Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
Food Res Int ; 169: 112932, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254358

RESUMEN

The increasing exposure of the population to Cannabis sativa has revealed allergies to different parts of the plant, among which hemp seed. Nonetheless, the major hemp seed allergens remain to be identified. Several known families of allergens are present in hemp seed, including notably seed storage proteins. We therefore aimed to investigate the potential allergenicity of the hemp seed storage proteins and their potential cross-reactivity to different seeds and nuts. For this, we extracted hemp seed proteins sequentially using buffers with increasing levels of salinity (H2O, T2 and T3) to yield extracts differentially enriched in storage proteins. We used these extracts to perform immunoblots and ELISAs using sera of patients either sensitized to hemp seeds or sensitized/allergic to other seeds and nuts. Immunoblots and proteomics analyses identified vicilins and edestins as potential hemp seed allergens. Moreover, ELISA analyses revealed a correlation between sensitization to hazelnut and the hemp seed T3 extract (enriched in storage proteins). The possible cross-reactivity between hazelnut and hemp seed proteins was further strengthened by the results from inhibition ELISAs: the incubation of sera from hazelnut-sensitized individuals with increasing concentrations of the T3 extract inhibited serum IgE binding to the hazelnut extract by about 25-30%. Our study thus identifies vicilins and edestins as potential hemp seed allergens and highlights a possible cross-reactivity with hazelnut. The clinical relevance of this cross-reactivity between hemp seed and hazelnut needs to be further investigated in hazelnut-allergic individuals.


Asunto(s)
Cannabis , Corylus , Hipersensibilidad a la Nuez , Humanos , Alérgenos , Antígenos de Plantas , Inmunoglobulina E , Proteínas de Almacenamiento de Semillas , Semillas , Extractos Vegetales
2.
Molecules ; 28(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36838575

RESUMEN

Food allergy is a potentially life-threatening health concern caused by immunoglobulin E (IgE) antibodies that mistakenly recognize normally harmless food proteins as threats. Peanuts and tree nuts contain several seed storage proteins that commonly act as allergens. Glandless cottonseed, lacking the toxic compound gossypol, is a new food source. However, the seed storage proteins in cottonseed may act as allergens. To assess this risk, glandless cottonseed protein extracts were evaluated for IgE binding by peanut and tree nut allergic volunteers. ELISA demonstrated that 25% of 32 samples had significant binding to cottonseed extracts. Immunoblot analysis with pooled sera indicated that IgE recognized a pair of bands migrating at approximately 50 kDa. Excision of these bands and subsequent mass-spectrometric analysis demonstrated peptide matches to cotton C72 and GC72 vicilin and legumin A and B proteins. Further, in silico analysis indicated similarity of the cotton vicilin and legumin proteins to peanut vicilin (Ara h 1) and cashew nut legumin (Ana o 2) IgE-binding epitopes among others. The observations suggest both the cotton vicilin and legumin proteins were recognized by the nut allergic IgE, and they should be considered for future allergen risk assessments evaluating glandless cottonseed protein products.


Asunto(s)
Fabaceae , Hipersensibilidad a los Alimentos , Humanos , Nueces , Arachis/metabolismo , Aceite de Semillas de Algodón , Inmunoglobulina E , Alérgenos/química , Fabaceae/metabolismo , Proteínas de Almacenamiento de Semillas , Proteínas de Plantas/metabolismo , Antígenos de Plantas
3.
Food Chem ; 407: 135178, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36525804

RESUMEN

Lipid binding has been proposed to represent a functional property of many allergenic proteins. This study investigated the formation, characterization, and antigenicity of lecithin-ß-conglycinin complexes. The results indicate that lecithin was combined with ß-conglycinin via static quenching and primarily driven by hydrogen bonds and van der Waals forces. In addition, heat treatment reduced the antigenicity of complexes, as evidenced by changes in molecular weight and secondary and tertiary structures. It revealed that large aggregates developed and more hydrophobic regions were exposed for complexes after heat treatment, as well as a decrease in the ß-sheet contents and an increase in the ß-turn and random coil contents. Furthermore, the average particle size of the complexes increased with increased temperature treatment, and the morphology of the complexes exhibited an amorphous polymer. These findings shedlight on the interaction between lecithin and ß-conglycinin and help us understand the role of lecithin in allergic reactions.


Asunto(s)
Globulinas , Lecitinas , Proteínas de Soja/química , Antígenos de Plantas/química , Proteínas de Almacenamiento de Semillas/química , Globulinas/química
4.
Food Chem ; 398: 133832, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35961170

RESUMEN

The thermal-induced interaction between ß-conglycinin (7S) and cyanidin-3-O-glucoside (C3G) on the bioaccessibility and antioxidant capacity of C3G was investigated. High ratio of 7S to C3G (1:100) led to a more ordered secondary structure of 7S. Thermal treatment promoted the formation of 7S-C3G complexes via hydrophobic and hydrogen bonds but did not induce the formation of 7S-C3G covalent products. Thermal treatment at 65 °C and 121 °C enhanced the binding affinity of 7S-C3G complexes by 46.19 % and 1203 % compared with 25 °C. The 7S-C3G interaction decreased C3G bioaccessibility by 4.37 %, 8.74 %, and 46.37 % at 25 °C, 65 °C, and 121 °C. Diphenylpicrylhydrazyl (DPPH) and ABTS antioxidant capacity assay indicated an antagonistic effect between 7S and C3G. The increased binding affinity of C3G to 7S limited the bioaccessibility of C3G and promoted the antagonism of antioxidant capacity between 7S and C3G. 7S addition was detrimental to the antioxidant capacity and bioaccessibility of C3G in vitro after thermal processing.


Asunto(s)
Antioxidantes , Globulinas , Antocianinas/química , Antígenos de Plantas , Antioxidantes/metabolismo , Globulinas/metabolismo , Glucósidos/química , Proteínas de Almacenamiento de Semillas , Proteínas de Soja
5.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364477

RESUMEN

This study investigated the effect of lactic-acid-bacteria fermentation on the microstructure and gastrointestinal digestibility of soy proteins using a digestomics approach. Fermented soy protein isolates (FSPIs) under varied fermentation-terminal pH demonstrated a colloidal solution (FSPI-7.0/6.0) or yogurt-like curd (FSPI-5.0/4.0) state. Cryo-electron microscopy figures demonstrated the loosely stacked layer of FSPI-7.0/6.0 samples, whereas a denser gel network was observed for FSPI-5.0/4.0 samples. Molecular interactions shifted from dominant ionic bonds to hydrophobic forces and disulfide bonds. The gastric/intestinal digestion demonstrated that the curd samples afforded a significantly low particle size and high-soluble protein and peptide contents in the medium and late digestive phases. A peptidomics study showed that the FSPI-6.0 digestate at early intestinal digestion had a high peptidome abundance, whereas FSPI curd digestates (FSPI-5.0/4.0) elicited a postponed but more extensive promotion during medium and late digestion. Glycinin G2/G4 and ß-conglycinin α/α' subunits were the major subunits promoted by FSPI-curds. The spatial structures of glycinin G2 and ß-conglycinin α subunits demonstrated variations located in seven regions. Glycinin G2 region 6 (A349-K356) and ß-conglycinin α subunit region 7 (E556-E575), which were located at the interior of the 3D structure, were the key regions contributing to discrepancies at the late stage.


Asunto(s)
Globulinas , Lactobacillales , Proteínas de Soja/química , Lactobacillales/metabolismo , Microscopía por Crioelectrón , Globulinas/química , Proteínas de Almacenamiento de Semillas/química , Antígenos de Plantas/química , Suplementos Dietéticos , Tracto Gastrointestinal/metabolismo , Glycine max/metabolismo
6.
Funct Integr Genomics ; 22(6): 1449-1458, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36369301

RESUMEN

Tartary buckwheat is among the valuable crops, utilized as both food and Chinese herbal medicine. To uncover the accumulation dynamics of the main nutrients and their regulatory mechanism of Tartary buckwheat seeds, microscopic observations and nutrient analysis were conducted which suggested that starch, proteins as well as flavonoid gradually accumulated among seed development. Comparative proteomic analysis of rice Tartary buckwheat at three different developmental stages was performed. A total of 78 protein spots showed differential expression with 74 of them being successfully identified by MALDI-TOF/TOF MS. Among them, granule bound starch synthase (GBSS1) might be the critical enzyme that determines starch biosynthesis, while 11 S seed storage protein and vicilin seemed to be the main globulin and affect seed storage protein accumulation in Tartary buckwheat seeds. Two enzymes, flavanone 3-hydroxylase (F3H) and anthocyanidin reductase (ANR), involved in the flavonoid biosynthesis pathway were identified. Further analysis on the expression profiles of flavonoid biosynthetic genes revealed that F3H might be the key enzyme that promote flavonoid accumulation. This study provides insights into the mechanism of nutrition accumulation at the protein level in Tartary buckwheat seeds and may facilitate in the breeding and enhancement of Tartary buckwheat germplasm.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Proteómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Semillas , Proteínas de Almacenamiento de Semillas/genética , Almidón/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296446

RESUMEN

This study explores utilization of a sustainable soybean by-product (okara) based on in silico approach. In silico approaches, as well as the BIOPEP database, PeptideRanker database, Peptide Calculator database (Pepcalc), ToxinPred database, and AllerTop database, were employed to evaluate the potential of glycinin and conglycinin derived peptides as a potential source of bioactive peptides. These major protein precursors have been found as protein in okara as a soybean by-product. Furthermore, primary structure, biological potential, and physicochemical, sensory, and allergenic characteristics of the theoretically released antioxidant peptides were predicted in this research. Glycinin and α subunits of ß-conglycinin were selected as potential precursors of bioactive peptides based on in silico analysis. The most notable among these are antioxidant peptides. First, the potential of protein precursors for releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are several antioxidant bioactive peptides in glycinin and ß and α subunits of ß-conglycinin sequences. Then, an in silico proteolysis using selected enzymes (papain, bromelain) to obtain antioxidant peptides was investigated and then analyzed using PeptideRanker and Pepcalc. Allergenic analysis using the AllerTop revealed that all in silico proteolysis-derived antioxidant peptides are probably nonallergenic peptides. We also performed molecular docking against MPO (myeloperoxidases) for this peptide. Overall, the present study highlights that glycinin and ß and α subunits of ß-conglycinin could be promising precursors of bioactive peptides that have an antioxidant peptide for developing several applications.


Asunto(s)
Globulinas , Glycine max , Glycine max/química , Papaína , Bromelaínas , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Globulinas/metabolismo , Proteínas de Soja/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Antígenos de Plantas/metabolismo , Péptidos , Precursores de Proteínas
8.
J Sci Food Agric ; 102(10): 4025-4034, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34997598

RESUMEN

BACKGROUND: High hydrostatic pressure (HHP) treatment has been used to alleviate the allergenicity of soybeans, but there are little data about the potential antigenicity of ß-conglycinin after HHP treatment. RESULTS: We examined the effects of HHP treatment on the antigenicity and structure of ß-conglycinin. When the pressure was 300 and 400 MPa, HHP treatment reduced the immunoglobulin (Ig)G binding capacity of ß-conglycinin, while its IgE binding capacity did not change significantly. After in vitro digestion, both the IgE and IgG binding of ß-conglycinin was obviously inhibited after HHP treatment at 400 MPa and 60 °C, although its binding capacity with linear epitope antibodies increased. Moreover, HHP treatment changed the secondary structure of ß-conglycinin, the content of α-helix and random coils increased, while the ß-sheet and ß-turn decreased. After HHP treatment, the conformational structure was unfolded so that a large number of hydrophobic regions were exposed. CONCLUSION: HHP treatment alleviated the potential antigenicity of ß-conglycinin by modifying its structure, which facilitated in vitro digestion and destroyed epitopes. This research provides a new insight into the mechanism of HHP treatment that affects the sensitization of soy protein allergens. © 2022 Society of Chemical Industry.


Asunto(s)
Alérgenos , Proteínas de Soja , Antígenos de Plantas , Digestión , Epítopos , Globulinas , Presión Hidrostática , Inmunoglobulina E/química , Proteínas de Almacenamiento de Semillas , Proteínas de Soja/química
9.
Plant Physiol ; 188(1): 111-133, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34618082

RESUMEN

Maize (Zea mays) seeds are a good source of protein, despite being deficient in several essential amino acids. However, eliminating the highly abundant but poorly balanced seed storage proteins has revealed that the regulation of seed amino acids is complex and does not rely on only a handful of proteins. In this study, we used two complementary omics-based approaches to shed light on the genes and biological processes that underlie the regulation of seed amino acid composition. We first conducted a genome-wide association study to identify candidate genes involved in the natural variation of seed protein-bound amino acids. We then used weighted gene correlation network analysis to associate protein expression with seed amino acid composition dynamics during kernel development and maturation. We found that almost half of the proteome was significantly reduced during kernel development and maturation, including several translational machinery components such as ribosomal proteins, which strongly suggests translational reprogramming. The reduction was significantly associated with a decrease in several amino acids, including lysine and methionine, pointing to their role in shaping the seed amino acid composition. When we compared the candidate gene lists generated from both approaches, we found a nonrandom overlap of 80 genes. A functional analysis of these genes showed a tight interconnected cluster dominated by translational machinery genes, especially ribosomal proteins, further supporting the role of translation dynamics in shaping seed amino acid composition. These findings strongly suggest that seed biofortification strategies that target the translation machinery dynamics should be considered and explored further.


Asunto(s)
Aminoácidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Aminoácidos/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Metabolómica , Fenotipo , Semillas/genética
10.
J Investig Allergol Clin Immunol ; 32(5): 375-382, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34085936

RESUMEN

BACKGROUND: Given the increased popularity of flaxseed in meals, several cases of allergy to these seeds have been reported. Little is known about the allergens implicated in hypersensitivity reactions to flaxseed. The present study aimed to identify the allergens involved in IgE-mediated reactions in 5 patients with a clinical history of severe systemic symptoms after flaxseed consumption. METHODS: Proteins that were potential allergens with IgE-binding capacity were purified from flaxseed extract using chromatography and identified via MALDI-TOF mass spectrometry. Immunoassays were performed using the 5 allergic patients' sera tested individually and as a pool. RESULTS: Immunoblotting of the flaxseed extract revealed a low-molecular-mass protein (around 13 kDa) in 4 of the 5 patients, while a protein of approximately 55 kDa was detected in 2 patients. The proteins were identified by mass spectrometry as flaxseed 2S albumin, which is included in the WHO/IUIS allergen nomenclature as Lin u 1, and 11S globulin. Inhibition assays revealed in vitro IgE-mediated cross-reactivity between Lin u 1 and peanut and cashew nut proteins, while IgE-mediated recognition of 11S globulin by patients' sera was partially inhibited by several plant-derived sources. CONCLUSIONS: Seed storage proteins from flaxseed were involved in the development of severe symptoms in the 5 patients studied and exhibited cross-reactivity with other allergenic sources. Besides the severity of flaxseed allergy in patients sensitized to 2S albumin, this is the first time that 11S globulin has been identified as a potential allergen. Taking these data into account should ensure a more accurate diagnosis.


Asunto(s)
Lino , Globulinas , Hipersensibilidad a la Nuez , Proteínas de Nueces , Albúminas , Alérgenos/efectos adversos , Secuencia de Aminoácidos , Antígenos de Plantas , Reacciones Cruzadas , Lino/efectos adversos , Humanos , Inmunoglobulina E/metabolismo , Extractos Vegetales , Proteínas de Plantas/efectos adversos , Proteínas de Almacenamiento de Semillas/metabolismo
11.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884443

RESUMEN

In higher plants, seed storage proteins are deposited in protein storage vacuoles (PSVs) and degraded by protease, especially cysteine proteases, as a source of nitrogen for seed germination. In this study, a cathepsin B-like cysteine protease PtCP5, which is important for seed germination and pollen development, was first cloned in Populus trichocarpa. The GUS staining of the ProPtCP5-GUS reporter line showed that PtCP5 is expressed in the roots, stems, leaves, flowers, siliques and seeds of Arabidopsis. We reveal that PtCP5 is present in plasma membrane and co-localizes with the plasma membrane marker REM1.3. Both seed germination and early seedling development are slower in OX-PtCP5 transgenic Arabidopsis when compared with the wild-type. Further analysis revealed that, when stained with toluidine blue, the observed storage protein accumulation was lower in OX-PtCP5 than in the wild-type. Our results also show that the number of abnormal pollen grains is higher and the germination rate of pollen is lower in OX-PtCP5 than in the wild-type. These results indicate that PtCP5 is an important factor in mobilizing storage proteins and that the proper expression of PtCP5 is necessary for both pollen and seed maturation and germination. This study sheds further light on the biological functions of cysteine proteases and provides further reference for seed development research on woody plants.


Asunto(s)
Proteasas de Cisteína/metabolismo , Populus/crecimiento & desarrollo , Proteínas de Almacenamiento de Semillas/metabolismo , Membrana Celular/metabolismo , Clonación Molecular , Proteasas de Cisteína/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Especificidad de Órganos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Populus/enzimología , Populus/genética
12.
Sci Rep ; 11(1): 17298, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453080

RESUMEN

We investigated the effects of low and high doses of ß-conglycinin and the ameliorative effects of sodium butyrate (based on high-dose ß-conglycinin) on the growth performance, serum immunity, distal intestinal histopathology, and gene, protein expression related to intestinal health in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). The results revealed that the instantaneous growth rate (IGR) of grouper significantly increased, decreased, and increased in the low-dose ß-conglycinin (bL), high-level ß-conglycinin (bH) and high-level ß-conglycinin plus sodium butyrate (bH-NaB), respectively. The feed coefficient ratio (FCR) was significantly increased in the bH and bH-NaB, serum levels of IFN-γ, IL-1ß, and TNF-α were upregulated in the bH. The intestinal diameter/fold height ratio was significantly increased in the bH. Furthermore, there were increases in nitric oxide (NO), total nitric oxide synthase (total NOS), and peroxynitrite anion (ONOO-) in the bH, and decreases in total NOS and ONOO- in the bH-NaB. In the distal intestine, IL-1ß and TGF-ß1 mRNA levels were downregulated and upregulated, respective in the bL. The mRNA levels of TNF-α and IL-6 were upregulated in the bH, and downregulated in the bH-NaB, respectively. Occludin, claudin3 and ZO-3 mRNA levels were upregulated in the bL, downregulated in the bH and then upregulated in the bH-NaB. No significant differences were observed in the mRNA levels of IFN-γ and jam4. And the p-PI3K p85Tyr458/total PI3K p85 value was significantly increased in the bH and then decreased in the bH-NaB, and the total Akt value was significantly increased in the bH. These indicate ß-conglycinin has a regulatory effect on serum immunity and affect distal intestinal development by modulating distal intestinal injury-related parameters. Within the distal intestinal tract, low- and high-dose ß-conglycinin differentially affect immune responses and tight junctions in the distal intestine, which eventually manifests as a reduction in growth performance. Supplementing feed with sodium butyrate might represent an effective approach for enhancing serum immunity, and protects the intestines from damage caused by high-dose ß-conglycinin.


Asunto(s)
Antígenos de Plantas/química , Ácido Butírico/química , Suplementos Dietéticos/análisis , Globulinas/química , Proteínas de Almacenamiento de Semillas/química , Proteínas de Soja/química , Alimentación Animal , Animales , Antígenos de Plantas/metabolismo , Lubina , Ácido Butírico/metabolismo , Claudina-3/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Globulinas/metabolismo , Humanos , Inmunidad Innata , Interleucina-6/genética , Intestinos , ARN Mensajero , Proteínas de Almacenamiento de Semillas/metabolismo , Transducción de Señal , Proteínas de Soja/metabolismo , Factor de Necrosis Tumoral alfa/genética , Proteínas de la Zonula Occludens/genética
13.
Mol Immunol ; 137: 84-93, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242921

RESUMEN

BACKGROUND: Prosopis juliflora is a clinically relevant allergic sensitizer worldwide and shares cross-reactivity with allergens from several tree pollen and food. The present study aims to purify and immunobiochemically characterize a major allergen from Prosopis pollen. The allergen was further investigated for its cross-reactivity with legume allergens. METHODS: Prosopis extract was fractionated by Q Sepharose and Superdex 75 gel filtration column to purify the allergen. Specific IgE against purified protein was estimated via ELISA and immunoblot. The protein was subjected to mass spectrometric analysis. Glycan characterization was performed by Schiff staining and lectin binding assay followed by deglycosylation studies. The functional activity of the purified protein was evaluated by the basophil activation test. Cross-reactivity was assessed by inhibition studies with legume extracts. RESULTS: A 35 kDa protein was purified and showed 75% IgE reactivity with the patients' sera by ELISA and immunoblot. Glycan characterization of protein demonstrated the presence of terminal glucose and mannose residues. A reduction of 40% and 27% in IgE binding was observed upon chemical and enzymatic deglycosylation of the protein, respectively. The glycoprotein allergen upregulates the expression of CD203c on basophils which was significantly reduced upon deglycosylation, signifying its biological ability to activate the effector cells. The identified protein shared significant homology with Lup an 1 from the lupine bean. Immunoblot inhibition studies of the purified allergen with legume extracts underlined high cross-reactive potential. Complete inhibition was observed with peanut and common bean, while up to 70% inhibition was demonstrated with soy, black gram, chickpea, and lima bean. CONCLUSION: A 35 kDa vicilin-like major allergen was isolated from P. juliflora. The protein possesses glycan moieties crucial for IgE binding and basophil activation. Furthermore, the purified protein shows homology with Lup an 1 and exhibits cross-reactivity with common edible legume proteins.


Asunto(s)
Alérgenos/inmunología , Reacciones Cruzadas/inmunología , Fabaceae/inmunología , Prosopis/inmunología , Proteínas de Almacenamiento de Semillas/inmunología , Antígenos de Plantas/inmunología , Arachis/inmunología , Basófilos/inmunología , Femenino , Hipersensibilidad a los Alimentos/inmunología , Humanos , Inmunoglobulina E/inmunología , Masculino , Proteínas de Plantas/inmunología , Polen/inmunología , Pruebas Cutáneas/métodos
14.
Sci Rep ; 11(1): 9209, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911142

RESUMEN

In this work, we sequentially extracted water (CSPw)- and alkali (CSPa)-soluble protein fractions from glandless cottonseed. SDS-Gel electrophoresis separated CSPw and CSPa to 8 and 14 dominant polypeptide bands (110-10 kDa), respectively. Liquid chromatography-electrospray ionization-tandem mass spectrometry identified peptide fragments from 336 proteins. While the majority of peptides were identified as belonging to vicilin and legumin storage proteins, peptides from other functional and uncharacterized proteins were also detected. Based on the types (unique peptide count) and relative abundance (normalized total ion current) of the polypeptides detected by mass spectrometry, we found lower levels (abundance) and types of legumin isoforms, but higher levels and more fragments of vicilin-like antimicrobial peptides in glandless samples, compared to glanded samples. Differences in peptide fragment patterns of 2S albumin and oleosin were also observed between glandless and glanded protein samples. These differences might be due to the higher extraction recovery of proteins from glandless cottonseed as proteins from glanded cottonseed tend to be associated with gossypol, reducing extraction efficiency. This work enriches the fundamental knowledge of glandless cottonseed protein composition. For practical considerations, this peptide information will be helpful to allow better understanding of the functional and physicochemical properties of glandless cottonseed protein, and improving the potential for food or feed applications.


Asunto(s)
Aceite de Semillas de Algodón/aislamiento & purificación , Aceite de Semillas de Algodón/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/metabolismo , Aceite de Semillas de Algodón/química , Proteínas de Plantas/análisis , Proteínas de Almacenamiento de Semillas/análisis , Semillas/química , Leguminas
15.
Sci Rep ; 11(1): 1261, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441976

RESUMEN

ß-Conglycinin (ß-CG), an anti-nutritional factor, is a major allergen in soybeans to induce intestinal dysfunction and diarrhea in neonatal animals, including piglets and human infants. This study with a piglet model determined the effects of N-acetylcysteine (NAC) on intestinal function and autophagy in response to ß-CG challenge. Twenty-four 12-day-old piglets (3.44 ± 0.28 kg), which had been weaned at 7 days of age and adapted for 5 days after weaning, were randomly allocated to the control, ß-CG, and ß-CG + NAC groups. Piglets in the control group were fed a liquid diet containing 10% casein, whereas those in the ß-CG and ß-CG + NAC groups were fed the basal liquid diets containing 9.5% casein and 0.5% ß-CG for 2 days. Thereafter, pigs in the ß-CG + NAC group were orally administrated with 50 mg (kg BW)-1 NAC for 3 days, while pigs in the other two groups were orally administrated with the same volume of sterile saline. NAC numerically reduced diarrhea incidence (- 46.2%) and the concentrations of hydrogen peroxide and malondialdehyde, but increased claudin-1 and intestinal fatty-acid binding protein (iFABP) protein abundances and activities of catalase and glutathione peroxidase in the jejunum of ß-CG-challenged piglets. Although ß-CG challenge decreased the villus height, villus height/crypt depth ratio, and mRNA levels of claudin-1 and occludin, no significant differences were observed in these indices between the control and ß-CG + NAC groups, suggesting the positive effects of NAC supplementation on intestinal mucosal barrier function. Moreover, NAC increased the concentrations of citrulline and D-xylose in the plasma, as well as the expression of genes for aquaporin (AQP) 3, AQP4, peptide transporter 1 (PepT1), sodium/glucose co-transporter-1 (SGLT-1), potassium inwardly-rectifying channel, subfamily J, member 13 (KCNJ13), and solute carrier family 1 member 1 (SLC1A1) in the jejunum, demonstrating that NAC augmented intestinal metabolic activity and absorptive function. Remarkably, NAC decreased Atg5 protein abundance and the LC3II/LC3I ratio (an indicator of autophagy) in the jejunum of ß-CG-challenged piglets. Taken together, NAC supplementation improved intestinal function and attenuated intestinal autophagy in ß-CG-challenged piglets.


Asunto(s)
Acetilcisteína/farmacología , Alérgenos/toxicidad , Antígenos de Plantas/toxicidad , Autofagia/efectos de los fármacos , Globulinas/toxicidad , Mucosa Intestinal/metabolismo , Proteínas de Almacenamiento de Semillas/toxicidad , Proteínas de Soja/toxicidad , Porcinos/metabolismo , Animales , Animales Recién Nacidos , Femenino , Mucosa Intestinal/patología
16.
Food Chem ; 346: 128962, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33418407

RESUMEN

In this study, the effects of heat treatment on antigenicity, antigen epitopes, and structural changes in ß-conglycinin were investigated. Results showed that the IgG (Immunoglobulin G) binding capacity of heated protein was inhibited with increased temperature, although IgE (Immunoglobulin E) binding capacity increased. Linear antigen epitopes generally remained intact during heat treatment. After heat treatment, ß-conglycinin was more easily hydrolyzed by digestive enzymes, and a large number of linear epitopes was destroyed. In addition, heat denaturation of ß-conglycinin led to the formation of protein aggregates and reduction of disulfide bonds. The contents of random coils and ß-sheet of heated ß-conglycinin decreased, but the contents of ß-turn and α-helix increased. Moreover, the protein structure of heated ß-conglycinin unfolded, more hydrophobic regions were exposed, and the tertiary structure of ß-conglycinin was destroyed. Heat treatment affected the antigenicity and potential sensitization of ß-conglycinin by changing its structure.


Asunto(s)
Antígenos de Plantas/inmunología , Epítopos/inmunología , Globulinas/inmunología , Proteínas de Almacenamiento de Semillas/inmunología , Proteínas de Soja/inmunología , Reacciones Antígeno-Anticuerpo , Antígenos de Plantas/química , Antígenos de Plantas/metabolismo , Digestión , Epítopos/química , Globulinas/química , Globulinas/metabolismo , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Desplegamiento Proteico , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier
17.
Mol Immunol ; 131: 33-43, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486354

RESUMEN

Coconut pollen has been documented to be a major contributor to the aeroallergen load in India, causing respiratory allergy in a large cohort of susceptible individuals. Here, we report the identification of the first major allergen from Coconut pollen, Coc n 1. The full-length sequence of the allergen was determined from previously identified peptides and overexpressed in E. coli. Recombinant Coc n 1 folded into a trimer and was found to possess allergenicity equivalent to its natural counterpart. Proteolytic processing of Coc n 1 led to the formation of an immunodominant ∼20 kDa C-terminal subunit and the site of cleavage was determined by amino acid microsequencing. Five linear IgE binding epitopes were predicted and mapped on the homology modelled structure of Coc n 1. Amongst three immunodominant epitopes, two were present towards the C-terminal end. Coc n 1 was found to belong to the highly diverse cupin superfamily and mimics its structure with known 7S globulin or vicilin allergens but lacks sequence similarity. Using sequence similarity networks, Coc n 1 clustered as a separate group containing unannotated cupin domain proteins and did not include known vicilin allergens except Gly m Bd 28 kDa, a Soybean major allergen. 7S globulins are major storage proteins and food allergens, but presence of such protein in pollen grains is reported for the first time. Further study on Coc n 1 may provide insights into its function in pollen grains and also in the development of immunotherapy to Coconut pollen allergy.


Asunto(s)
Alérgenos/inmunología , Antígenos de Plantas/inmunología , Cocos/inmunología , Polen/inmunología , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular/métodos , Epítopos/inmunología , Hipersensibilidad a los Alimentos/inmunología , Globulinas/inmunología , Humanos , Inmunoglobulina E/inmunología , India , Proteínas de Plantas/inmunología , Proteínas de Almacenamiento de Semillas/inmunología
18.
Nutrients ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35011066

RESUMEN

BACKGROUND: Dyslipidaemias, particularly elevated plasma low-density lipoprotein cholesterol (LDL-C) levels, are major risk factors for cardiovascular disease (CVD). Besides pharmacological approaches, a nutritional strategy for CVD prevention has gained increasing attention. Among functional foods, the hypocholesterolemic properties of soy are driven by a stimulation of LDL-receptor (LDL-R) activity. AIM: To characterize the effect of two soy peptides, namely, ß-conglycinin-derived YVVNPDNDEN and YVVNPDNNEN on the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key-regulators of the LDL-R. METHODS: PCSK9 promoter activity (luciferase assay), PCSK9 protein expression (WB) and secretion (ELISA), PCSK9 interaction with LDL-R (binding assay) and human HepG2 cells were the objects of this investigation. RESULTS: Treatment with YVVNPDNNEN peptide has led to a rise in PCSK9 gene expression (90.8%) and transcriptional activity (86.4%), and to a decrement in PCSK9 intracellular and secreted protein (-42.9%) levels. YVVNPDNNEN peptide reduced the protein expression of transcriptional factor HNF1α. Most changes driven by YVVNPDNDEN peptide were not statistically significant. Neither peptide inhibited the PCSK9-LDLR interaction. CONCLUSIONS: Although sharing a common effect on LDL-R levels through the inhibition of 3-hydroxy-3-methylglutaryl CoA reductase activity, only the YVVNPDNNEN peptide has an additional mechanism via the downregulation of PCSK9 protein levels.


Asunto(s)
Antígenos de Plantas/química , Expresión Génica/efectos de los fármacos , Globulinas/química , Péptidos/farmacología , Proproteína Convertasa 9/genética , Receptores de LDL/efectos de los fármacos , Proteínas de Almacenamiento de Semillas/química , Proteínas de Soja/química , Secuencia de Aminoácidos , Supervivencia Celular/efectos de los fármacos , Suplementos Dietéticos , Células Hep G2 , Factor Nuclear 1-alfa del Hepatocito/análisis , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Péptidos/química , Regiones Promotoras Genéticas/genética , Proproteína Convertasa 9/análisis , Proproteína Convertasa 9/metabolismo , Receptores de LDL/fisiología
19.
Biomed Pharmacother ; 133: 110969, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33166762

RESUMEN

Constituents of lupin seeds, like γ-conglutin and lupanine, have gained attention as potential complementary treatments for dysglycaemia management. Notwithstanding, the effect of other lupin components on carbohydrate metabolism, including ß-conglutin protein, has received little attention. Here, we investigated the influence of the acute and chronic administration of ß-conglutin on glycaemia modulation in normal and streptozotocin induced-to-diabetes rats. We analysed the liver transcriptome modulation exerted by ß-conglutin in diabetes-induced rats using DNA microarrays to scout for potential molecular targets and pathways involved in this biological response. The acute administration of ß-conglutin reduced the incremental area under the curve of glycaemia in normal and diabetes-induced animals. In a seven-day study with diabetic animals, glycaemia increased significantly in non-treated animals but remained unchanged in animals treated with a daily dose of ß-conglutin. Total cholesterol was significantly lower at the end of the experimental period (-21.8 %, p = 0.039). The microarray and gene ontology analyses revealed several targets and pathways potentially modulated by ß-conglutin treatment, including a possible down-regulation of Jun kinase activity. Moreover, our data indicate that targets related to oxidative stress, inflammation, and estrogenic activity might orchestrate these metabolic effects. In conclusion, our findings show that ß-conglutin may help manage postprandial glycaemia and reduce cholesterol levels under the dysglycaemia stage. We identified and proposed new potential molecular targets for further research related to the mechanism of action of ß-conglutin.


Asunto(s)
Anticolesterolemiantes/farmacología , Glucemia/efectos de los fármacos , Colesterol/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hígado/efectos de los fármacos , Lupinus , Extractos Vegetales/farmacología , Proteínas de Plantas/farmacología , Proteínas de Almacenamiento de Semillas/farmacología , Transcriptoma/efectos de los fármacos , Animales , Anticolesterolemiantes/aislamiento & purificación , Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Redes Reguladoras de Genes , Hipoglucemiantes/aislamiento & purificación , Hígado/metabolismo , Lupinus/química , Masculino , Extractos Vegetales/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Ratas Wistar , Estreptozocina
20.
J Anim Sci ; 98(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32927480

RESUMEN

Two experiments were conducted to determine the effects of protease supplementation on degradation of soybean meal (SBM) allergenic proteins (glycinin and ß-conglycinin) and gut health of weaned pigs fed soybean meal-based diets. In experiment 1, 2 SBM samples from 2 different sources were subjected to porcine in vitro gastric degradation to determine the effects of protease (at 15,000 U/kg of feedstuff) on degradation of the soybean allergenic proteins. In experiment 2, 48 weaned pigs (body weight = 6.66 kg) were obtained in 2 batches of 24 pigs each. Pigs were individually housed in metabolic crates and fed 4 diets (12 pigs/diet). The diets were corn-based diet with SBM 1 or SBM 2 without or with protease at 15,000 U/kg of diet in 2 × 2 factorial arrangement. Diets were fed for 10 d and pigs were sacrificed on day 10 for measurement of small intestinal histomorphology, permeability of small intestine mounted in Ussing chambers, and serum concentration of pro-inflammatory cytokines. Two SBM sources (SBM 1 and SBM 2) contained 46.9% or 47.7% CP, 14.0% or 14.6% glycinin, and 9.90% or 10.3% ß-conglycinin, respectively. Protease and SBM source did not interact on any of the response criteria measured in the current study. Protease supplementation tended to increase (P = 0.069) the in vitro gastric degradation of glycinin. Protease supplementation tended to reduce (P = 0.099) fluorescein isothiocyanate dextran 4,000 Da (which is a marker probe for intestinal permeability) flow in jejunum, and reduced (P = 0.037) serum TNF-α concentration. Protease did not affect small intestinal histomorphology. In conclusion, protease tended to increase gastric degradation of glycinin and reduce gut permeability, and serum concentration of pro-inflammatory cytokines, indicating that the protease used in the current study can be added to SBM-based diets for weanling pigs to improve gut health.


Asunto(s)
Alérgenos/farmacología , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal , Péptido Hidrolasas/administración & dosificación , Porcinos/fisiología , Alérgenos/metabolismo , Alimentación Animal/análisis , Animales , Antígenos de Plantas , Peso Corporal , Dieta/veterinaria , Digestión/fisiología , Femenino , Globulinas , Masculino , Proteolisis , Proteínas de Almacenamiento de Semillas , Proteínas de Soja/metabolismo , Glycine max/metabolismo , Enfermedades de los Porcinos , Destete , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA