dutasteride. Furthermore, both agents enhanced the anti-proliferative effects of doxorubicin and cisplatin on breast cancer (MCF7) and lung cancer (A549) cell lines. This result indicates that these two hits are good candidate as DNA-PK inhibitors and worth further structural modifications to enhance their enzyme inhibitory effects.


Asunto(s)
Simulación por Computador , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/análisis , Inhibidores de Proteínas Quinasas/química , Homología Estructural de Proteína , Antineoplásicos/química , Antineoplásicos/farmacología , Dominio Catalítico , Proteína Quinasa Activada por ADN/química , Proteína Quinasa Activada por ADN/metabolismo , Dutasterida/química , Dutasterida/farmacología , Humanos , Ligandos , Praziquantel/química , Praziquantel/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Curva ROC
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 32(7): 940-4, 2016 Jul.
Artículo en Chino | MEDLINE | ID: mdl-27363277

RESUMEN

Objective To investigate the effect of evodiamine on the radiosensitivity of esophageal squamous cell cancer Eca-109 cells. Methods Eca-109 cells were treated with various concentrations of evodiamine [(10, 20, 40, 60, 80, 100, 120) µg/mL], and then cell proliferation was examined by MTT assay. After the optimal evodiamine concentration was determined, the cells were divided into radiation group (0, 2, 4, 6, 8 Gy X-ray radiation) and radiation combined with evodiamine group (80 µg/mL evodiamine and 0, 2, 4, 6, 8 Gy X-ray radiation) .The radiosensitivity of Eca-109 cells was detected using colony formation assay. Flow cytometry was used to determine cell cycle of Eca-109 cells. The protein expressions of Ku70, Ku80, DNA-PKcs and Rad51 were examined by Western blotting. Results MTT assay showed that evodiamine decreased the proliferation of Eca-109 cells in a concentration-dependent manner. The inhibition reached the maximal level at 80 µg/mL. Compared with radiotherapy alone, the combination of 80 µg/mL evodiamine and radiotherapy improved survival curve and decreased the values of D0 and Dq. Sensitizer enhancement ratio was 1.86±0.06. Furthermore, cell cycle analysis revealed that evodiamine suppressed radiotherapy-induced the G2/M arrest. Additionally, evodiamine treatment also significantly inhibited radiotherapy-induced increase in Ku70, Ku80, DNA-PKcs and Rad51 expressions. Conclusion Evodiamine enhances radiosensitivity of Eca-109 cells during radiotherapy. The effect may be associated with the inhibition of G2/M arrest and the attenuation of Ku70, Ku80, DNA-PKcs and Rad51 expressions.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Quinazolinas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Proteína Quinasa Activada por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Humanos , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo , Extractos Vegetales/farmacología , Recombinasa Rad51/metabolismo , Rayos X
9.
Chem Biol ; 22(7): 849-61, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26119999

RESUMEN

Regulatory mechanisms underlying γH2AX induction and the associated cell fate decision during DNA damage response (DDR) remain obscure. Here, we discover a bromodomain (BRD)-like module in DNA-PKcs (DNA-PKcs-BRD) that specifically recognizes H2AX acetyl-lysine 5 (K5ac) for sequential induction of γH2AX and concurrent cell fate decision(s). First, top-down mass spectrometry of radiation-phenotypic, full-length H2AX revealed a radiation-inducible, K5ac-dependent induction of γH2AX. Combined approaches of sequence-structure modeling/docking, site-directed mutagenesis, and biochemical experiments illustrated that through docking on H2AX K5ac, this non-canonical BRD determines not only the H2AX-targeting activity of DNA-PKcs but also the over-activation of DNA-PKcs in radioresistant tumor cells, whereas a Kac antagonist, JQ1, was able to bind to DNA-PKcs-BRD, leading to re-sensitization of tumor cells to radiation. This study elucidates the mechanism underlying the H2AX-dependent regulation of DNA-PKcs in ionizing radiation-induced, differential DDR, and derives an unconventional, non-catalytic domain target in DNA-PKs for overcoming resistance during cancer radiotherapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/química , Proteína Quinasa Activada por ADN/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Células K562 , Lisina/metabolismo , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína , Tolerancia a Radiación
10.
Zhong Yao Cai ; 38(6): 1247-50, 2015 Jun.
Artículo en Chino | MEDLINE | ID: mdl-26762068

RESUMEN

OBJECTIVE: To study the inhibitory effect of Yiqi Chutan Recipe on the transplanted tumor through endoplasmic reticulum UPR-mediated approach. METHODS: 40 lung cancer A549 cells models transplanted in nude mice were established. On the 7th day of inoculation, mice were randomly divided into model group( saline group) , Cisplatin group (0.002 g/kg), Yiqi Chutan Recipe low dose group (3.0 g/kg), Yiqi Chutan Recipe high dose group(6. 0 g/kg)and Yiqi Chutan Recipe (3.0 g/kg)with Cisplatin group (0.002 g/kg). Each aforementioned group had eight mice. Mice were treated by Yiqi Chutan Recipe to gavage one time a day, for 21 days, and by Cisplatin Injection to intraperitoneal injection one time a day, for 7 days. On the 22th day, all mice were executed to death. Then each tumor's weight and volume were measured, and the expression of Caspase-4 and DNA-PK protein were detected through immunohistochemical method and Western blot method. RESULTS: Compared with model group, the tumors' volume and weight of Yiqi Chutan Recipe high dose group and Yiqi Chutan Recipe with Cisplatin group were decreased, but the expressions of Caspase-4 and DNA-PK protein in tumors were increased (P < 0.01). Yiqi Chutan Recipe with Cisplatin Group had the better effect (P < 0.05). CONCLUSION: Yiqi Chutan Recipe has a certain inhibitory effect on A549 lung cancer in mice and its possible mechanism is relevant to the increase of expression of Caspase-4 and DNA-PK protein.


Asunto(s)
Apoptosis , Caspasas Iniciadoras/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Medicamentos Herbarios Chinos/farmacología , Neoplasias Pulmonares/patología , Proteínas Nucleares/metabolismo , Animales , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias
11.
Mol Cell Biochem ; 399(1-2): 269-78, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25348361

RESUMEN

The aim of the present study was to investigate the effects of DNA-PKcs deficiency on the chemosensitivity of human hepatoma HepG2 cells to cisplatin (CDDP) and 5-fluorouracil (5-Fu), and to explore the underlying molecular mechanism. After transfection with DNA-PKcs siRNA or control siRNA, HepG2 cells were exposed to combination treatment of CDDP and 5-Fu. The cell viability, DNA damage, cell apoptosis, intracellular reactive oxygen species and glutathione (GSH) level, expression of apoptosis related proteins, activity of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and nuclear factor-κB (NF-κB) pathways were assessed. The combination of CDDP and 5-Fu had a synergistic cytotoxic effect in HepG2 cells in terms of the cell viability, DNA damage, apoptosis, and oxidative stress level. DNA-PKcs siRNA could sensitize the HepG2 cells to the combined treatment. DNA-PKcs suppression further reduced the Akt phosphorylation level and Bcl-2 expression in HepG2 cells exposed to CDDP and 5-Fu, but enhanced the expression of pro-apoptotic proteins p53 and caspase-3. Moreover, CDDP could inhibit the transcriptional activity of NF-κB through degradation of IkB-α, while 5-Fu alone seemed in some extent increases the NF-κB activity. The combined treatment with CDDP and 5-Fu resulted in significantly decrease of the transcriptional activity of NF-κB, which was further aggravated by DNA-PKcs siRNA treatment. In conclusion, DNA-PKcs suppression had complementary effects in combination with CDDP and 5-Fu treatment in HepG2 cells, which was associated with suppression of NF-κB signaling pathway cascade, activation of caspase-3 and p53, as well as down-regulation of Bcl-2 and GSH.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Proteína Quinasa Activada por ADN/metabolismo , Fluorouracilo/farmacología , Proteínas Nucleares/metabolismo , Apoptosis , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Proteína Quinasa Activada por ADN/genética , Resistencia a Antineoplásicos , Técnicas de Silenciamiento del Gen , Glutatión/metabolismo , Células Hep G2 , Humanos , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
12.
Am J Chin Med ; 42(3): 729-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24871662

RESUMEN

Bufalin is a key component of a Chinese medicine (Chan Su) and has been proved effective in killing various cancer cells. Its role in inducing DNA damage and the inhibition of the DNA damage response (DDR) has been reported, but none have studied such action in lung cancer in detail. In this study, we demonstrated bufalin-induced DNA damage and condensation in NCI-H460 cells through a comet assay and DAPI staining, respectively. Western blotting indicated that bufalin suppressed the protein levels associated with DNA damage and repair, such as a DNA dependent serine/threonine protein kinase (DNA-PK), DNA repair proteins breast cancer 1, early onset (BRCA1), 14-3-3 σ (an important checkpoint keeper of DDR), mediator of DNA damage checkpoint 1 (MDC1), O6-methylguanine-DNA methyltransferase (MGMT) and p53 (tumor suppressor protein). Bufalin could activate phosphorylated p53 in NCI-H460 cells. DNA damage in NCI-H460 cells after treatment with bufalin up-regulated its ATM and ATR genes, which encode proteins functioning as sensors in DDR, and also up-regulated the gene expression (mRNA) of BRCA1 and DNA-PK. But bufalin suppressed the gene expression (mRNA) of p53 and 14-3-3 σ, however, bufalin did not significantly affect the mRNA of MGMT. In conclusion, bufalin induced DNA damage in NCI-H460 cells and also inhibited its DNA repair and checkpoint function.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Bufanólidos/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/efectos de los fármacos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteína BRCA1/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular , Metilasas de Modificación del ADN/metabolismo , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Exorribonucleasas/metabolismo , Genes cdc/efectos de los fármacos , Genes cdc/genética , Humanos , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo
13.
Environ Mol Mutagen ; 55(5): 436-48, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24500925

RESUMEN

Radiation exposure is a serious threat to biomolecules, particularly DNA, proteins and lipids. Various exogenous substances have been reported to protect these biomolecules. In this study we explored the effect of pre-treatment with G-002M, a mixture of three active derivatives isolated from the rhizomes of Podophyllum hexandrum, on DNA damage response in irradiated human blood leukocytes. Blood was collected from healthy male volunteers, preincubated with G-002M and then irradiated with various doses of radiation. Samples were analyzed using flow cytometry to quantify DNA double strand break (DSB) biomarkers including γ-H2AX, P53BP1 and levels of ligase IV. Blood samples were irradiated in vitro and processed to determine time and dose-dependent kinetics. Semiquantitative RT-PCR was performed at various time points to measure gene expression of DNA-PKcs, Ku80, ATM, and 53BP1; each of these genes is involved in DNA repair signaling. Pre-treatment of blood with G-002M resulted in reduction of γ-H2AX and P53BP1 biomarkers levels and elevated ligase IV levels relative to non-G-002M-treated irradiated cells. These results confirm suppression in radiation-induced DNA DSBs. Samples pre-treated with G-002M and then irradiated also showed significant up-regulation of DNA-PKcs and Ku80 and downregulation of ATM and 53BP1 gene expressions, suggesting that G-002M plays a protective role against DNA damage. The protective effect of G-002M may be due to its ability to scavange radiation-induced free radicals or assist in DNA repair. Further studies are needed to decipher the role of G-002M on signaling molecules involved in radiation-induced DNA damage repair pathways.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Rayos gamma/efectos adversos , Leucocitos/efectos de los fármacos , Podophyllum/química , Protectores contra Radiación/farmacología , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Berberidaceae , Células Cultivadas , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Flavonoides/química , Histonas/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Autoantígeno Ku , Leucocitos/metabolismo , Leucocitos/efectos de la radiación , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Linfocitos/efectos de la radiación , Masculino , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/efectos de la radiación , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión al Supresor Tumoral P53
14.
J Nutr Biochem ; 24(5): 781-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22841545

RESUMEN

Selenium induces a senescence response in cells through induction of ataxia-telangiectasia mutated (ATM) and reactive oxygen species (ROS). Although a role of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in DNA double-strand break repair is established, it is unclear how these proteins function in response to selenium-induced oxidative stress and senescence induction. In this study, we demonstrated that pretreating normal human diploid fibroblasts with DNA-PK kinase inhibitor NU 7026 suppressed selenium-induced senescence response. Selenium treatment induced phosphorylation of DNA-PKcs on Thr-2647 and Ser-2056, the extent of which was decreased in the presence of ATM kinase inhibitor KU 55933 or the antioxidants N-acetylcysteine or 2,2,6,6-tetramethylpiperidine-1-oxyl. In contrast, the selenium-induced phosphorylation of ATM on Ser-1981 was not affected by NU 7026. Cells deficient in DNA-PKcs or pretreated with NU 7026 or N-acetylcysteine were defective in selenite-induced ROS formation. Taken together, these results indicate a distinct role of DNA-PKcs, in which this kinase can respond to and feed forward selenium-induced ROS formation and is placed downstream of ATM in the resultant senescence response.


Asunto(s)
Dominio Catalítico , Senescencia Celular/efectos de los fármacos , Proteína Quinasa Activada por ADN/metabolismo , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Acetilcisteína/farmacología , Antioxidantes/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células Cultivadas , Cromonas/farmacología , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/genética , Dextranos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Morfolinas/farmacología , Mutación , Fosforilación , Pironas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ácido Selenioso/farmacología
15.
Biochim Biophys Acta ; 1833(1): 90-100, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23098854

RESUMEN

Non-homologous end joining (NHEJ) is one of the major pathways that repairs double-stranded DNA breaks (DSBs). Activation of DNA-PK is required for NHEJ. However, the mechanism leading to DNA-PKcs activation remains incompletely understood. We provide evidence here that the MEK-ERK pathway plays a role in DNA-PKcs-mediated NHEJ. In comparison to the vehicle control (DMSO), etoposide (ETOP)-induced DSBs in MCF7 cells were more rapidly repaired in the presence of U0126, a specific MEK inhibitor, based on the reduction of γH2AX and tail moments. Additionally, U0126 increased reactivation of luciferase activity, which resulted from the repair of restriction enzyme-cleaved DSBs. Furthermore, while inhibition of ERK activation using the dominant-negative MEK1K97M accelerated the repair of DSBs, enforcing ERK activation with the constitutively active MEK1Q56P reduced DSB repair. In line with MEK activating ERK1 and ERK2 kinases, knockdown of either ERK1 or ERK2 increased DSB repair. Consistent with the activation of DNA-PKcs being required for NHEJ, we demonstrated that inhibition of ERK activation using U0126, MEK1K97M, and knockdown of ERK1 or ERK2 enhanced ETOP-induced activation of DNA-PKcs. Conversely, enforcing ERK activation by MEK1Q56P reduced ETOP-initiated DNA-PKcs activation. Taken together, we demonstrate that ERK reduces NHEJ-mediated repair of DSBs via attenuation of DNA-PKcs activation.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Proteínas Nucleares/agonistas , ARN Interferente Pequeño/farmacología , Antineoplásicos Fitogénicos/farmacología , Proteína Quinasa Activada por ADN/metabolismo , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Etopósido/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Nucleares/metabolismo , Células Tumorales Cultivadas , Regulación hacia Arriba/efectos de los fármacos
16.
Aquat Toxicol ; 109: 11-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22204984

RESUMEN

Uranium is a metal used in the nuclear industry and for military applications. Studies on mammals have shown that uranium is genotoxic. However the molecular and cellular mechanisms responsible for the genotoxicity of uranium are poorly known for other types of vertebrates such as fish. Since unrepaired DNA double-strand breaks (DSBs) are considered to be key lesions in cell lethality, the activity of one of the major DSB-repair pathways, i.e. non-homologous end-joining (NHEJ), has been evaluated in embryonic zebrafish cells (ZF4) exposed to uranium. Genotoxicity of uranium in ZF4 cells was further assessed by comet and micronucleus assays. Exposure to uranium results in the production of DSBs a few hours after incubation. These breaks trigger the phosphorylation of H2AX proteins. We showed that the DNA-PK kinase activity, essential for NHEJ, is altered by the presence of uranium. The presence of uranium in cells disturbs but does not inhibit the repair rate of DSBs. Such a result suggests an impact of uranium upon the reparability of DSBs and the potential activation of alternative DSBs repair pathway leading to the propagation of possible misrepaired DSBs. In parallel, we performed a transmission electron microscopy analysis of cells exposed to uranium and were able to localize internalized uranium using an Energy Dispersive X-ray microanalyser. We observed the formation of precipitates in lysosome-like vesicles for 250 µM of uranium in the medium. The appearance of these precipitates is concomitant with the decrease of the number of DSBs per cell. This process might be a part of a defence system whose role in counteracting cytotoxicity calls for further dedicated research.


Asunto(s)
ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Uranio/toxicidad , Animales , Línea Celular , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Fibroblastos/ultraestructura , Pruebas de Mutagenicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
17.
Mol Cancer ; 10: 74, 2011 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-21679440

RESUMEN

BACKGROUND: Platinum-containing chemotherapy produces specific DNA damage and is used to treat several human solid tumors. Tumors initially sensitive to platinum-based drugs frequently become resistant. Inhibition of DNA repair is a potential strategy to enhance cisplatin effectiveness. After cisplatin treatment, a balance between repair and apoptosis determines whether cancer cells proliferate or die. DNA-dependent protein kinase (DNA-PK) binds to DNA double strand breaks (DSBs) through its Ku subunits and initiates non-homologous end joining. Inhibition of DNA-PK sensitizes cancer cells to cisplatin killing. The goal of this study is to elucidate the mechanism underlying the effects of DNA-PK on cisplatin sensitivity. RESULTS: Silencing the expression of the catalytic subunit of DNA-PK (DNA-PKcs) increased sensitivity to cisplatin and decreased the appearance of γH2AX after cisplatin treatment. We purified DNA-PK by its Ku86 subunit and identified interactors by tandem mass spectrometry before and after cisplatin treatment. The structure specific recognition protein 1 (SSRP1), Spt16 and γH2AX appeared in the Ku86 complex 5 hours after cisplatin treatment. SSRP1 and Spt16 form the facilitator of chromatin transcription (FACT). The cisplatin-induced association of FACT with Ku86 and γH2AX was abrogated by DNase treatment. In living cells, SSRP1 and Ku86 were recruited at sites of DSBs induced by laser beams. Silencing SSRP1 expression increased sensitivity to cisplatin and decreased γH2AX appearance. However, while silencing SSRP1 in cisplatin-treated cells increased both apoptosis and necrosis, DNA-PKcs silencing, in contrast, favored necrosis over apoptosis. CONCLUSIONS: DNA-PK and FACT both play roles in DNA repair. Therefore both are putative targets for therapeutic inhibition. Since DNA-PK regulates apoptosis, silencing DNA-PKcs redirects cells treated with cisplatin toward necrosis. Silencing FACT however, allows both apoptosis and necrosis. Targeting DNA repair in cancer patients may have different therapeutic effects depending upon the roles played by factors targeted.


Asunto(s)
Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas del Grupo de Alta Movilidad/fisiología , Factores de Elongación Transcripcional/fisiología , Antineoplásicos/farmacología , Apoptosis/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/genética , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evaluación Preclínica de Medicamentos , Células HEK293 , Células HeLa , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Necrosis/inducido químicamente , Necrosis/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
18.
Br J Haematol ; 152(1): 61-71, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21083655

RESUMEN

Defects in the DNA damage response pathway [e.g. del(17p)] are associated with drug-resistant B-cell chronic lymphocytic leukaemia (CLL). We previously demonstrated that over-expression of DNA-dependent protein kinase (DNA-PK) correlates with chemo-resistance and that inhibition of DNA-PK sensitizes CLL cells to chemotherapeutics. Here, we investigated expression of DNA-PK and other proteins that impact on drug resistance, and evaluated the effects of a DNA-PK inhibitor (NU7441) on mitoxantrone-induced cytotoxicity in CLL cells. NU7441 sensitized cells from 42/49 CLL samples to mitoxantrone, with sensitization ranging from 2- to 200-fold Co-culture of CLL cells in conditioned stromal medium increased chemoresistance but did not reduce sensitization by NU7441. Mitoxantrone treatment induced γH2AX foci and NU7441 increased their longevity (24 h). NU7441 prevented mitoxantrone-induced autophosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) at Ser 2056, confirming that DNA-PK participates in repair of mitoxantrone-induced DNA damage. del(17p) cases were more resistant to mitoxantrone than del(13q) cases, but were resensitized (7-16 fold) by co-incubation with NU7441. Expression of DNA-PKcs, Ku80, P-glycoprotein and topoisomerase IIß were significantly higher in del(17p) cases. PRKDC mRNA levels correlated with DNA-PKcs protein expression, which predicted shorter survival. These data confirm the potential of DNA-PK as a therapeutic target in poor prognosis CLL.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Leucemia Linfocítica Crónica de Células B/patología , Muerte Celular/efectos de los fármacos , Cromonas/farmacología , Medios de Cultivo Condicionados , Reparación del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos , Humanos , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/genética , Mitoxantrona/farmacología , Morfolinas/farmacología , Proteínas de Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Células Tumorales Cultivadas
19.
Clin Cancer Res ; 14(12): 3984-92, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18559621

RESUMEN

PURPOSE: del(17p), del(11q), and associated p53 dysfunction predict for short survival and chemoresistance in B-cell chronic lymphocytic leukemia (CLL). DNA-dependent protein kinase (DNA-PK) is activated by DNA damage and mediates DNA double-strand break repair. We hypothesized that inhibiting DNA-PK would sensitize CLL cells to drug-induced DNA damage and that this approach could increase the therapeutic index of agents used to treat CLL. EXPERIMENTAL DESIGN: Fifty-four CLL cases were characterized for poor prognosis markers [del(17p), del(11q), CD38, and ZAP-70]. In selected cases, DNA-PK catalytic subunit (DNA-PKcs) expression and activity and p53 function were also measured. Ex vivo viability assays established sensitivity to fludarabine and chlorambucil and also tested the ability of a novel DNA-PK inhibitor (NU7441) to sensitize CLL cells to these drugs. The effects of NU7441 on fludarabine-induced DNA damage repair were also assessed (Comet assays and detection of gammaH2AX). RESULTS: DNA-PKcs levels correlated with DNA-PK activity and varied 50-fold between cases but were consistently higher in del(17p) (P = 0.01) and del(11q) cases. NU7441 sensitized CLL cells to chlorambucil and fludarabine, including cases with del(17p), del(11q), p53 dysfunction, or high levels of DNA-PKcs. NU7441 increased fludarabine-induced double-strand breaks and abrogated drug-induced autophosphorylation of DNA-PKcs at Ser2056. High DNA-PK levels predicted for reduced treatment-free interval. CONCLUSIONS: These data validate the concept of targeting DNA-PKcs in poor risk CLL, and demonstrate a mechanistic rationale for use of a DNA-PK inhibitor. The novel observation that DNA-PKcs is overexpressed in del(17p) and del(11q) cases indicates that DNA-PK may contribute to disease progression in CLL.


Asunto(s)
Cromonas/uso terapéutico , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/fisiología , Sistemas de Liberación de Medicamentos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Morfolinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/fisiología , Proteína Quinasa Activada por ADN/metabolismo , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA