Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomed Pharmacother ; 171: 116107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215692

RESUMEN

Recent studies have shown that the combined use of renin angiotensin system inhibitor, SGLT2 inhibitors and/or mineralocorticoid receptor antagonist provides additional renal protection for patients with diabetic kidney disease (DKD). Similarly, in traditional Chinese medicine, the synergistic application of multiple herbs often brings more significant therapeutic effects. However, the synergistic or additive mechanisms of traditional Chinese medicine in combination therapy are not fully understood. In our previous studies, we show that arctigenin (ATG), a major component of Fructus Arctii, attenuates proteinuria and renal injury in diabetic mice by activating PP2A, and puerarin (a class of known isoflavones) can also reduce proteinuria and renal injury in diabetic mice via activation of Sirt1. Here, we further explored the potential additive renal protection of these two compounds in diabetic mice. Research has found that ATG and puerarin have a synergistic effect in reducing albuminuria in db/db mice. Mechanistically, we found that ATG reduced NF-κB p65 phosphorylation likely through activation of PP2A while puerarin reduced p65 acetylation via Sirt1 activation. Therefore, ATG and puerarin have additive inhibitory effects on the NF-κB activation, which is a key inflammatory pathway in DKD. RNA-sequencing analysis revealed distinct pathways activated by ATG and puerarin in the diabetic kidney, which may provide an additional mechanism for their additive effects in DKD. Our study suggests that ATG and puerarin could be a new combination therapy for DKD and reveals its underlined mechanisms.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Furanos , Isoflavonas , Lignanos , Humanos , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Sirtuina 1/metabolismo , FN-kappa B/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Riñón , Isoflavonas/farmacología , Proteinuria/metabolismo
2.
J Ethnopharmacol ; 321: 117520, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042389

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Proteinuria is recognized as a risk factor for the exacerbation of chronic kidney disease. Modified Huangqi Chifeng decoction (MHCD) has distinct advantages in reducing proteinuria. Our previous experimental results have shown that MHCD can inhibit excessive autophagy. However, the specific mechanism by which MHCD regulates autophagy needs to be further explored. AIM OF THE STUDY: In this study, in vivo and in vitro experiments were conducted to further clarify the protective mechanism of MHCD on the kidney and podocytes by regulating autophagy based on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK)/mTOR signaling pathways. MATERIALS AND METHODS: By a single injection via the tail vein, Sprague-Dawley rats received Adriamycin (5 mg/kg) to establish a model of proteinuria nephropathy. They were divided into control, model, MHCD, 3-methyladenine (3 MA), 3 MA + MHCD, and telmisartan groups and were administered continuously for 6 weeks. The MHCD-containing serum was prepared, and a model of podocyte injury induced by Adriamycin (0.2 µg/mL) was established. RESULTS: MHCD reduced the 24-h urine protein levels and relieved pathological kidney damage. During autophagy in the kidneys of rats with Adriamycin-induced nephropathy, the PI3K/AKT/mTOR signaling pathway is inhibited, while the AMPK/mTOR signaling pathway is activated. MHCD antagonized these effects, thereby inhibiting excessive autophagy. MHCD alleviated Adriamycin-induced podocyte autophagy, as demonstrated using Pik3r1 siRNA and an overexpression plasmid for Prkaa1/Prkaa2. Furthermore, MHCD could activate the PI3K/AKT/mTOR signaling pathway while suppressing the AMPK/mTOR signaling pathway. CONCLUSIONS: This study demonstrated that MHCD can activate the interaction between the PI3K/AKT/mTOR and the AMPK/mTOR signaling pathways to maintain autophagy balance, inhibit excessive autophagy, and play a role in protecting the kidneys and podocytes.


Asunto(s)
Enfermedades Renales , Podocitos , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Proteinuria/inducido químicamente , Proteinuria/tratamiento farmacológico , Proteinuria/metabolismo , Autofagia , Doxorrubicina/farmacología , Mamíferos/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069178

RESUMEN

We have previously shown that an excess of deoxycorticosterone acetate and high sodium chloride intake (DOCA/salt) in one-renin gene mice induces a high urinary Na/K ratio, hypokalemia, and cardiac and renal hypertrophy in the absence of hypertension. Dietary potassium supplementation prevents DOCA/salt-induced pathological processes. In the present study, we further study whether DOCA/salt-treated mice progressively develop chronic inflammation and fibrosis in the kidney and whether dietary potassium supplementation can reduce the DOCA/salt-induced renal pathological process. Results showed that (1) long-term DOCA/salt-treated one-renin gene mice developed severe kidney injuries including tubular/vascular hypertrophy, mesangial/interstitial/perivascular fibrosis, inflammation (lymphocyte's immigration), proteinuria, and high serum creatinine in the absence of hypertension; (2) there were over-expressed mRNAs of plasminogen activator inhibitor-1 (PAI-1), fibronectin, collagen type I and III, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP1), transforming growth factor-ß (TGF-ß), tumor necrosis factor-alpha (TNF-α), osteopontin, Nuclear factor kappa B (NF-κB)/P65, and intercellular adhesion molecule (ICAM)-1; and (3) dietary potassium supplementation normalized urinary Na/K ratio, hypokalemia, proteinuria, and serum creatinine, reduced renal hypertrophy, inflammations, and fibrosis, and down-regulated mRNA expression of fibronectin, Col-I and III, TGF-ß, TNF-α, osteopontin, and ICAM without changes in the blood pressure. The results provide new evidence that potassium and sodium may modulate proinflammatory and fibrotic genes, leading to chronic renal lesions independent of blood pressure.


Asunto(s)
Acetato de Desoxicorticosterona , Glomerulonefritis , Hipertensión , Hipopotasemia , Ratones , Animales , Presión Sanguínea , Cloruro de Sodio/metabolismo , Fibronectinas/metabolismo , Osteopontina/metabolismo , Potasio en la Dieta/metabolismo , Acetato de Desoxicorticosterona/efectos adversos , Cloruros/metabolismo , Renina/metabolismo , Hipopotasemia/patología , Factor de Necrosis Tumoral alfa/metabolismo , Creatinina/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Cloruro de Sodio Dietético/metabolismo , Glomerulonefritis/patología , Inflamación/metabolismo , Suplementos Dietéticos , Factor de Crecimiento Transformador beta/metabolismo , Proteinuria/metabolismo , Hipertrofia/metabolismo , Fibrosis , Acetatos/metabolismo
4.
J Ethnopharmacol ; 309: 116284, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36828195

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps is a parasitic edible fungus, which is a unique Chinese medicinal material. It has been reported to have immunomodulatory effects and use in kidney disease. Especially, Cordyceps has been used in the treatment of lupus nephritis (LN). AIM OF STUDY: Cordyceps proteins (CP) have a favorable bidirectional immunomodulatory functions and may have therapeutic potential for LN. However, the underlying molecular mechanism remains unknown. So this study aimed to examine the activities of CP in LN and possible mechanism. MATERIALS AND METHODS: So proteomics was performed to detect proteins components of Cordyceps, and analysis it. In addition, MRL/lpr mice were used to study the progression of LN. The MRL/lpr mice were fed either CP (i.g, 0.5, 1.0, 1.5 g/kg/d), prednisolone acetate (PA, i.g, 6 mg/kg/d), or Bailing capsule (BC, i.g, 0.75 g/kg/d) for 8 weeks. Hematoxylin-eosin (H&E), Periodic Acid Schif (PAS) and Masson's stainings, Immunofluorescence, and Immunohistochemistry were performed to verify the therapeutic effect of CP on MRL/lpr mice. The mechanism by CP alimerated LN was uncovered by Western blotting (WB) and Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) methods. RESULTS: Our results revealed that CP blocked proteinuria production and renal inflammatory infiltratation in MRL/lpr mice to reduce the renal fibrosis. In addition, CP worked better than BC which is artificial Cordyceps fungus powder in regulating proteinuria to urine creatinine ratio and interleukin-4(IL-4) protein amount. Especially, CP modulated the STAT3/mTOR/NF-кB signaling pathway in LN mice and brought a more pronounced lowering effect on the contents of IL-6 and IL-1ß than the PA. CONCLUSION: CP could be a potential anti-inflammatory immune product with strong regulatory effects and potency than BC and PA in nephritis therapeutics.


Asunto(s)
Cordyceps , Enfermedades Renales , Nefritis Lúpica , Animales , Ratones , Nefritis Lúpica/tratamiento farmacológico , FN-kappa B/metabolismo , Riñón , Ratones Endogámicos MRL lpr , Transducción de Señal , Proteinuria/tratamiento farmacológico , Proteinuria/metabolismo , Enfermedades Renales/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769045

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease and remains without specific treatment. To identify new events during FSGS progression, we used an experimental model of FSGS associated with nephroangiosclerosis in rats injected with L-NAME (Nω-nitro-L-arginine methyl ester). After transcriptomic analysis we focused our study on the role of Isthmin-1 (ISM1, an anti-angiogenic protein involved in endothelial cell apoptosis. We studied the renal expression of ISM1 in L-NAME rats and other models of proteinuria, particularly at the glomerular level. In the L-NAME model, withdrawal of the stimulus partially restored basal ISM1 levels, along with an improvement in renal function. In other four animal models of proteinuria, ISM1 was overexpressed and localized in podocytes while the renal function was degraded. Together these facts suggest that the glomerular expression of ISM1 correlates directly with the progression-recovery of the disease. Further in vitro experiments demonstrated that ISM1 co-localized with its receptors GRP78 and integrin αvß5 on podocytes. Treatment of human podocytes with low doses of recombinant ISM1 decreased cell viability and induced caspase activation. Stronger ISM1 stimuli in podocytes dropped mitochondrial membrane potential and induced nuclear translocation of apoptosis-inducing factor (AIF). Our results suggest that ISM1 participates in the progression of glomerular diseases and promotes podocyte apoptosis in two different complementary ways: one caspase-dependent and one caspase-independent associated with mitochondrial destabilization.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Animales , Humanos , Ratas , Inhibidores de la Angiogénesis/uso terapéutico , Caspasas/metabolismo , Modelos Animales de Enfermedad , Glomeruloesclerosis Focal y Segmentaria/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo
6.
J Ethnopharmacol ; 306: 116150, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36608778

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huangkui capsule (HKC), a Chinese patent medicine, has been widely used in China as adjuvant therapy for chronic kidney disease (CKD). It displays superior anti-proteinuria efficacy than losartan in patients with CKD at stages 1-2, however, the mechanism of HKC alleviating proteinuria has not been well elucidated. AIM OF THE STUDY: This study aims to confirm the therapeutic effect and investigate associated underlying mechanism of HKC against proteinuria by in vivo and in vitro experiments. MATERIALS AND METHODS: We established a doxorubicin (DOX) induced proteinuria mouse model to evaluate kidney function by biochemical markers measurement and to observe histopathological alterations by hematoxylin and eosin (H&E), Masson's trichrome and Periodic Acid-Schiff (PAS)-stained sections of renal, respectively. Moreover, the expressions of Nephrin and Podocin were measured by immunohistochemistry (IHC) and western blotting analysis to investigate podocyte damage. Furthermore, we established Mouse Podocyte Clone-5 (MPC-5) injury model to identify the active components of HKC against podocyte damage by detecting the expressions of Nephrin, Podocin, and ZO-1 proteins. At last, the key protein levels of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway were assessed by western blotting analysis to explore the underlying mechanism of HKC against proteinuria. RESULTS: Our results showed that HKC administration for three consecutive weeks dose-dependently ameliorated both renal function and histopathological damages, elevated the expressions of Nephrin and Podocin, the pivotal molecules maintaining filtration function of the podocyte, indicating the promising protective effect against podocyte injury under DOX exposure. Consistently, in vitro experiments showed HKC administration effectively reversed the abnormal expressions of Nephrin and Podocin in MPC-5 cells treated with DOX, suggesting its protective effect against podocyte injury to maintain filtration barrier integrity. In addition, Hibifolin was identified as the most active ingredients in HKC, which suppressed upstream JAK2/STAT3 and PI3K/Akt pathway phosphorylation to maintain the structural and functional integrity of podocyte filtration barrier. Of note, AG490, a selective JAK2 inhibitor, was used to further affirm the role of Hibifolin involving in regulation JAK2/STAT3. CONCLUSIONS: Our study suggested that HKC may protect podocytes via JAK2/STAT3 and PI3K/Akt pathway to display its effects of ameliorating proteinuria.


Asunto(s)
Podocitos , Insuficiencia Renal Crónica , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Quinasas Janus/metabolismo , Transducción de Señal , Proteinuria/metabolismo , Doxorrubicina/farmacología , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/metabolismo
7.
Pediatr Nephrol ; 38(4): 1381-1385, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36112210

RESUMEN

BACKGROUND: Cubilin is one of the receptor proteins responsible for reabsorption of albumin in proximal tubules and is encoded by the CUBN gene. We aimed to evaluate clinical and genetic characterization of six patients with proteinuria who had CUBN mutations. METHODS: Patients' characteristics, serum creatinine, albumin, vitamin B12 levels, urine analysis, spot urine protein/creatinine, microalbumin/creatinine, beta-2 microglobulin/creatinine ratios, estimated glomerular filtration rates (eGFR), treatments, kidney biopsies, and genetic analyses were evaluated. RESULTS: Six patients (2 female, 4 male) with an incidental finding of proteinuria were evaluated. Mean admission age and follow-up time were 7.3 ± 2.9 and 6.5 ± 5.6 years, respectively. Serum albumin, creatinine, and eGFR were normal; urine analysis revealed no hematuria, and C3, C4, ANA, and anti-DNA were negative; kidney ultrasonography was normal for all patients. Urine protein/creatinine was 0.9 ± 0.3 mg/mg, and microalbumin was high in all patients. Serum vitamin B12 was low in two patients and normal in four. Kidney biopsy was performed in four patients, three demonstrated normal light microscopy, and there was one focal segmental glomerulosclerosis (FSGS). Genetic tests revealed four homozygous and two compound heterozygous mutations in the C-terminal part of cubilin. All patients had normal eGFR and still had non-nephrotic range proteinuria at last visit. CONCLUSIONS: CUBN gene mutations should be considered in patients with isolated non-nephrotic range proteinuria and normal kidney function. Diagnosing these patients, who are thought to have a better prognosis, is important in terms of avoiding unnecessary treatment and predicting prognosis. CUBN gene mutations may also present as FSGS which extends the spectrum of renal manifestation of these patients. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Humanos , Masculino , Niño , Femenino , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/patología , Creatinina , Proteinuria/diagnóstico , Proteinuria/genética , Proteinuria/metabolismo , Receptores de Superficie Celular/genética , Albúminas , Vitaminas
8.
Sci Rep ; 12(1): 8351, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589738

RESUMEN

Oxidative stress plays a role in hyperoxaluria-induced kidney injury and crystallization. Bee pollen is a hive product with a high content of antioxidants. The antioxidant content and protective effect of bee pollen extract (BPE) against ethylene glycol (EG) induced crystalluria, and acute kidney injury (AKI) were investigated. The effect of BPE on the EG-induced liver injury and proteinuria was also examined. Ten groups of male Wister rats were treated daily with vehicle, cystone, BPE (100, 250, and 500 mg/kg b.wt.), and group 6-9 treated with EG, EG + BPE (100, 250, and 500 mg/kg b.wt.) and group 10 EG + cystone. The dose of EG was 0.75% v/v, and the dose of cystone was 500 mg/kg b.wt. On day 30, blood and urine samples were collected for analysis. Kidneys were removed for histopathological study. The antioxidant activity of BPE was assessed, and its total phenols and flavonoids were determined. EG significantly increased urine parameters (pH, volume, calcium, phosphorus, uric acid, and protein), blood urea, creatinine, and liver enzymes (P < 0.05). EG decreased creatinine clearance and urine magnesium and caused crystalluria. Treatment with BPE or cystone mitigates EG's effect; BPE was more potent than cystone (P < 0.05). BPE increases urine volume, sodium, and magnesium compared to the control and EG treated groups. BPE reduces proteinuria and prevents AKI, crystalluria, liver injury, and histopathological changes in the kidney tissue caused by EG. BPE might have a protective effect against EG-induced AKI, crystalluria, proteinuria, and stone deposition, most likely by its antioxidant content and activity.


Asunto(s)
Lesión Renal Aguda , Glicol de Etileno , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Animales , Antioxidantes/metabolismo , Abejas , Creatinina/metabolismo , Ingestión de Alimentos , Glicol de Etileno/toxicidad , Riñón/metabolismo , Magnesio/metabolismo , Masculino , Polen , Proteinuria/metabolismo , Ratas , Ratas Wistar
9.
Chin J Nat Med ; 20(3): 177-184, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35369961

RESUMEN

Nephrotic syndrome (NS) is a kidney disease characterized by hypertriglyceridemia, massive proteinuria, hypo-albuminemia and peripheral edema. Sinkihwan-gamibang (SKHGMB) was recorded in a traditional Chinese medical book named "Bangyakhappyeon ()" and its three prescriptions Sinkihwan, Geumgwe-sinkihwan, and Jesaeng-sinkihwan belong to Gamibang. This study confirmed the effect of SKHGMB on renal dysfunction in an NS model induced by puromycin aminonucleoside (PAN). The experimental NS model was induced in male Sprague Dawley (SD) rats through injection of PAN (50 mg·kg-1)via the femoral vein. SKHGMB not only reduced the size of the kidneys increased due to PAN-induced NS, but also decreased proteinuria and ascites. In addition, SKHGMB significantly ameliorated creatinine clearance, creatinine, and blood urea nitrogen. SKHGMB relieved glomeruli dilation and tubules fibrosis in the glomeruli of the NS model. SKHGMB inhibited the protein and mRNA levels of the NLRP3 inflammasome including NLRP3, ASC, and pro-caspase-1 in NS rats. SKHGMB reduced the protein and mRNA levels of fibrosis regulators in NS rats. The results indicated that SKHGMB exerts protective effects against renal dysfunction by inhibiting of renal inflammation and fibrosis in NS rats.


Asunto(s)
Síndrome Nefrótico , Puromicina Aminonucleósido , Animales , Riñón , Masculino , Síndrome Nefrótico/inducido químicamente , Síndrome Nefrótico/tratamiento farmacológico , Proteinuria/inducido químicamente , Proteinuria/metabolismo , Puromicina Aminonucleósido/metabolismo , Puromicina Aminonucleósido/toxicidad , Ratas , Ratas Sprague-Dawley
10.
Physiol Rep ; 9(17): e15019, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34472715

RESUMEN

Vascular endothelial cells are covered with glycocalyx comprising heparan sulfate, hyaluronan, chondroitin sulfate, and associated proteins. Glomerular endothelial glycocalyx is involved in protecting against induction of proteinuria and structural damage, but the specific components in glycocalyx that represent therapeutic targets remain unclear. Anti-vascular endothelial growth factor (VEGF) therapy is associated with an increased risk of glomerular endothelial injury. This study investigated whether hyaluronan could provide a therapeutic target to protect against proteinuria. We conducted ex vivo and in vivo experiments to explore the effects of degrading glomerular hyaluronan by administering hyaluronidase and of supplementation with hyaluronan. We investigated hyaluronan expression using biotin-labeled hyaluronan-binding protein (HABP) in human kidney specimens or serum hyaluronan in endothelial injuries under inhibition of VEGF signaling. We directly demonstrated hyaluronan in glomerular endothelial layers using HABP staining. Ex vivo and in vivo experiments showed the development of proteinuria after digestion of hyaluronan in glomerular capillaries. Supplementation with hyaluronan after hyaluronidase treatment suppressed proteinuria. Mice in the in vivo study developed albuminuria after intraperitoneal injection of hyaluronidase with decreased glomerular hyaluronan and increased serum hyaluronan. In human kidneys with endothelial cell dysfunction and proteinuria due to inhibition of VEGF, glomerular expression of hyaluronan was reduced even in normal-appearing glomeruli. Serum hyaluronan levels were elevated in patients with pre-eclampsia with VEGF signaling inhibition. Our data suggest that hyaluronan itself plays crucial roles in preventing proteinuria and preserving the integrity of endothelial cells. Hyaluronan could provide a therapeutic target for preventing glomerular endothelial glycocalyx damage, including VEGF signaling inhibition.


Asunto(s)
Células Endoteliales/metabolismo , Glicocálix/metabolismo , Ácido Hialurónico/biosíntesis , Glomérulos Renales/metabolismo , Proteinuria/metabolismo , Animales , Bovinos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Femenino , Glicocálix/efectos de los fármacos , Glicocálix/patología , Humanos , Hialuronoglucosaminidasa/administración & dosificación , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Embarazo , Proteinuria/patología , Ratas , Ratas Endogámicas Lew
11.
Biomed Pharmacother ; 142: 111907, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34339916

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqi Guizhi Wuwu Decoction(HQGZWWD) is a Traditional Chinese Medicine formula from Synopsis of Golden Chamber used to treat blood arthralgia. According to the principle that the same treatment can be used for different diseases, HQGZWWD has proven effective for IgA nephropathy (IgAN) associated with spleen and kidney yang deficiency. AIM OF THE STUDY: In this study, we investigated the mechanism by which HQGZWWD alleviates proteinuria and protects renal function in rats with IgAN by regulating the AT1R/Nephrin/c-Abl pathway. METHODS: Rats were randomly divided into six groups: control, IgAN model, IgAN model treated with low-dose HQGZWWD, IgAN model treated with medium-dose HQGZWWD, IgAN model treated with high-dose HQGZWWD, and IgAN model treated with valsartan. IgAN was induced using bovine γ-globulin. We evaluated the mediating effects of HQGZWWD on podocyte cytoskeletal proteins, the AT1R/Nephrin/c-Abl pathway, upstream tumor necrosis factor-α (TNF-α), and TNF-α receptor-1 (TNFR1). RESULTS: The IgAN rats displayed proteinuria, IgA deposition in the mesangial region, and podocyte cytoskeletal protein damage. The expression of TNF-α, TNFR1, AT1R, and c-Abl was increased in the IgAN rat kidney, whereas the expression of nephrin, podocin, ACTN4, and phosphorylated nephrin (p-nephrin) was reduced. HQGZWWD treatment significantly alleviated podocyte cytoskeletal protein damage in the IgAN rats, upregulated the expression of nephrin, podocin, and ACTN4, and the colocalized expression of F-actin and nephrin. This study demonstrates that HQGZWWD attenuates podocyte cytoskeletal protein damage by regulating the AT1R-nephrin- c-Abl pathway, upregulating the expression of p-nephrin, and downregulating the expression of AT1R and c-Abl. CONCLUSIONS: These results indicate that HQGZWWD attenuates podocyte cytoskeletal protein damage in IgAN rats by regulating the AT1R/Nephrin/c-Abl pathway, providing a potential therapeutic approach for IgAN.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Medicamentos Herbarios Chinos/farmacología , Glomerulonefritis por IGA/tratamiento farmacológico , Proteínas de la Membrana/metabolismo , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Glomerulonefritis por IGA/metabolismo , Glomerulonefritis por IGA/patología , Glomerulonefritis por IGA/fisiopatología , Inmunoglobulina A/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/genética , Podocitos/efectos de los fármacos , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico , Proteinuria/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
12.
J Diabetes Res ; 2020: 7907605, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33294462

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes and is the leading cause of end-stage renal disease (ESRD) and replacement therapy worldwide. Vitamin D levels in DN patients are very low due to the decrease in the synthesis and activity of 1-α hydroxylase in the proximal tubule cells and decrease in the vitamin D receptor abundance. To date, few studies have shown the antioxidant effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on hyperglycemia-induced renal injury. The selective activator of the vitamin D receptor, paricalcitol, reduces proteinuria and slows the progression of kidney injury. The precise mechanism through which vitamin D affects diabetic status and provides kidney protection remains to be determined. METHODS: Diabetes mellitus (DM) was induced in 94 8-week-old DBA/2J mice by intraperitoneal injection of streptozotocin (STZ). DM mice were randomly divided into receiving vehicle or treatment with paricalcitol, the active vitamin D analog, 1 week after DM induction or paricalcitol treatment 3 weeks after DM induction. An additional control group of healthy wild-type mice was not treated. Urine albumin, blood urea nitrogen, and creatinine levels were measured before and at the end of the paricalcitol treatment. Periodic acid-Schiff, immunohistochemistry staining, and western blot of the renal tissues of vitamin D receptor, villin, nephrin, and podocin expressions, were analyzed. RESULTS: Paricalcitol treatment restored villin, nephrin, and podocin protein levels that were downregulated upon DM induction, and reduced fibronectin protein level. Vitamin D receptor activation by paricalcitol may reduce proteinuria of DN in mice and alleviate high-glucose-induced injury of kidney podocytes by regulating the key molecules such nephrin-podocin. CONCLUSIONS: Paricalcitol treatment was associated with improved structural changes in type 1 diabetic mice including upregulation of vitamin D receptor expression, and decreased fibrosis markers such as fibronectin. These effects may contribute to the consistent benefit of vitamin D analog to slow the deterioration in glomerular function and reduce the risk of ESRD in patients with type 1 and 2 diabetes mellitus. Our results suggest that additional use of paricalcitol may be beneficial in treating patients with diabetes under standard therapeutic strategies.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Ergocalciferoles/farmacología , Riñón/efectos de los fármacos , Proteinuria/prevención & control , Receptores de Calcitriol/agonistas , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Fibronectinas/metabolismo , Fibrosis , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos DBA , Proteinuria/etiología , Proteinuria/metabolismo , Proteinuria/patología , Receptores de Calcitriol/metabolismo , Estreptozocina
13.
Nefrologia (Engl Ed) ; 40(2): 171-179, 2020.
Artículo en Inglés, Español | MEDLINE | ID: mdl-31740151

RESUMEN

BACKWARD: Cardiovascular events are the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). Inflammation and mineral-bone disorder are pathological conditions that have been associated with an increased cardiovascular risk. OBJECTIVE: Show paricalcitol regulation overinflammatory, fibrotic and mineral disorder parameters in CKD. MATERIAL AND METHODS: Prospective Study in 46 CKD stages III-V patients without dialysis patients whith elevated parathormone in which we introduced paricalcitol. We evaluated classic and newest mineral and bone metabolism serum parameters (calcium, phosphorus, parathormone, fibroblast growth factor-23 [FGF-23], Klotho, calcidiol), inflammatory-fibrosis and anticalcifying parameters (interleukin-6 and 10, tumor necrosis factor-a [TNF- α], transforming growth factor-b [TGF-ß],bone morphogenic protein-7 [BMP-7] and fetuin-A) for four months. RESULTS: At the end of study soluble Klotho increased (p=.001), FGF-23 remained stable, calcium and phosphorus levels were not increased, calcidiol increased (p=.010) and PTH decreased (p=.002). Inflammation-fibrosis and calcification parameters showed positive regulation after paricalcitol treatment: interleukin-6 decreased significantly (p=.001) and also TNF-α did (p=.005), on the contrary, interleukin-10 and fetuin-A increased (p=.001 for both). Anti-fibrosis marker BMP-7 increased (p=.001) and TGF-b decreased (p=.001). We did not find significant changes in renal function. CONCLUSIONS: Paricalcitol treatment might be profitable in regulating inflammatory and anticalcificant parameters, unmodified calcium or phosphorus seric levels and preserving kidney function in renal patients with no dialysis. Our selected parameters could indicate paricalcitol effects in mineral and endothelial disorder related to renal disease.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Ergocalciferoles/uso terapéutico , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/tratamiento farmacológico , Anciano , Proteína Morfogenética Ósea 7/sangre , Calcifediol/sangre , Calcio/sangre , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Tasa de Filtración Glomerular , Glucuronidasa/sangre , Humanos , Interleucina-10/sangre , Interleucina-6/sangre , Proteínas Klotho , Masculino , Hormona Paratiroidea/sangre , Fósforo/sangre , Estudios Prospectivos , Proteinuria/metabolismo , Insuficiencia Renal Crónica/complicaciones , Factor de Crecimiento Transformador beta/sangre , Factor de Necrosis Tumoral alfa/sangre , Calcificación Vascular/etiología , Calcificación Vascular/prevención & control , alfa-2-Glicoproteína-HS/análisis
14.
J Ethnopharmacol ; 244: 112104, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31394178

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: ShenYanXiaoBai granules is a traditional Chinese herbal medicine, It is used widely for the treatment of proteinuria caused by various kidney diseases. AIM OF THE STUDY: This study investigated the mechanism of Shenyan Xiaobai Granule in the treatment of nephritis proteinuria. MATERIALS AND METHODS: 100 male wistar rats were divided into a blank group (n = 20) and a nephropathy group (n = 80) using random number table after 1 week adaptive feeded. Rats were injected with adriamycin (6.5 mg/kg) via the tail vein to induce nephropathy except for blank group. Every rat's urine protein was checked with urine protein dipstick test after three days that showed all rats in nephropathy group were successful modelled. Nephropathy group was divided into model group, benazepril group, ShenYanXiaoBai low dose group, ShenYanXiaoBai high dose group equally. Blank and model group were given distilled water 2 ml as control, then benazepril group received benazepril 0.90 mg/kg, ShenYanXiaoBai low dose group received ShenYanXiaoBai granules 1.80 g/kg as high dose group was given 3.60 g/kg, gavage for 6 days a week last for seven weeks. Urinary albumin/urinary creatinine were measured in seventh day every week. Three rats were randomly selected from each group to be executed in 3th and 5th weekend to detect the mRNA and protein expression level in kidney. The rest rats were as well. CONCLUSIONS: The therapeutic effect of ShenYanXiaoBai high dose group was better than the two other treated groups from the 5th week to the 7th week, the comparison had a significant difference. The therapeutic effect of benazepril group was better than the ShenYanXiaoBai low dose group in the 7 weeks and the comparison had a significant difference.


Asunto(s)
Enfermedades Renales/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Proteinuria/tratamiento farmacológico , Animales , Creatinina/orina , Doxorrubicina , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Riñón/ultraestructura , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Pruebas de Función Renal , Masculino , Medicina Tradicional China , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Podocitos/efectos de los fármacos , Podocitos/patología , Sustancias Protectoras/farmacología , Proteinuria/inducido químicamente , Proteinuria/metabolismo , Proteinuria/patología , Distribución Aleatoria , Ratas Wistar
15.
BMC Complement Altern Med ; 19(1): 193, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31362740

RESUMEN

BACKGROUND: Wenshen Jianpi recipe (WSJPR), a blended traditional Chinese medicine, is considered to have the possible beneficial effect on the progression of diabetic nephropathy (DN). This present study was designed to elucidate this protective activity in a rat model with streptozotocin (STZ)-induced DN and to explore the possible underlying mechanism. METHODS: Adult Sprague Dawley (SD) rats were induced to develop DN through intraperitoneal injection of STZ (60 mg/kg). Animals were orally administered saline, WSJPR at 7.5, 15, 30 g/kg, and valsartan (25 mg/kg) daily for 8 weeks. Blood and 24-h urine samples of each rat were collected for biochemical examination at 2-week intervals. Microcirculatory blood flow in the renal cortex and hemorheology index were also measured. At the end of 8 weeks, all rats were sacrificed to obtain the kidney tissues for histological examination and reverse transcription polymerase chain reaction (RT-PCR) was used to analyze the transcriptional levels of nephrin and podocin genes. RESULTS: WSJPR could improve serum total protein (TP) and albumin (ALB), reduce the excretion rates of urine-TP (U-TP), urine-ALB (U-ALB) and urine urea nitrogen (UUN) (P < 0.05), although it did not significantly alter the hyperglycemia. In addition, treatment with WSJPR could strongly reduce blood flow, erythrocyte aggregation index, and ameliorate microcirculation. In histological measurement, WSJPR-treated rats showed a significant amelioration in glomerular hypertrophy and mesangial expansion. By RT-PCR, we found WSJPR up-regulated the nephrin and podocin expression at mRNA levels. CONCLUSION: This study suggested that WSJPR could effectively relieve renal damage and improve renal function of DN rats by ameliorating metabolism disorder and increasing the gene expression of nephrin and podocin, which might be a useful approach for the treatment of DN.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Proteinuria/tratamiento farmacológico , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/efectos de los fármacos , Riñón/lesiones , Riñón/metabolismo , Masculino , Medicina Tradicional China , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteinuria/genética , Proteinuria/metabolismo , Ratas , Ratas Sprague-Dawley
16.
J Ethnopharmacol ; 243: 112078, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31301369

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rhododendron molle G. Don (Ericaceae) (RM) is a natural medicinal plant. Its root extracts have been applied in clinic and proved to be effective in chronic glomerulonephritis and rheumatoid arthritis in China. Surprising, little is understood about the key compound of RM and the exact mechanisms underlying its treatment on kidney diseases. In this study, we will explore whether rhodojaponin II (R-II), as the important compound of RM, also exerts the major effect. MATERIALS AND METHODS: Mouse model of focal segmental glomerulosclerosis was induced by single dose of adriamycin injection. Induced adriamycin nephropathy (ADRN) mice were treated individually with RM root extract (5 mg/kg, n = 5), RM root extract (60 mg/kg, n = 5), R-II (0.04 mg/kg, n = 6) or captopril (30 mg/kg, n = 5) for five weeks. Podocyte marker (nephrin and podocin) expressions were examined by immunohistochemical staining and Western Blot analysis. Fibronectin level was evaluated by immunohistochemical staining and Western Blot analysis. Interstitial infiltrated inflammatory cells (CD4+ T cells, CD8+ T cells, and CD68+ macrophages) were examined with immunohistochemical staining. The expressions of NF-ĸB p-p65 and TGF-ß1/Smad pathway associated key proteins, such as TGF-ß1, Smad3, phosphorylated-Smad3 (p-Smad3), and Smad7, were analyzed respectively by Western Blot analysis. RESULTS: RM root extract (5 mg/kg) and its important compound R-II (0.04 mg/kg) significantly ameliorated proteinuria, podocyte injury, and glomerulosclerosis, meanwhile, they hampered interstitial fibrosis in mice with ADRN. R-II significantly reduced NF-ĸB p65 phosphorylation, interstitial infiltrated CD4+ T cells, CD8+ T cells, and CD68+ macrophages, at the same time, down-regulated TGF-ß1 and p-Smad3 protein expressions in mice with ADRN. CONCLUSION: RM root extract, R-II, could effectively ameliorate proteinuria and kidney injury in ADRN, related to its anti-inflammatory effects, as well as suppression of TGF-ß1/Smad signaling pathway.


Asunto(s)
Antiinflamatorios , Diterpenos , Glomeruloesclerosis Focal y Segmentaria , Extractos Vegetales , Proteinuria , Rhododendron , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Diterpenos/farmacología , Diterpenos/uso terapéutico , Doxorrubicina , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Ratones Endogámicos BALB C , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Raíces de Plantas , Proteinuria/inducido químicamente , Proteinuria/tratamiento farmacológico , Proteinuria/metabolismo , Proteinuria/patología , Transducción de Señal/efectos de los fármacos
17.
J Diabetes Res ; 2019: 2981705, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31179339

RESUMEN

Diabetic nephropathy (DN) is a serious kidney-related complication of type 1 and type 2 diabetes. The Chinese herbal formula Baoshenfang (BSF) shows therapeutic potential in attenuating oxidative stress and apoptosis in podocytes in DN. This study evaluated the effects of BSF on podocyte injury in vivo and in vitro and explored the possible involvement of the nicotinamide adenine dinucleotide phosphate-oxidase-4/reactive oxygen species- (NOX-4/ROS-) activated p38 pathway. In the identified compounds by mass spectrometry, some active constituents of BSF were reported to show antioxidative activity. In addition, we found that BSF significantly decreased 24-hour urinary protein, serum creatinine, and blood urea nitrogen in DN patients. BSF treatment increased the nephrin expression, alleviated oxidative cellular damage, and inhibited Bcl-2 family-associated podocyte apoptosis in high-glucose cultured podocytes and/or in diabetic rats. More importantly, BSF also decreased phospho-p38, while high glucose-mediated apoptosis was blocked by p38 mitogen-activated protein kinase inhibitor in cultured podocytes, indicating that the antiapoptotic effect of BSF is p38 pathway-dependent. High glucose-induced upexpression of NOX-4 was normalized by BSF, and NOX-4 siRNAs inhibited the phosphorylation of p38, suggesting that the activated p38 pathway is at least partially mediated by NOX-4. In conclusion, BSF can decrease proteinuria and protect podocytes from injury in DN, in part through inhibiting the NOX-4/ROS/p38 pathway.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , NADPH Oxidasa 4/metabolismo , Podocitos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Anciano , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Femenino , Humanos , Riñón/metabolismo , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Podocitos/citología , Proteinuria/metabolismo , Ratas , Ratas Sprague-Dawley , Método Simple Ciego
18.
Eur J Pharmacol ; 858: 172342, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31129156

RESUMEN

Danshen (Salvia miltiorrhiza) and prednisone are extensively applied in the treatment of kidney disease. Salvianolic acid A (SAA), the major biologically active component of Danshen, which has various biological effects. Our previous findings have demonstrated the renoprotective effect of SAA in various kidney disease rodent models. Here, we explore the therapeutic potential and possible mechanisms of SAA in combination with low-dose prednisone in adriamycin (ADR)-induced minimal change disease (MCD) rat model and mouse podocyte injury cell model. SAA was injected via tail vein at 10 mg/kg/day and prednisone at 5 mg/kg/day via gavage. Each drug was administered daily alone or in combination for 3 weeks. Combination therapy showed significant therapeutic efficacy as manifested by relieved urinary proteins, improved blood biochemical indicators including serum total protein, albumin, triglyceride, cholesterol, the indices of renal function i.e. blood urea nitrogen and serum creatinine levels, and ameliorated pathological lesions. Particularly, co-administration showed a significant anti-proteinuria effect in MCD rats. Further studies suggested that co-administration effectively ameliorated the podocyte injury as indicated by the reduction of podocyte foot processes fusion, up-regulation of synaptopodin and down-regulation of desmin. These beneficial effects are accompanied by activation of the Nrf2/HO-1 and PPARγ/Angptl4 pathways in vivo, and the effect of SAA on PPARγ/Angptl4 is also demonstrated in vitro. These findings suggested that SAA exerted podocyte-protection against MCD injury through PPARγ/Angptl4 and Nrf2/HO-1 pathways, and combined with low-dose prednisone possessed a significant anti-proteinuria and therapeutic effects in MCD rats.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/metabolismo , Ácidos Cafeicos/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Lactatos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma/metabolismo , Prednisona/farmacología , Proteinuria/tratamiento farmacológico , Animales , Ácidos Cafeicos/uso terapéutico , Interacciones Farmacológicas , Lactatos/uso terapéutico , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Podocitos/efectos de los fármacos , Podocitos/patología , Prednisona/uso terapéutico , Proteinuria/metabolismo , Proteinuria/patología , Ratas
19.
J Cell Mol Med ; 23(6): 4443-4453, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30993911

RESUMEN

Salidroside is a major phenylethanoid glycoside in Rhodiola rosea L., a traditional Chinese medicine, with multiple biological activities. It has been shown that salidroside possesses protective effects for alleviating diabetic renal dysfunction, contrast-induced-nephropathy and other kidney diseases. However, the involved molecular mechanism was still not understood well. Herein, we examined the protective effects of salidroside in mice with Adriamycin (ADR)-induced nephropathy and the underlying molecular mechanism. The results showed that salidroside treatment ameliorates proteinuria; improves expressions of nephrin and podocin; and reduces kidney fibrosis and glomerulosclerosis induced by ADR. Mechanistically, ADR induces a robust accumulation of ß-catenin in the nucleus and stimulates its downstream target gene expression. The application of salidroside largely abolishes the nuclear translocation of ß-catenin and thus inhibits its activity. Furthermore, the activation of ß-catenin almost completely counteracts the protective roles of salidroside in ADR-injured podocytes. Taken together, our data indicate that salidroside ameliorates proteinuria, renal fibrosis and podocyte injury in ADR nephropathy, which may rely on inhibition of ß-catenin signalling pathway.


Asunto(s)
Doxorrubicina/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Glucósidos/farmacología , Enfermedades Renales/prevención & control , Fenoles/farmacología , Proteinuria/prevención & control , beta Catenina/antagonistas & inhibidores , Animales , Antibióticos Antineoplásicos/toxicidad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Podocitos/citología , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Proteinuria/etiología , Proteinuria/metabolismo , Proteinuria/patología , Transducción de Señal
20.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(2): 227-234, 2019 02 28.
Artículo en Chino | MEDLINE | ID: mdl-30890513

RESUMEN

OBJECTIVE: To identify the main active components in Shenbing decoction Ⅲ and their targets and explore the mechanism by which Shenbing decoction Ⅲ alleviates proteinuria in chronic kidney disease (CKD) based on network pharmacology. METHODS: The active components of Shenbing decoction Ⅲ and their potential targets, along with the oral bioavailability and drug-like properties of each component were searched in the TCMSP database. The proteinuria-related targets were searched in the GeneCards database. The active component-target network was constructed using Cytoscape software, and the acquired information of the targets from ClueGO was used for enrichment analysis of the gene pathways. RESULTS: A total of 102 active components were identified from Shenbing decoction Ⅲ. These active components acted on 126 targets, among which 69 were related to proteinuria. Enrichment analysis revealed fluid shear stress- and atherosclerosisrelated pathways as the highly significant pathways in proteinuria associated with CKD. CONCLUSIONS: We preliminarily validated the prescription of Shenbing decoction Ⅲ and obtained scientific evidence that supported its use for treatment of proteinuria in CKD. The findings in this study provide a theoretical basis for further study of the mechanism of Shenbing decoction Ⅲ in the treatment of proteinuria in CKD.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Proteinuria/tratamiento farmacológico , Insuficiencia Renal Crónica/complicaciones , Disponibilidad Biológica , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Humanos , Proteinuria/etiología , Proteinuria/metabolismo , Insuficiencia Renal Crónica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA