Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 305, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658354

RESUMO

We reported a gastric anti-ulcerogenic effect of the Nigella sativa (L.)-derived herbal melanin (HM) using rat models. However, the molecular mechanisms underlying this HM gastroprotective effect remain unknown. Cyclooxygenase-2 (COX-2)-catalyzed prostaglandin E2 (PGE2) and toll-like receptor 4 (TLR4)-mediated interleukin-6 (IL-6) production and secretion play major roles in gastric mucosal protection. In the current study, the human gastric carcinoma epithelial cell line AGS was used as a model to investigate the effect of HM on TLR4, COX-2, glycoprotein mucin 4 protein and gene expression using immuno-cyto-fluorescence staining, Western blot technology, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gastroprotective markers PGE2 and IL-6 production and secretion were also assessed using an enzyme-linked immunosorbent assay (ELISA). Bacterial lipopolysaccharides (LPS), well-known inducers of TLR4, COX-2, PGE2 and IL-6 expression, were used as a positive control. We showed that HM upregulated its main receptor TLR4 gene and protein expression in AGS cells. HM increased, in a dose- and time-dependent manner, the secretion of PGE2 and the expression of COX-2 mRNA and protein, which was detected in the nucleus, cytoplasm and predominantly at the intercellular junctions of the AGS cells. In addition, HM enhanced IL-6 production and secretion, and upregulated the mucin 4 gene expression, the hallmarks of gastroprotection. To check whether HM-induced PGE2 and IL-6 through TLR4 signaling and COX-2 generated, AGS cells were pre-treated with a TLR4 signaling inhibitor TAK242 and the COX-2 inhibitor NS-398. A loss of the stimulatory effects of HM on COX-2, PGE2 and IL-6 production and secretion was observed in TAK242 and NS-398-pre-treated AGS cells, confirming the role of TLR4 signaling and COX-2 generated in the HM gastroprotective effects. In conclusion, our results showed that HM enhances TLR4/COX-2-mediated secretion of gastroprotective markers PGE2 and IL-6, and upregulates mucin 4 gene expression in the human gastric epithelial cell line AGS, which may contribute to the promising beneficial gastroprotective effect of HM for human gastric prevention and treatment.


Assuntos
Neoplasias Gástricas , Humanos , Animais , Ratos , Melaninas , Ciclo-Oxigenase 2 , Dinoprostona , Receptor 4 Toll-Like , Interleucina-6 , Mucina-4
2.
Front Pharmacol ; 14: 1169812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197407

RESUMO

There is no first-line treatment for vitiligo, a skin disease characterized by a lack of melanin produced by the melanocytes, resulting in an urgent demand for new therapeutic drugs capable of stimulating melanocyte functions, including melanogenesis. In this study, traditional medicinal plant extracts were tested for cultured human melanocyte proliferation, migration, and melanogenesis using MTT, scratch wound-healing assays, transmission electron microscopy, immunofluorescence staining, and Western blot technology. Of the methanolic extracts, Lycium shawii L. (L. shawii) extract increased melanocyte proliferation at low concentrations and modulated melanocyte migration. At the lowest tested concentration (i.e., 7.8 µg/mL), the L. shawii methanolic extract promoted melanosome formation, maturation, and enhanced melanin production, which was associated with the upregulation of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1 and TRP-2 melanogenesis-related proteins, and melanogenesis-related proteins. After the chemical analysis and L. shawii extract-derived metabolite identification, the in silico studies revealed the molecular interactions between Metabolite 5, identified as apigenin (4,5,6-trihydroxyflavone), and the copper active site of tyrosinase, predicting enhanced tyrosinase activity and subsequent melanin formation. In conclusion, L. shawii methanolic extract stimulates melanocyte functions, including melanin production, and its derivative Metabolite 5 enhances tyrosinase activity, suggesting further investigation of the L. shawii extract-derived Metabolite 5 as a potential natural drug for vitiligo treatment.

3.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145281

RESUMO

The aggressive triple-negative breast cancer (TNBC) is a challenging disease due to the absence of tailored therapy. The search for new therapies involves intensive research focusing on natural sources. Achillea fragrantissima (A. fragrantissima) is a traditional medicine from the Middle East region. Various solvent extracts from different A. fragrantissima plant parts, including flowers, leaves, and roots, were tested on TNBC MDA-MB-231 cells. Using liquid chromatography, the fingerprinting revealed rich and diverse compositions for A. fragrantissima plant parts using polar to non-polar solvent extracts indicating possible differences in bioactivities. Using the CellTiter-Glo™ viability assay, the half-maximal inhibitory concentration (IC50) values were determined for each extract and ranged from 32.4 to 161.7 µg/mL. The A. fragrantissima flower dichloromethane extract had the lowest mean IC50 value and was chosen for further investigation. Upon treatment with increasing A. fragrantissima flower dichloromethane extract concentrations, the MDA-MB-231 cells displayed, in a dose-dependent manner, enhanced morphological and biochemical hallmarks of apoptosis, including cell shrinkage, phosphatidylserine exposure, caspase activity, and mitochondrial outer membrane permeabilization, assessed using phase-contrast microscopy, fluorescence-activated single-cell sorting analysis, Image-iT™ live caspase, and mitochondrial transition pore opening activity, respectively. Anticancer target prediction and molecular docking studies revealed the inhibitory activity of a few A. fragrantissima flower dichloromethane extract-derived metabolites against carbonic anhydrase IX, an enzyme reported for its anti-apoptotic properties. In conclusion, these findings suggest promising therapeutic values of the A. fragrantissima flower dichloromethane extract against TNBC development.

4.
Saudi Pharm J ; 29(5): 361-368, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34135662

RESUMO

Commiphora myrrha (Nees) Engl. (C. myrrha) resin is the most Middle Eastern herbal medicine used against numerous diseases. After being decocted or macerated, this resin is widely consumed among Saudi Arabian patients who are already under prescribed medication. Despite its popularity, no studies have been reported on potential modulation effects of these resin extracts on drug metabolism. Therefore, we studied C. myrrha resin extracts on the expression of cytochrome P450 (CYP) drug-metabolizing isoenzyme in human hepatocellular carcinoma cell line HepG2. The C. myrrha extracts were prepared by sonication and boiling, resembling the most popular traditional preparations of maceration and decoction, respectively. Both boiled and sonicated aqueous extracts were fingerprinted using high-performance liquid chromatography equipped with ultra-violet detector (HPLC-UVD). The viability of HepG2 cells treated with these aqueous extracts was determined using CellTiter-Glo® assay in order to select the efficient and non-toxic resin extract concentrations for phase-I metabolic CYP isoenzyme expression analysis. The isoenzyme gene and protein expression levels of CYP 2C8, 2C9, 2C19, and 3A4 were assessed using reverse transcription-quantitative polymerase chain reaction and Western blot technologies. The HPLC-UVD fingerprinting revealed different chromatograms for C. myrrha boiled and sonicated aqueous extracts. Both aqueous extracts were toxic to HepG2 cells when tested at concentrations exceeding 150 µg/ml of the dry crude extract. The CYP 2C8, 2C9, and 2C19 mRNA expression levels increased up to 4.0-fold in HepG2 cells treated with either boiled or sonicated C. myrrha aqueous extracts tested between 1 and 30 µg/ml, as compared with the untreated cells. However, CYP3A4 mRNA expression level exceeded the 2.0-fold cutoff when the cells were exposed to 30 µg/ml of C. myrrha extracts. The up-regulation of CYP mRNA expression levels induced by both boiled and sonicated C. myrrha aqueous extracts was confirmed at the CYP protein expression levels. In conclusion, both sonicated and boiled C. myrrha aqueous extracts modulate CYP 2C8, 2C9, 2C19, and 3A4 gene expression at clinically-relevant concentrations regardless of preparation methods. Further in vitro and in vivo experiments are required for CYP isoenzyme activity assessment and the establishment of herb-drug interaction profile for these traditional medicinal resin extracts.

5.
J Evid Based Integr Med ; 25: 2515690X20978391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33302699

RESUMO

Triple-negative breast cancer (TNBC), the most aggressive subtype, does not respond to targeted therapy due to the lack of hormone receptors. There is an urgent need for alternative therapies, including natural product-based anti-cancer drugs, at lower cost. We investigated the impact of a Calligonum comosum L'Hér. methanolic extract (CcME) on the TNBC MDA-MB-231 cell line proliferation and related cell death mechanisms performing cell viability and cytotoxicity assays, flow cytometry to detect apoptosis and cell cycle analysis. The apoptosis-related protein array and cellular reactive oxygen species (ROS) assay were also carried out. We showed that the CcME inhibited the TNBC cell viability, in a dose-dependent manner, with low cytotoxic effects. The CcME-treated TNBC cells underwent apoptosis, associated with a concomitant increase of apoptosis-related protein expression, including cytochrome c, cleaved caspase-3, cyclin-dependent kinase inhibitor p21, and the anti-oxidant enzyme catalase, compared with the untreated cells. The CcME also enhanced the mitochondrial transition pore opening activity and induced G0/G1 cell growth arrest, which confirmed the cytochrome c release and the increase of the p21 expression detected in the CcME-treated TNBC cells. The CcME-treated TNBC cells resulted in intracellular ROS production, which, when blocked with a ROS scavenger, did not reduce the CcME-induced apoptosis. In conclusion, CcME exerts anti-proliferative effects against TNBC cells through the induction of apoptosis and cell growth arrest. In vivo studies are justified to verify the CcME anti-proliferative activities and to investigate any potential anti-metastatic activities of CcME against TNBC development and progression.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Fitoterapia , Extratos Vegetais/farmacologia , Polygonaceae , Neoplasias de Mama Triplo Negativas , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocromos c/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
6.
BMC Complement Med Ther ; 20(1): 154, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448225

RESUMO

BACKGROUND: Herbal melanin (HM) is a dark pigment extracted from the seed coat of Nigella sativa L. and known to exert biological effects via toll-like receptor 4 (TLR4). Recently, TLR4 was described as involved in natural programmed cell death (apoptosis). Tumor and embryonic cells are used as in vitro cellular models for drug and anti-cancer agent screening. To date, no cytotoxic studies have been reported of HM in TLR4-positive acute monocytic leukemia THP-1 cells compared to TLR4-negative human embryonic kidney HEK293 cells. METHODS: We studied the anti-proliferative effects of several HM concentrations on THP-1 and HEK293 cells by evaluating cell viability using the CellTiter-Glo® luminescent assay, assessing the TLR4 expression level, determining the apoptotic status, and analyzing the cell cycle distribution using flow cytometry. Apoptotic pathways were investigated using mitochondrial transition pore opening, caspase activity assays and immunoblot technology. RESULTS: Low HM concentrations did not affect THP-1 cell viability, but high HM concentrations (62.5-500 µg/mL) did decrease THP-1 cell viability and induced G0/G1 phase cell cycle arrest. Only at the highest concentration (500 µg/mL), HM slightly increased the TLR4 expression on the THP-1 cell surface, concomitantly upregulated TLR4 whole protein and gene expression, and induced apoptosis in THP-1 cells via activation of the extrinsic and intrinsic pathways. No change of apoptotic status was noticed in TLR4-negative HEK293 cells, although HM decreased HEK293 cell viability and induced cell growth arrest in the G2 phase. CONCLUSION: HM exerts distinct anti-proliferative effects on human acute monocytic leukemia and embryonic kidney cells mainly through cell cycle interference in a TLR4-independent manner and through apoptosis induction in a TLR4-dependent manner, as observed in only the THP-1 cells.


Assuntos
Leucemia Monocítica Aguda/patologia , Melaninas/farmacologia , Nigella sativa/química , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Leucemia Monocítica Aguda/tratamento farmacológico , Sementes/química , Células THP-1 , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA