Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.120
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Biomolecules ; 14(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540781

RESUMEN

The low efficiency of in vivo transfection of a few fibres revealed a novel tissue network that temporally amplified growth stimulation in the entire regenerating rat soleus muscle. This acupuncture-like effect was demonstrated when the fibres began to grow after complete fibre degradation, synchronous inflammation, myoblast and myotube formation. Neonatal sarcoplasmic/endoplasmic reticulum ATPase (SERCA1b) was first detected in this system. The neonatal, fast and slow SERCA isoforms displayed consequent changes with innervation and differentiation, recapitulating events in muscle development. In vivo transfection of myotubes with plasmids expressing dominant negative Ras or a calcineurin inhibitor peptide (Cain/cabin) proved that expression of the slow myosin heavy chain and the slow muscle type SERCA2a are differentially regulated. In vivo transfection of a few nuclei of myotubes with dnRas or SERCA1b shRNA stimulated fibre size growth in the whole regenerating muscle but only until the full size had been reached. Growth stimulation by Ras and SERCA1b antisense was abolished by co-transfection of Cain or with perimuscular injection of IL4 antibody. This revealed a novel signalling network resembling scale-free networks which, starting from transfected fibre myonuclei as "hubs", can amplify growth stimulation uniformly in the entire regenerating muscle.


Asunto(s)
Terapia por Acupuntura , Músculo Esquelético , Ratas , Animales , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transfección
2.
RNA Biol ; 21(1): 1-6, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38411163

RESUMEN

The current letter to the editor describes the presence of RNA byproducts in small-scale in vitro transcription (IVT) reactions as evaluated by capillary gel electrophoresis, asymmetric flow field flow fractionation, immunoblotting, cell-free translation assays, and in IFN reporter cells. We compare standard T7 RNA polymerase (RNAP) based IVT reactions to two recently described protocols employing either urea supplementation or using the VSW3 RNAP. Our results indicate that urea supplementation yields considerably less RNA byproducts and positively affects the overall number of full-length transcripts. In contrast, VSW3 IVT reactions demonstrated a low yield and generated a higher fraction of truncated transcripts. Lastly, both urea mRNA and VSW3 mRNA elicited considerably less IFN responses after transfection in mouse macrophages.


Asunto(s)
ARN , Transcripción Genética , Animales , Ratones , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Mensajero/genética , Transfección , Suplementos Dietéticos
3.
Biomed Mater ; 19(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290150

RESUMEN

Glucocorticoid and Mineralocorticoid receptors are principally ligand-dependent intracellular transcription factors that are known to influence the development and growth of many human cancers. Our study investigates the potential of these receptors to act as a target for oral cancer treatment since findings in this regard are sparse till date. Leveraging the aberrant behavior of steroid hormone receptors (SHRs) in cancer, we have targeted oral cancer cells in 2D-culture using liposomes containing both synthetic as well as crude, natural SHR ligands isolated from an aqueous Indian medicinal plant. Lipoplexes thus formulated demonstrated targeted transfectability as indicated by expression of green fluorescent protein. Transfection of oral squamous cell carcinoma cells with exogenous, anticancer gene p53 lipoplexed with crude saponin-based liposome induced apoptosis of cancer cells via regulation of BAX and B-cell leukemia/lymphoma-2 (BCL2) protein levels at levels comparable with pre-established delivery systems based on synthetic SHR ligands. Our findings strongly indicate a possibility of developing plant saponin-based inexpensive delivery systems which would target cancer cells selectively with reduced risks of off target delivery and its side effects.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Saponinas , Humanos , Neoplasias de la Boca/terapia , Transfección , Liposomas , Hormonas , Esteroides
4.
Methods Mol Biol ; 2575: 153-179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36301475

RESUMEN

Plants possess a plethora of important secondary metabolites, which are unique sources of natural pigments, pharmaceutical compounds, food additives, natural pesticides, and other industrial components. The commercial significance of such metabolites/compounds has directed the research toward their production and exploration of methods for enhancement of production. Biotechnological tools are critical in selecting, integrating, multiplying, improving, and analyzing medicinal plants for secondary metabolite production. Out of many techniques that are being explored to enhance secondary metabolite production, "plant cell transfection" is the latest tool to achieve maximum output from the plant source. It is based upon the introduction of foreign DNA into the plant cell relying on physical treatment such as electroporation, cell squeezing, sonoporation, optical transfection nanoparticles, magnetofection, and chemical treatment or biological treatment that depends upon carrier. One of the promising tools that have been exploited is CRISPR-Cas9. Overall, the abovementioned tools focus on the stable transfection of desired gene transcripts. Since the integration and continuous expression of transfected gene of particular trait represents stable transfection of host cell genome, resulting from transfer of required trait to daughter cells ultimately leading to enhanced production of secondary metabolites of interest. This chapter will review a set of biotechnological tools that are candidates for achieving the enhanced bioactive compound production indicated here to be used for drug discovery.


Asunto(s)
Células Vegetales , Plantas Medicinales , Transfección , Plantas Medicinales/metabolismo , Biotecnología , Electroporación
5.
Planta ; 256(1): 14, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35713718

RESUMEN

MAIN CONCLUSION: An efficient method of DNA-free gene-editing in potato protoplasts was developed using linearized DNA fragments, UBIQUITIN10 promoters of several plant species, kanamycin selection, and transient overexpression of the BABYBOOM transcription factor. Plant protoplasts represent a reliable experimental system for the genetic manipulation of desired traits using gene editing. Nevertheless, the selection and regeneration of mutated protoplasts are challenging and subsequent recovery of successfully edited plants is a significant bottleneck in advanced plant breeding technologies. In an effort to alleviate the obstacles related to protoplasts' transgene expression and protoplasts' regeneration, a new method was developed. In so doing, it was shown that linearized DNA could efficiently transfect potato protoplasts and that UBIQUITIN10 promoters from various plants could direct transgene expression in an effective manner. Also, the inhibitory concentration of kanamycin was standardized for transfected protoplasts, and the NEOMYCIN PHOSPHOTRANSFERASE2 (NPT2) gene could be used as a potent selection marker for the enrichment of transfected protoplasts. Furthermore, transient expression of the BABYBOOM (BBM) transcription factor promoted the regeneration of protoplast-derived calli. Together, these methods significantly increased the selection for protoplasts that displayed high transgene expression, and thereby significantly increased the rate of gene editing events in protoplast-derived calli to 95%. The method developed in this study facilitated gene-editing in tetraploid potato plants and opened the way to sophisticated genetic manipulation in polyploid organisms.


Asunto(s)
Edición Génica , Solanum tuberosum , Sistemas CRISPR-Cas/genética , ADN/metabolismo , Edición Génica/métodos , Genoma de Planta , Kanamicina/metabolismo , Fitomejoramiento/métodos , Protoplastos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tetraploidía , Factores de Transcripción/genética , Transfección
6.
Phytomedicine ; 100: 154064, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35344715

RESUMEN

BACKGROUND: Nobiletin is a polymethoxylated flavone from citrus fruit peels. Among other bioactivities, it acts antioxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective. Nobiletin exerts profound anticancer activity in vitro and in vivo but the underlying mechanisms are not well understood. PURPOSE: The aim was to unravel the multiple modes of action against cancer cells by bioinformatic and transcriptomic techniques and their verification by molecular pharmacological methods. METHODS: The in silico methods used were COMPARE analysis of transcriptomic data, signaling pathway analysis, transcription factor binding motif analysis in promoter sequences of target genes, and molecular docking. The in vitro methods used were resazurin assay, isobologram analysis, generation of stably SOX5-tranfected cells, and Western blotting. RESULTS: Nobiletin was cytotoxic against a wide range of cell lines from different tumor types, including diverse phenotypes to established anticancer drugs (e.g., P-glycoprotein, ABCB5, p53, EGFR). Cross-resistance profiling with 83 standard anticancer drugs revealed a correlation to antihormonal anticancer drugs, which can be explained by the phytoestrogenic features of nobiletin. Transcriptomic analysis showed that the responsiveness of tumor cells was predictable by their specific mRNA expression profile. Nobiletin bound to the transcription factor SOX5 in silico. SOX5 conferred resistance to the control drug doxorubicin but collateral sensitivity to nobiletin in HEK293 cells transfected with a lentiviral GFP-tagged pLOCORF-SOX5 vector. The combination of nobiletin and doxorubicin synergistically killed HEK293-SOX5 cells in isobologram analyses, implying attractive new treatment options. CONCLUSION: Nobiletin represents an interesting candidate for cancer therapy with broad-spectrum activity and multiple modes of action. The identification of novel targets (i.e., SOX5) may allow its use for targeted tumor therapy in individualized treatment protocols.


Asunto(s)
Flavonas , Neoplasias , Línea Celular Tumoral , Doxorrubicina/farmacología , Flavonas/farmacología , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Factores de Transcripción SOXD , Factores de Transcripción , Transcriptoma , Transfección
7.
Oxid Med Cell Longev ; 2022: 4299892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186186

RESUMEN

Sick sinus syndrome (SSS), a complex type of cardiac arrhythmia, is a major health threat to humans. Shenfu injection (SFI), a formula of traditional Chinese medicine (TCM), is effective in improving bradyarrhythmia. However, the underlying mechanism of SFI's therapeutic effect is subject to few systematic investigations. The purpose of the present research is to examine whether SFI can boost the differentiation effectiveness of bone marrow mesenchymal stem cells (BMSCs) into pacemaker-like cells and whether the transplantation of these cells can improve the pacing function of the sinoatrial node (SAN) in a rabbit model of SSS. BMSCs from New Zealand rabbits were extracted, followed by incubation in vitro. The flow cytometry was utilized to identify the expression of CD29, CD44, CD90, and CD105 surface markers. The isolated BMSCs were treated with SFI, and the whole-cell patch-clamp method was performed to detect hyperpolarization-the activated cyclic nucleotide-gated potassium channel 4 (HCN4) channel current activation curve. The SSS rabbit model was established using the formaldehyde wet dressing method, and BMSCs treated with SFI were transplanted into the SAN of the SSS rabbit model. We detected changes in the body-surface electrocardiogram and recorded dynamic heart rate measurements. Furthermore, transplanted SFI-treated BMSCs were subjected to HE staining, TUNEL staining, qPCR, western blotting, immunofluorescence, immunohistochemistry, and enzyme-linked immunosorbent assay to study their characteristics. Our results indicate that the transplantation of SFI-treated BMSCs into the SAN of SSS rabbits improved the pacing function of the SAN. In vitro data showed that SFI induced the proliferation of BMSCs, promoted their differentiation capacity into pacemaker-like cells, and increased the HCN4 expression in BMSCs. In vivo, the transplantation of SFI treated-BMSCs preserved the function of SAN in SSS rabbits, improved the expression of the HCN4 gene and gap junction proteins (Cx43 and Cx45), and significantly upregulated the expression of cAMP in the SAN, compared to the SSS model group. In summary, the present research demonstrated that SFI might enhance the differentiation capacity of BMSCs into pacemaker-like cells, hence offering a novel approach for the development of biological pacemakers. Additionally, we confirmed the effectiveness and safety of pacemaker-like cells differentiated from BMSCs in improving the pacing function of the SAN.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Células Madre Mesenquimatosas/efectos de los fármacos , Síndrome del Seno Enfermo/tratamiento farmacológico , Nodo Sinoatrial/efectos de los fármacos , Animales , Diferenciación Celular , Medicamentos Herbarios Chinos/farmacología , Femenino , Humanos , Masculino , Conejos , Transfección
8.
Oxid Med Cell Longev ; 2022: 7530102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35132352

RESUMEN

PURPOSE: Our study is aimed at investigating the mechanism by which electroacupuncture (EA) promoted nerve regeneration by regulating the release of exosomes and exosome-mediated miRNA-21 (miR-21) transmission. Furthermore, the effects of Schwann cells- (SC-) derived exosomes on the overexpression of miR-21 for the treatment of PNI were investigated. METHODS: A sciatic nerve injury model of rat was constructed, and the expression of miR-21 in serum exosomes and damaged local nerves was detected using RT-qPCR after EA treatment. The exosomes were identified under a transmission electron microscope and using western blotting analysis. Then, the exosome release inhibitor, GW4869, and the miR-21-5p-sponge used for the knockdown of miR-21 were used to clarify the effects of exosomal miR-21 on nerve regeneration promoted by EA. The nerve conduction velocity recovery rate, sciatic nerve function index, and wet weight ratio of gastrocnemius muscle were determined to evaluate sciatic nerve function recovery. SC proliferation and the level of neurotrophic factors were assessed using immunofluorescence staining, and the expression levels of SPRY2 and miR-21 were detected using RT-qPCR analysis. Subsequently, the transmission of exosomal miR-21 from SC to the axon was verified in vitro. Finally, the exosomes derived from the SC infected with the miR-21 overexpression lentivirus were collected and used to treat the rat SNI model to explore the therapeutic role of SC-derived exosomes overexpressing miR-21. RESULTS: We found that EA inhibited the release of serum exosomal miR-21 in a PNI model of rats during the early stage of PNI, while it promoted its release during later stages. EA enhanced the accumulation of miR-21 in the injured nerve and effectively promoted the recovery of nerve function after PNI. The treatment effect of EA was attenuated when the release of circulating exosomes was inhibited or when miR-21 was downregulated in local injury tissue via the miR-21-5p-sponge. Normal exosomes secreted by SC exhibited the ability to promote the recovery of nerve function, while the overexpression of miR-21 enhanced the effects of the exosomes. In addition, exosomal miR-21 secreted by SC could promote neurite outgrowth in vitro. CONCLUSION: Our results demonstrated the mechanism of EA on PNI from the perspective of exosome-mediated miR-21 transport and provided a theoretical basis for the use of exosomal miR-21 as a novel strategy for the treatment of PNI.


Asunto(s)
Electroacupuntura/métodos , Exosomas/metabolismo , MicroARNs/genética , Traumatismos de los Nervios Periféricos/sangre , Traumatismos de los Nervios Periféricos/terapia , Recuperación de la Función/genética , Nervio Ciático/lesiones , Transducción de Señal/genética , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Línea Celular Transformada , Modelos Animales de Enfermedad , Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Masculino , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Wistar , Recuperación de la Función/efectos de los fármacos , Células de Schwann/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección
9.
J Exp Clin Cancer Res ; 41(1): 17, 2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34998399

RESUMEN

BACKGROUND: Dysregulation of RNA binding protein (RBP) expression has been confirmed to be causally linked with tumorigenesis. The detailed biological effect and underlying mechanisms of the RBP GRSF1 in hepatocellular carcinoma (HCC) remain unclear. METHODS: HCC cells with stable knockdown of GRSF1 were established using two sh-RNA-encoding lentiviruses. The functions of GRSF1 in HCC were explored using MTT, colony formation, flow cytometry, and Transwell assays and a xenograft model. Transcriptomic sequencing in GRSF1-deficient MHCC-97H cells was carried out to identify the downstream effector of GRSF1. The regulatory mechanisms among GRSF1, YY1 and miR-30e-5p were investigated via RNA immunoprecipitation, luciferase, RNA pull-down and ChIP assays. Several in vivo assays were used to assess the selectivity of the small-molecule compound VE-821 in HCC and to confirm the absence of general toxicity in animal models. RESULTS: GRSF1 was frequently increased in HCC tissue and cells and was associated with worse clinical outcomes. GRSF1 functions as a novel oncogenic RBP by enhancing YY1 mRNA stability, and the GUUU motifs within the YY1 3`UTR 2663-2847 were the specific binding motifs for GRSF1. YY1 feedback promoted GRSF1 expression by binding to the GRSF1 promoter. In addition, YY1 was a critical target of miR-30e-5p, which was confirmed in this study to inhibit HCC hepatocarcinogenesis. GRSF1 and miR-30e-5p competitively regulated YY1 by binding to its 3`UTR 2663-2847 region. Finally, we identified that VE-821 blocked HCC progression by inhibiting the GRSF1/YY1 pathway. CONCLUSION: This study revealed the interaction network among GRSF1, YY1 and miR-30e-5p, providing new insight into HCC pathogenesis, and indicated that VE821 may serve as a novel agent with potential for HCC treatment through inhibition of the GRSF1/YY1 axis.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción YY1/metabolismo , Animales , Apoptosis , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Proteínas de Unión a Poli(A) , Transfección
10.
Oxid Med Cell Longev ; 2022: 9938392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35035671

RESUMEN

Hepatic stellate cells (HSCs) activation is an important step in the process of hepatic fibrosis. NOX4 and reactive oxygen species expressed in HSCs play an important role in liver fibrosis. Forsythiaside A (FA), a phenylethanoid glycoside extracted and isolated from Forsythiae Fructus, has significant antioxidant activities. However, it is not clear whether FA can play a role in inhibiting the HSCs activation through regulating NOX4/ROS pathway. Therefore, our purpose is to explore the effect and mechanism of FA on HSCs activation to alleviate liver fibrosis. LX2 cells were activated by TGF-ß1 in vitro. MTT assay and Wound Healing assay were used to investigate the effect of FA on TGF-ß1-induced LX2 cell proliferation and migration. Elisa kit was used to measure the expression of MMP-1 and TIMP-1. Western blot and RT-qPCR were used to investigate the expression of fibrosis-related COLI, α-SMA, MMP-1 and TIMP-1, and inflammation-related TNF-α, IL-6 and IL-1ß. The hydroxyproline content was characterized using a biochemical kit. The mechanism of FA to inhibit HSCs activation and apoptosis was detected by DCF-DA probe, RT-qPCR, western blot and flow cytometry. NOX4 siRNA was used to futher verify the effect of FA on NOX4/ROS pathway. The results showed that FA inhibited the proliferation and migration of LX2 cells and adjusted the expression of MMP-1, TIMP-1, COLI, α-SMA, TNF-α, IL-6 and IL-1ß as well as promoted collagen metabolism to show potential in anti-hepatic fibrosis. Mechanically, FA down-regulated NOX4/ROS signaling pathway to improve oxidation imbalances, and subsequently inhibited PI3K/Akt pathway to suppress proliferation. FA also promoted the apoptosis of LX2 cells by Bax/Bcl2 pathway. Furthermore, the effects of FA on TGF-ß1-induced increased ROS levels and α-SMA and COLI expression were weaken by silencing NOX4. In conclusion, FA had potential in anti-hepatic fibrosis at least in part by remolding of extracellular matrix and improving oxidation imbalances to inhibit the activation of HSCs and promote HSCs apoptosis.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Glicósidos/uso terapéutico , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/tratamiento farmacológico , NADPH Oxidasa 4/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Medicamentos Herbarios Chinos/farmacología , Glicósidos/farmacología , Humanos , Cirrosis Hepática/patología , Transfección
11.
Adv Drug Deliv Rev ; 181: 114041, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34763002

RESUMEN

RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.


Asunto(s)
Sistema de Administración de Fármacos con Nanopartículas , ARN/administración & dosificación , Transfección/métodos , Comunicación Celular/fisiología , Membrana Celular/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Evaluación Preclínica de Medicamentos , Humanos , MicroARNs/administración & dosificación , Oligonucleótidos/administración & dosificación , ARN Mensajero/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Tratamiento con ARN de Interferencia
12.
Langmuir ; 38(1): 36-49, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34955028

RESUMEN

Membrane formation and aggregation properties of two series of (±) α-tocopherol-based cationic gemini lipids without and with hydroxyl functionalities at the headgroup region (TnS n = 3, 4, 5, 6, 8, and 12; THnS n = 4, 5, 6, 8, and 12) with varying polymethylene spacer lengths were investigated extensively while comparing with the corresponding properties of the monomeric counterparts (TM and THM). Liposomal suspensions of each cationic lipid were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential measurements, and small-angle X-ray diffraction studies. The length of the spacer and the presence of hydroxyl functionalities at the headgroup region strongly contribute to the aggregation behavior of these gemini lipids in water. The interaction of each tocopherol lipid with a model phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)-derived vesicles, was thoroughly examined by differential scanning calorimetry (DSC) and 1,6-diphenyl-1,3,5-hexatriene (DPH)-doped fluorescence anisotropy measurements. The binding efficiency of the cationic tocopherol liposomes with plasmid DNA (pDNA) was followed by an ethidium bromide (EB) exclusion assay and zeta potential measurements, whereas negatively charged micellar sodium dodecyl sulfate (SDS)-mediated release of the pDNA from various preformed pDNA-liposomal complexes (lipoplex) was studied by an ethidium bromide (EB) reintercalation assay. The structural transformation of pDNA upon complexation with liposome was characterized using circular dichroism (CD) spectroscopic measurements. Gemini lipid-pDNA interactions depend on both the presence of hydroxyl functionalities at the headgroups and the length of the spacer chain between the headgroups. Succinctly, we performed a detailed physical-chemical characterization of the membranes formed from cationic monomeric and gemini lipids bearing tocopherol as their hydrophobic backbone and describe the role of inserting the -OH group at the headgroup of such lipids.


Asunto(s)
Liposomas , alfa-Tocoferol , Cationes , ADN , Lecitinas , Fosfolípidos , Plásmidos , Transfección
13.
Bioengineered ; 13(1): 917-929, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968160

RESUMEN

Radiation therapy (RT) is widely applied in cancer treatment. The sensitivity of tumor cells to RT is the key to the treatment. This study probes the role and mechanism of miR-20b-5p in Pembrolizumab's affecting the radiosensitivity of tumor cells. After Pembrolizumab treatment or cell transfection (miR-20b-5p mimics and miR-20b-5p inhibitors), tumor cells (NCI-H460 and ZR-75-30) were exposed to RT. The sensitivity of NCI-H460 and ZR-75-30 to RT was evaluated by monitoring cell proliferation and apoptosis. The dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were adopted to evaluate the binding relationship between miR-20b-5p and CD274 (PD-L1). The xenograft model was established in nude mice to examine the mechanism of action of Pembrolizumab in vivo. Our outcomes exhibited that either Pembrolizumab treatment or miR-20b-5p overexpression potentiated radiosensitivity of tumor cells. Overexpressing miR-20b-5p enhanced radiosensitization of Pembrolizumab in vivo and in vitro by targeting PD-L1 and inactivating PD-L1/PD1. Overall, miR-20b-5p overexpression combined with Pembrolizumab potentiated cancer cells' sensitivity to RT by repressing PD-L1/PD1.Abbreviations Akt: serine/threonine kinase 1; cDNA: complementary DNA; CO2: carbon dioxide; EDTA: Ethylene Diamine Tetraacetic Acid; ENCORI: The Encyclopedia of RNA Interactomes; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; IGF2BP2: insulin like growth factor 2 mRNA binding protein 2; IHC: Immunohistochemistry; LncRNA MALAT1: Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1; miRNAs: MicroRNAs; Mt: Mutant type; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; NC: negative control; NR2F2: nuclear receptor subfamily 2 group F member 2; NSCLC: non-small cell lung cancer; OD: optical density; PBS: phosphate-buffered saline; PD-L1: Programmed death-ligand 1; PD-1: programmed death 1; PI3K: phosphatidylinositol 3-kinase; qRT-PCR: Quantitative reverse transcription-polymerase chain reaction; RIP: RNA immunoprecipitation; RIPA: Radio Immunoprecipitation Assay; RRM2: ribonucleotide reductase regulatory subunit M2; RT: Radiation therapy; U6: U6 small nuclear RNA; V: volume; WB: Western blot; Wt: wild type; x ± sd: mean ± standard deviation.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antígeno B7-H1/genética , Neoplasias de la Mama/terapia , Carcinoma de Pulmón de Células no Pequeñas/terapia , Regulación hacia Abajo , Neoplasias Pulmonares/terapia , MicroARNs/genética , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Neoplasias de la Mama/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Quimioradioterapia , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Desnudos , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cancer Lett ; 526: 352-362, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798195

RESUMEN

The monotherapy of mTOR inhibitors (mTORi) in cancer clinical practice has achieved limited success due to the concomitant activation of compensatory pathways, such as Akt signaling and cytoprotective autophagy. Thus, the combination of mTORi and the inhibitors of these pro-survival pathways has been considered a promising therapeutic strategy. Herein, we report the synergistic effects of a natural anti-cancer agent Jolkinolide B (JB) and mTORi (temsirolimus, rapamycin, and everolimus) for the effective treatment of bladder cancer. A mechanistic study revealed that JB induced a dual inhibition of Akt feedback activation and cytoprotective autophagy, potentiating the anti-proliferative efficacy of mTORi in both PTEN-deficient and cisplatin-resistant bladder cancer cells. Meanwhile, mTORi augmented the pro-apoptotic and pro-paraptotic effects of JB by reinforcing JB-activated endoplasmic reticulum stress and MAPK pathways. These synergistic mechanisms were related to cellular reactive oxygen species accumulation. Our study suggests that dual inhibition of Akt feedback activation and cytoprotective autophagy is an effective strategy in mTORi-based therapy, and JB + mTORi combination associated with multiple anti-cancer mechanisms and good tolerance in mouse models may serve as a promising treatment for bladder cancer.


Asunto(s)
Autofagia/efectos de los fármacos , Diterpenos/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Inhibidores mTOR/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Línea Celular Tumoral , Diterpenos/farmacología , Medicamentos Herbarios Chinos/farmacología , Humanos , Inhibidores mTOR/farmacología , Masculino , Ratones , Transducción de Señal , Transfección
15.
Cell Death Dis ; 13(1): 11, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930890

RESUMEN

TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFß and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.


Asunto(s)
Antiportadores/deficiencia , Antiportadores/metabolismo , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/metabolismo , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/patología , Sulfatos de Condroitina/biosíntesis , Enanismo/metabolismo , Proteoglicanos de Heparán Sulfato/biosíntesis , Transducción de Señal/genética , Animales , Antiportadores/genética , Estudios de Casos y Controles , Proteínas de Transporte de Catión/genética , Línea Celular Tumoral , Condrogénesis/genética , Enanismo/patología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes/métodos , Glicosilación , Células HEK293 , Humanos , Hipertrofia/metabolismo , Ratones , Transfección
16.
Sci Adv ; 7(45): eabj0611, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739313

RESUMEN

This work reports a suction-based cutaneous delivery method for in vivo DNA transfection. Following intradermal Mantoux injection of plasmid DNA in a rat model, a moderate negative pressure is applied to the injection site, a technique similar to Chinese báguàn and Middle Eastern hijama cupping therapies. Strong GFP expression was demonstrated with pEGFP-N1 plasmids where fluorescence was observed as early as 1 hour after dosing. Modeling indicates a strong correlation between focal strain/stress and expression patterns. The absence of visible and/or histological tissue injury contrasts with current in vivo transfection systems such as electroporation. Specific utility was demonstrated with a synthetic SARS-CoV-2 DNA vaccine, which generated host humoral immune response in rats with notable antibody production. This method enables an easy-to-use, cost-effective, and highly scalable platform for both laboratorial transfection needs and clinical applications for nucleic acid­based therapeutics and vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , ADN , SARS-CoV-2 , Piel/inmunología , Transfección , Vacunas de ADN , Administración Cutánea , Animales , COVID-19/genética , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , ADN/genética , ADN/inmunología , ADN/farmacología , Masculino , Ratas , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Succión , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Vacunas de ADN/farmacología
17.
Life Sci Alliance ; 4(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34593556

RESUMEN

Worldwide, ∼196 million are afflicted with endometriosis, a painful disease in which endometrial tissue implants and proliferates on abdominal peritoneal surfaces. Theories on the origin of endometriosis remained inconclusive. Whereas up to 90% of women experience retrograde menstruation, only 10% develop endometriosis, suggesting that factors that alter peritoneal environment might contribute to endometriosis. Herein, we report that whereas some gut bacteria promote endometriosis, others protect against endometriosis by fermenting fiber to produce short-chain fatty acids. Specifically, we found that altered gut microbiota drives endometriotic lesion growth and feces from mice with endometriosis contained less of short-chain fatty acid and n-butyrate than feces from mice without endometriosis. Treatment with n-butyrate reduced growth of both mouse endometriotic lesions and human endometriotic lesions in a pre-clinical mouse model. Mechanistic studies revealed that n-butyrate inhibited human endometriotic cell survival and lesion growth through G-protein-coupled receptors, histone deacetylases, and a GTPase activating protein, RAP1GAP. Our findings will enable future studies aimed at developing diagnostic tests, gut bacteria metabolites and treatment strategies, dietary supplements, n-butyrate analogs, or probiotics for endometriosis.


Asunto(s)
Bacterias/metabolismo , Butiratos/administración & dosificación , Butiratos/metabolismo , Endometriosis/metabolismo , Endometriosis/microbiología , Microbioma Gastrointestinal , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Endometriosis/tratamiento farmacológico , Endometriosis/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Heces/química , Heces/microbiología , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Complejo Shelterina/metabolismo , Transducción de Señal/genética , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Transfección
18.
Oxid Med Cell Longev ; 2021: 1552127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630845

RESUMEN

NLRP3 inflammasome-mediated pyroptosis is a proinflammatory programmed cell death pathway, which plays a vital role in functional outcomes after stroke. We previously described the beneficial effects of curcumin against stroke-induced neuronal damage through modulating microglial polarization. However, the impact of curcumin on microglial pyroptosis remains unknown. Here, stroke was modeled in mice by middle cerebral artery occlusion (MCAO) for 60 minutes and treated with curcumin (150 mg/kg) intraperitoneally immediately after reperfusion, followed by daily administrations for 7 days. Curcumin ameliorated white matter (WM) lesions and brain tissue loss 21 days poststroke and improved sensorimotor function 3, 10, and 21 days after stroke. Furthermore, curcumin significantly reduced the number of gasdermin D+ (GSDMD+) Iba1+ and caspase-1+Iba1+ microglia/macrophage 21 days after stroke. In vitro, lipopolysaccharide (LPS) with ATP treatment was used to induce pyroptosis in primary microglia. Western blot revealed a decrease in pyroptosis-related proteins, e.g., GSDMD-N, cleaved caspase-1, NLRP3, IL-1ß, and IL-18, following in vitro or in vivo curcumin treatment. Mechanistically, both in vivo and in vitro studies confirmed that curcumin inhibited the activation of the NF-κB pathway. NLRP3 knocked down by siRNA transfection markedly increased the inhibitory effects of curcumin on microglial pyroptosis and proinflammatory responses, both in vitro and in vivo. Furthermore, stereotaxic microinjection of AAV-based NLRP3 shRNA significantly improved sensorimotor function and reduced WM lesion following curcumin treatment in MCAO mice. Our study suggested that curcumin reduced stroke-induced WM damage, improved functional outcomes, and attenuated microglial pyroptosis, at least partially, through suppression of the NF-κB/NLRP3 signaling pathway, further supporting curcumin as a potential therapeutic drug for stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Curcuma/química , Curcumina/administración & dosificación , Inflamasomas/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fitoterapia/métodos , Extractos Vegetales/administración & dosificación , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/lesiones , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis/genética , Transducción de Señal/genética , Transfección , Resultado del Tratamiento
19.
Oxid Med Cell Longev ; 2021: 5147069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630849

RESUMEN

Intestinal ischemia-reperfusion (I/R) may induce cell/tissue injuries, leading to multiple organ failure. Based on our preexperiments, we proposed that sesamin could protect against and ameliorate intestinal I/R injuries and related disorders with involvement of activating Nrf2 signaling pathway. This proposal was evaluated using SD intestinal I/R injury rats in vivo and hypoxia/reoxygenation- (H/R-) injured rat small intestinal crypt epithelial cell line (IEC-6 cells) in vitro. Sesamin significantly alleviated I/R-induced intestinal histopathological injuries and significantly reduced serum biochemical indicators ALT and AST, alleviating I/R-induced intestinal injury in rats. Sesamin also significantly reversed I/R-increased TNF-α, IL-6, IL-1ß, and MPO activity in serum and MDA in tissues and I/R-decreased GSH in tissues and SOD in both tissues and IEC-6 cells, indicating its anti-inflammatory and antioxidative stress effects. Further, sesamin significantly decreased TUNEL-positive cells, downregulated the increased Bax and caspase-3 protein expression, upregulated the decreased protein expression of Bcl-2 in I/R-injured intestinal tissues, and significantly reversed H/R-reduced IEC-6 cell viability as well as reduced the number of apoptotic cells among H/R-injured IEC-6 cell, showing antiapoptotic effects. Activation of Nrf2 is known to ameliorate tissue/cell injuries. Consistent with sesamin-induced ameliorations of both intestinal I/R injuries and H/R injuries, transfection of Nrf2 cDNA significantly upregulated the expression of Nrf2, HO-1, and NQO1, respectively. On the contrary, either Nrf2 inhibitor (ML385) or Nrf2 siRNA transfection significantly decreased the expression of these proteins. Our results suggest that activation of the Nrf2/HO-1/NQO1 signaling pathway is involved in sesamin-induced anti-inflammatory, antioxidative, and antiapoptotic effects in protection against and amelioration of intestinal I/R injuries.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Dioxoles/administración & dosificación , Hemo Oxigenasa (Desciclizante)/metabolismo , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/metabolismo , Lignanos/administración & dosificación , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fitoterapia/métodos , Extractos Vegetales/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Sesamum/química , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Mucosa Intestinal/citología , Masculino , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Transfección , Resultado del Tratamiento
20.
J Biochem Mol Toxicol ; 35(10): e22870, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34350670

RESUMEN

Scutellarein, a flavone found in the perennial herb Scutellaria baicalensis, has antitumorigenic activity in multiple human cancers. However, whether scutellarein can attenuate ovarian cancer (OC) is unclear. This study investigated the effects of scutellarein in OC. In vitro cell viability was assessed using MTT assay whereas proliferation was assessed using 5-ethynyl-2'-deoxyuridine and colony formation assays. Cell apoptosis was detected by an Annexin V-fluorescein isothiocyanate/propidium iodide assay. Wound-healing and Transwell assays were used to determine cell migration and invasion. The differential expression of enhancer of zeste homolog 2 (EZH2) and forkhead box protein O1 (FOXO1) was measured by Quantitative real-time PCR and western blot analysis. We found that scutellarein inhibited viability, migration, invasion of A2780 and SKOV-3 cells, and reduced the expression of EZH2 in OC cells. In addition, FOXO1 was downregulated in OC tissues and cells and negatively regulated by EZH2. Also, scutellarein inhibited tumor growth and metastasis in vivo. In conclusion, scutellarein alleviates OC by the regulation of EZH2/FOXO1 signaling.


Asunto(s)
Antineoplásicos/administración & dosificación , Apigenina/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Forkhead Box O1/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Fitoquímicos/farmacología , Fitoterapia/métodos , Scutellaria baicalensis/química , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Ováricas/patología , Transducción de Señal/genética , Transfección , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA