Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Pharm ; 633: 122614, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36646255

RESUMO

Various neurodegenerative diseases (parkinson, huntington, alzheimer, and amyotrophic lateral sclerosis) are becoming serious global health challenges. Despite various treatment options, successful delivery and effective outcomes have been challenged with several physiological-anatomical barriers, formulation related issues, post-administration hurdles, regulatory constraints, physical hurdles, environmental issues, and safety concern. In the present review, we addressed a brief understanding of pathological and normal condition of blood brain barrier (BBB), rational for brain delivery using nanocarriers, major challenges, advantages of nanomedicine, critical aspects of nanomedicine to translate from bed to clinics, and strategic approaches for improved delivery across BBB. The review addressed various mechanistic perspective for delivery of drug loaded nanocarriers across BBB. Moreover, several reports have been published wherein phytomedicine, exosomes, magnetic nanopartilces, functionalized nanocarriers, cationic nanopartilces, and nano-phytomedicine were investigated for remarkable improvement in neurological disorders. These findings are informative for healthcare professionals, researchers, and scientists working in the domains. The successful application and convincing outcomes of nanomedicines were envisaged with clinical trials conducted on various drugs intended to control neurological disorders (NDs). Conclusively, the review addressed comprehensive findings on various aspects of drug loaded nanocarrier delivery across BBB, considerable risks, potential therapeutic benefits, clinical trial based outcomes, and recent advances followed by future perspectives.


Assuntos
Nanopartículas , Doenças Neurodegenerativas , Humanos , Barreira Hematoencefálica , Encéfalo , Sistemas de Liberação de Medicamentos , Nanomedicina , Doenças Neurodegenerativas/tratamento farmacológico
2.
Molecules ; 27(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36364431

RESUMO

Neurodegenerative diseases exert an overwhelming socioeconomic burden all around the globe. They are mainly characterized by modified protein accumulation that might trigger various biological responses, including oxidative stress, inflammation, regulation of signaling pathways, and excitotoxicity. These disorders have been widely studied during the last decade in the hopes of developing symptom-oriented therapeutics. However, no definitive cure has yet been discovered. Tea is one of the world's most popular beverages. The same plant, Camellia Sinensis (L.).O. Kuntze, is used to make green, black, and oolong teas. Green tea has been most thoroughly studied because of its anti-cancer, anti-obesity, antidiabetic, anti-inflammatory, and neuroprotective properties. The beneficial effect of consumption of tea on neurodegenerative disorders has been reported in several human interventional and observational studies. The polyphenolic compounds found in green tea, known as catechins, have been demonstrated to have many therapeutic effects. They can help in preventing and, somehow, treating neurodegenerative diseases. Catechins show anti-inflammatory as well as antioxidant effects via blocking cytokines' excessive production and inflammatory pathways, as well as chelating metal ions and free radical scavenging. They may inhibit tau protein phosphorylation, amyloid beta aggregation, and release of apoptotic proteins. They can also lower alpha-synuclein levels and boost dopamine levels. All these factors have the potential to affect neurodegenerative disorders. This review will examine catechins' neuroprotective effects by highlighting their biological, pharmacological, antioxidant, and metal chelation abilities, with a focus on their ability to activate diverse cellular pathways in the brain. This review also points out the mechanisms of catechins in various neurodegenerative and cognitive diseases, including Alzheimer's, Parkinson's, multiple sclerosis, and cognitive deficit.


Assuntos
Camellia sinensis , Catequina , Doenças Neurodegenerativas , Humanos , Chá , Catequina/farmacologia , Catequina/uso terapêutico , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Quelantes/uso terapêutico , Cognição
3.
J Food Biochem ; 46(12): e14427, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165556

RESUMO

Osteoarthritis (OA) is a disease due to the aging of the articular cartilage, a post-mitotic tissue that stays functioning until primary homeostatic processes fail. Because of pain and disability, OA significantly influences national healthcare expenses and patient quality of life. It is a whole-joint illness characterized by inflammatory and oxidative signaling pathways and significant epigenetic alterations that cause cartilage extracellular matrix degradation. The canonical Wnt pathway (Wnt/ß-catenin pathway) and nuclear factor kappa B (NF-κB) signaling pathways may function in joint tissues by modulating the activity of synovial cells, osteoblasts, and chondrocytes. However, finding innovative ways to treat osteoarthritis and get the joint back to average balance is still a struggle. Nutraceuticals are dietary supplements that promote joint health by balancing anabolic and catabolic signals. New therapeutic methods for OA treatment have been developed based on many research findings that show nutraceuticals have strong anti-inflammation, antioxidant, anti-bone resorption, and anabolic properties. For the treatment of osteoarthritis, we explore the possible involvement of nutraceuticals that target the Wnt/ß-catenin and NF-κB pathways. PRACTICAL APPLICATIONS: In keeping with the aging population, osteoarthritis is becoming more widespread. In this extensive research, we studied the role of the Wnt/ß-catenin and NF-κB pathway in OA formation and progression. Nutraceuticals that target these OA-related signaling pathways are a viable therapy option. Wnt/ß-catenin and NF-κB signaling pathway are inhibited by polyphenols, flavonoids, alkaloids, and vitamins from the nutraceutical category, making them possible therapeutic drugs for OA therapy.


Assuntos
NF-kappa B , Osteoartrite , Humanos , Idoso , NF-kappa B/genética , NF-kappa B/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/uso terapêutico , Qualidade de Vida , Via de Sinalização Wnt , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Suplementos Nutricionais
4.
J Clin Med ; 11(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956245

RESUMO

Background: Systemic arterial hypertension, which is associated with an increased risk of cardiovascular disease(CVD), is the most significant modifiable risk factor for mortality and morbidity worldwide. WHO has recognized Unanipathy as an alternate system of medicine. The aim of the present study is to investigate the anti-hypertensive activity of some selected unani formulations using L-NAME model. Method: Group I or hypertensive control group: L-NAME administered for 7 days and left for the next 7 days; Group II or KASgroup: L-NAME administered (i.p) for 7 days and L-NAME + KAS (1000 mg/kg b.w) for the next 7 days; Group III or DMM group: L-NAME administered (i.p) for 7 days and L-NAME + DMM (2000 mg/kg b.w) for the next 7 days; Group IV or MSR group: L-NAME administered (i.p) for 7 days and L-NAME + MSR (300 mg/kg b.w) for the next 7 days; Group V or HJ group: L-NAME administered (i.p) for 7 days and L-NAME + HJ (113 mg/kg b.w) for the next 7 days; Group VI or KGS group: L-NAME administered (i.p) for 7 days and L-NAME +KGS (2000 mg/kg b.w) for the next 7 days. Non-invasive systolic blood pressure and RR-interval (ECG) was measured. Plasma was investigated forsodium, potassium, nitrite, ANP, adrenaline, noradrenaline and aldosterone on day 0, 7 and 14 using LC-MS/MS. Result: Treatment showed a non-significant lowreduction in SBP (systolic blood pressure) of KAS, MSR and HJ while that of DMM was quite significant (p < 0.05), but in the case of KGS, SBP increased. DMM on day 14 significantly (p < 0.05) reduced plasma nitrite while no significant plasma Na+ was noted. In the case of both DMM and KGS, potassium increased significantly (p < 0.05) on day 14. No significant changes in plasma ANP and aldosterone was observed against DMM and KGS while blood levels of adrenaline and noradrenaline significantly (p < 0.05) changed. No significant change in body weight was found. Conclusions: L-NAME KAS, MSR and HJ showed no change in SBP while DMM showed a significant reduction in SBP with decreased plasma nitrite. Probably, DMM may have anti-hypertensive activity mediated through NO inhibition while KGS may involve central sympathomimetic action.

5.
Molecules ; 27(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889451

RESUMO

The emergence of drug resistance and the limited number of approved antitubercular drugs prompted identification and development of new antitubercular compounds to cure Tuberculosis (TB). In this work, an attempt was made to identify potential natural compounds that target mycobacterial proteins. Three plant extracts (A. aspera, C. gigantea and C. procera) were investigated. The ethyl acetate fraction of the aerial part of A. aspera and the flower ash of C. gigantea were found to be effective against M. tuberculosis H37Rv. Furthermore, the GC-MS analysis of the plant fractions confirmed the presence of active compounds in the extracts. The Mycobacterium target proteins, i.e., available PDB dataset proteins and proteins classified in virulence, detoxification, and adaptation, were investigated. A total of ten target proteins were shortlisted for further study, identified as follows: BpoC, RipA, MazF4, RipD, TB15.3, VapC15, VapC20, VapC21, TB31.7, and MazF9. Molecular docking studies showed that ß-amyrin interacted with most of these proteins and its highest binding affinity was observed with Mycobacterium Rv1636 (TB15.3) protein. The stability of the protein-ligand complex was assessed by molecular dynamic simulation, which confirmed that ß-amyrin most firmly interacted with Rv1636 protein. Rv1636 is a universal stress protein, which regulates Mycobacterium growth in different stress conditions and, thus, targeting Rv1636 makes M. tuberculosis vulnerable to host-derived stress conditions.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Ácido Oleanólico , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Choque Térmico , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia
6.
Drug Deliv ; 28(1): 1972-1981, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34565260

RESUMO

Crotamiton (CRT) is a commonly approved drug prescribed for the scabies treatment in many countries across the globe. However, poor aqueous solubility and low bioavailability, and side effects restrict its use. To avoid such issues, an appropriate carrier system is necessary which can address the aforementioned challenges for attaining enhanced biopharmaceutical attributes. The current study intends to provide a detailed account on the development and evaluation of CRT-loaded microemulsion (ME) hydrogel formulation containing tea tree oil (TTO) for improved drug delivery for scabies treatment in a safe and effective manner. Pseudo-ternary phase diagrams were constructed with TTO as the oily phase, and Cremophor®EL was used as the surfactant in a mass ratio 2:1 with co-surfactants (mixture of phospholipid 90G and Transcutol®P), and aqueous solution as the external phase. The optimized drug-loaded ME formulation was evaluated for skin penetration, retention, compliance, and dermatokinetics. The nonirritant behavior of the formulation was revealed by skin histopathology, which showed no changes in normal skin histology. In comparison to the conventional product, dermatokinetic experiments revealed that CRT has greater penetration and distribution in the epidermis of the mice skin. The findings imply that the proposed lipid-based ME hydrogel can aid in the resolution of CRT issues by providing a better and safer delivery option to epidermis and deeper epidermis in substantial quantities.


Assuntos
Emulsões/química , Hidrogéis/química , Escabiose/tratamento farmacológico , Óleo de Melaleuca/química , Toluidinas/farmacocinética , Animais , Química Farmacêutica , Portadores de Fármacos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Camundongos , Propriedades de Superfície , Tensoativos/química , Toluidinas/administração & dosagem
7.
J Biochem Mol Toxicol ; 35(2): e22634, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32991785

RESUMO

Chrysin is the major bioactive compound of blue passionflower, an important medicinal plant used in traditional herbal formulations since ancient times. In the present study, we report that chrysin nanoparticles (chrysin NPs) protect Wistar rats against kindling-induced epilepsy. Nanoparticles of sizes less than 150 nm with a spherical shape were prepared using poly(d,l-lactic-co-glycolic acid) and polyvinyl alcohol, respectively, as polymer and stabilizer. Rats were injected with subconvulsive doses of pentylenetetrazole (PTZ) (35 mg/kg, intraperitoneal) every second day, with 22 injections in total, and on the same days, they received protective doses of the chrysin NPs (5 and 10 µg/mL, PO), respectively, 45 min before each PTZ injection. After the last PTZ injection, an average of thirteen seizure scores was recorded. Animals were killed by decapitation 24 h after a seizure. The cortex and hippocampus were removed and stored in liquid nitrogen for determining oxidative stress terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, histopathology, and reverse transcription-polymerase chain reaction for messenger RNA expression. The result showed chrysin NPs treatment has counteracted oxidative stress, reduced neuronal apoptosis, and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase 1. In conclusion, our findings demonstrate that the neuroprotective effect of chrysin NPs against kindling-induced epilepsy might be escorted by the alleviation of oxidative stress through the Nrf2/antioxidant response element/HO-1 pathway signal pathway.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Epilepsia/prevenção & controle , Flavonoides/farmacologia , Heme Oxigenase-1/metabolismo , Excitação Neurológica/efeitos dos fármacos , Nanopartículas/química , Fármacos Neuroprotetores/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Animais , Epilepsia/induzido quimicamente , Masculino , Fator 2 Relacionado a NF-E2 , Pentilenotetrazol/administração & dosagem , Ratos , Ratos Wistar
8.
Chem Biol Drug Des ; 84(5): 522-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24750991

RESUMO

A series of 1-(substituted-phenyl)-1-[(2-chloroquinolin-3-yl)methyl]thiocarbamide and 1-(substituted-phenyl)-1-[(2-chloroquinolin-3-yl)methyl]methylthiocarbamide derivatives was synthesized as antitubercular agent. The structure of quinolinyl amines and their thiocarbamide derivatives were established on the basis of IR, (1)H and (13)C-NMR and mass spectral data. All the compounds were tested in vitro for antimycobacterial activity against Mycobacterium tuberculosis (ATCC-25177) in Lowenstein-Jensen medium by well diffusion method and MIC by twofold serial dilution method. Results of the antitubercular screening revealed that compounds showed moderate to good antitubercular activity. Compound having two halogens in the phenyl rings viz. 3g, 3h, 4g, and 4h exhibited MIC of 50 µg/mL. The computational parameters relevant to absorption and permeation of target compounds were also calculated and found to be well correlated with antitubercular activity.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Administração Oral , Antituberculosos/síntese química , Antituberculosos/farmacocinética , Disponibilidade Biológica , Técnicas de Química Sintética , Cloroquinolinóis/química , Etionamida/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Tioureia/química
9.
Fitoterapia ; 83(5): 853-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22465504

RESUMO

A new steroidal derivative, urs Stigmast-4, 20 (21), 23-trien-3-one and other four compounds were isolated from the leaves of Bryophyllum pinnatum. The structure of this new steroid was elucidated and established by standard spectroscopic methods. Carrageenan induced paw edema model was used for anti-inflammatory and acetic acid induced model used for analgesic activity. This new steroidal compound was found to be active in reducing inflammation (% inhibition 87.29 and 84.45 respectively) when compared with diclofenac. Further, it showed 75.72% protection in analgesic activity in acetic acid induced writhing test in mice. In conclusion the % inhibition against carrageenan induced rat paw edema and % protection against acetic acid induced writhings showed by new compound revealed that the anti-inflammatory and analgesic activity of aqueous extract B. pinnatum are mainly due to the presence of this steroidal compound.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Diterpenos/isolamento & purificação , Flavonas/isolamento & purificação , Inflamação/tratamento farmacológico , Kalanchoe/química , Dor/tratamento farmacológico , Fitoterapia , Ácido Acético , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Carragenina , Diclofenaco/uso terapêutico , Modelos Animais de Doenças , Diterpenos/química , Diterpenos/farmacologia , Edema/prevenção & controle , Feminino , Flavonas/química , Flavonas/farmacologia , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Dor/induzido quimicamente , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar
10.
Fitoterapia ; 83(1): 142-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22051701

RESUMO

A new stearoyl glucoside of ursolic acid, urs-12-en-3ß-ol-28-oic acid 3ß-D-glucopyranosyl-4'-octadecanoate and other compounds were isolated from the leaves of Lantana camara L. The structure of this new glycoside was elucidated and established by standard spectroscopic methods. In streptozotocin-induced diabetic rats it showed significant reduction in blood glucose level.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Glucosídeos/farmacologia , Hipoglicemiantes/farmacologia , Lantana/química , Esteróis/farmacologia , Triterpenos/farmacologia , Animais , Glicemia/efeitos dos fármacos , Glucosídeos/química , Hipoglicemiantes/química , Estrutura Molecular , Folhas de Planta/química , Ratos , Esteróis/química , Triterpenos/química , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA