Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mitochondrial DNA B Resour ; 6(10): 3080-3081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595343

RESUMO

Ginseng (Panax ginseng C. A. Meyer) is a multifunctional medicinal herb used worldwide and is an economically important high-value crop in Korea. Here, we presented the mitochondrial genome of P. ginseng landrace 'Jakyung', which is one of the most common cultivars cultivated in Korean farms. The complete mitochondrial genome sequence was 464,661 bp in length and had a single circular form. The ginseng mitochondrial genome encoded 72 unique genes, including 45 protein-coding genes, 24 tRNA genes, and three rRNA genes. Nucleotide composition analysis revealed a GC content of 45.1%, with a slightly higher A + T bias (A, 27.1%; T, 27.8%; G, 22.5%; C, 22.6%). Phylogenetic analysis showed that P. ginseng was closely related to Daucus carota in the Apiales. This complete mitochondrial genome sequence of P. ginseng provides valuable genetic information for further studies of this important medicinal plant.

2.
PeerJ ; 7: e7479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410317

RESUMO

BACKGROUND: Licorice (Glycyrrhiza spp. L.) is used as a natural sweetener and medicinal herb in European and Asian countries. Molecular studies have been conducted to find differences between wild and cultivated species because most wild species are highly resistant to abiotic and biotic stresses compared with their cultivated species. However, few molecular markers have been developed for studying the genetic diversity and population structure of licorice species and to identify differences between cultivars. Thus, the present study aimed to develop a set of genomic simple sequence repeat (SSR) markers for molecular studies of these species. METHODS: In the present study, we developed polymorphic SSR markers based on whole-genomesequence data of Glycyrrhiza lepidota. Then, based on the sequence information, the polymorphic SSR markers were developed. The SSR markers were applied to 23 Glycyrrhiza individual plants. We also evaluated the phylogenetic relationships and interspecies transferability among samples. RESULTS: The genetic diversity analysis using these markers identified 2-23 alleles, and the major allele frequency, observed heterozygosity, genetic diversity, and polymorphism information content were 0.11-0.91, 0-0.90, 0.17-0.94, and 0.15-0.93, respectively. Interspecies transferability values were 93.5%, 91.6%, and 91.1% for G. echinata, G. glabra, and G. uralensis, respectively. Phylogenetic analysis clustered cultivated (group 1) and wild (group 2) species into three and two subgroups, respectively. The reported markers represent a valuable resource for the genetic characteri z ation of Glycyrrhiza spp. for theanalysis of its genetic variability, and as a tool for licorice transferability. This is the first intraspecific study in a collection of Glycyrrhiza spp. germplasm using SSR markers.

3.
Genes (Basel) ; 8(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914759

RESUMO

Korean ginseng (Panax ginseng C.A. Meyer) has been widely used for medicinal purposes and contains potent plant secondary metabolites, including ginsenosides. To obtain transcriptomic data that offers a more comprehensive view of functional genomics in P. ginseng, we generated genome-wide transcriptome data from four different P. ginseng tissues using PacBio isoform sequencing (Iso-Seq) technology. A total of 135,317 assembled transcripts were generated with an average length of 3.2 kb and high assembly completeness. Of those unigenes, 67.5% were predicted to be complete full-length (FL) open reading frames (ORFs) and exhibited a high gene annotation rate. Furthermore, we successfully identified unique full-length genes involved in triterpenoid saponin synthesis and plant hormonal signaling pathways, including auxin and cytokinin. Studies on the functional genomics of P. ginseng seedlings have confirmed the rapid upregulation of negative feed-back loops by auxin and cytokinin signaling cues. The conserved evolutionary mechanisms in the auxin and cytokinin canonical signaling pathways of P. ginseng are more complex than those in Arabidopsis thaliana. Our analysis also revealed a more detailed view of transcriptome-wide alternative isoforms for 88 genes. Finally, transposable elements (TEs) were also identified, suggesting transcriptional activity of TEs in P. ginseng. In conclusion, our results suggest that long-read, full-length or partial-unigene data with high-quality assemblies are invaluable resources as transcriptomic references in P. ginseng and can be used for comparative analyses in closely related medicinal plants.

4.
Mol Genet Genomics ; 290(3): 1055-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25527477

RESUMO

We performed de novo transcriptome sequencing for Panax ginseng and Panax quinquefolius accessions using the 454 GS FLX Titanium System and discovered annotation-based genome-wide single-nucleotide polymorphism (SNPs) using next-generation ginseng transcriptome data without reference genome sequence. The comprehensive transcriptome characterization with the mature roots of four ginseng accessions generated 297,170 reads for 'Cheonryang' cultivar, 305,673 reads for 'Yunpoong' cultivar, 311,861 reads for the G03080 breeding line, and 308,313 reads for P. quinquefolius. In transcriptome assembly, the lengths of the sample read were 156.42 Mb for 'Cheonryang', 161.95 Mb for 'Yunpoong', 165.07 Mb for G03080 breeding line, and 166.48 Mb for P. quinquefolius. A total of 97 primer pairs were designed with the homozygous SNP presented in all four accessions. SNP genotyping using high-resolution melting (HRM) analysis was performed to validate the putative SNP markers of 97 primer pairs. Out of the 73 primer pairs, 73 primer pairs amplified the target sequence and 34 primer pairs showed polymorphic melting curves in samples from 11 P. ginseng cultivars and one P. quinquefolius accession. Among the 34 polymorphic HRM-SNP primers, four primers were useful to distinguish ginseng cultivars. In the present study, we demonstrated that de novo transcriptome assembly and mapping analyses are useful in providing four HRM-SNP primer pairs that reliably show a high degree of polymorphism among ginseng cultivars.


Assuntos
Panax/genética , Raízes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma , Sequência de Bases , Primers do DNA/genética , DNA Complementar/química , DNA Complementar/genética , Biblioteca Gênica , Marcadores Genéticos/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Análise de Sequência de DNA , Temperatura de Transição
5.
J Ginseng Res ; 38(2): 123-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24748836

RESUMO

Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) are widely used medicinal plants with similar morphology but different medicinal efficacy. Roots, flowers, and processed products of Korean and American ginseng can be difficult to differentiate from each other, leading to illegal trade in which one species is sold as the other. This study was carried out to develop convenient and reliable chloroplast genome-derived DNA markers for authentication of Korean and American ginseng in commercial processed products. One codominant marker could reproducibly identify both species and intentional mixtures of the two species. We further developed a set of species-unique dominant DNA markers. Each species-specific dominant marker could detect 1% cross contamination with other species by low resolution agarose gel electrophoresis or quantitative polymerase chain reaction. Both markers were successfully applied to evaluate the original species from various processed ginseng products purchased from markets in Korea and China. We believe that high-throughput application of this marker system will eradicate illegal trade and promote confident marketing for both species to increase the value of Korean as well as American ginseng in Korea and worldwide.

6.
J Nat Prod ; 75(10): 1777-84, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23002782

RESUMO

The age of the ginseng plant has been considered as an important criterion to determine the quality of this species. For age differentiation and structure interpretation of age-dependent key constituents of Panax ginseng, hairy root (fine root) extracts aged from four to six years were analyzed using a nontargeted approach with ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS). Various classification methods were used to determine an optimal method to best describe ginseng age by selecting influential metabolites of different ages. Through the metabolite selection process, several age-dependent key constituents having the potential to be biomarkers were determined, and their structures were identified according to tandem mass spectrometry and accurate mass spectrometry by comparing them with an in-house ginsenoside library and with literature data. This proposed method applied to the hairy roots of P. ginseng showed an improved efficiency of age differentiation when compared to previous results on the main roots and increases the possibility of the identification of key metabolites that can be used as biomarker candidates for quality assurance in ginseng.


Assuntos
Ginsenosídeos/análise , Metabolômica , Panax/química , Cromatografia Líquida , Ginsenosídeos/isolamento & purificação , Ginsenosídeos/metabolismo , Espectrometria de Massas , Estrutura Molecular , Panax/genética , Raízes de Plantas/química , República da Coreia
7.
Mol Biol Rep ; 39(1): 729-36, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21573801

RESUMO

Cleaved amplified polymorphic sequence (CAPS) marker system using mitochondrial consensus primers was applied for molecular identification of Korean ginseng cultivars (Panax ginseng). Initially, a total of 34 primers were tested to six Korean ginseng cultivars and two foreign Panax species, P. quinquefolius and P. notoginseng. In the polymerase chain reaction (PCR) amplification results, four primers (mt7, mt11, mt13, and mt18) generated co-dominant polymorphic banding patterns discriminating the Korean ginseng cultivars from P. quinquefolius and P. notoginseng. In the CAPS analysis results, the majority of the cleaved PCR products also yielded additional latent polymorphisms between the Korean ginseng cultivars and two foreign Panax species. Specific latent CAPS polymorphisms for cultivar Gopoong and Chunpoong were detected from internal region amplified with mt9 primer by treating HinfI and Tsp509I endonucleases, respectively. Sequencing analysis revealed that the length of amplified region of Korean ginseng cultivars was 2,179 bp, and those of P. quinquefolius and P. notoginseng were 2,178 and 2,185 bp, respectively. Blast search revealed that the amplified region was a mitochondrial cytochrome oxidase subunit 2 (cox2) gene intron II region. Nineteen single nucleotide polymorphisms (SNP) including each specific SNP for Gopoong and Chunpoong, and three insertion and deletion (InDel) polymorphisms were detected by sequence alignment. The CAPS markers developed in this study, which are specific to Gopoong and Chunpoong, and between the Korean ginseng cultivars and two foreign Panax species, will serve as a practical and reliable tool for their identification, purity maintenance, and selection of candidate lines and cultivars.


Assuntos
DNA Mitocondrial/genética , Marcadores Genéticos/genética , Panax/genética , Sequência de Bases , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Etídio , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , República da Coreia , Análise de Sequência de DNA , Especificidade da Espécie
8.
J Pharm Biomed Anal ; 58: 19-26, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21996062

RESUMO

Ginseng is an important herbal resource worldwide, and the adulteration or falsification of cultivation age has been a serious problem in the commercial market. In this study, ginseng (Panax ginseng) roots, which were cultivated for 2-6 years under GAP standard guidelines, were analyzed by NMR-based metabolomic techniques using two solvents. At first, ginseng root samples were extracted with 50% methanol, and analyzed by NMR with D(2)O as the NMR dissolution solvent. The 2-, 3-, 4-, and 5/6-year-old ginseng root samples were separated in PLS-DA-derived score plots. However, 5- and 6-year-old ginseng roots were not separated by the solvent system. Therefore, various solvents were tested to differentiate the 5- and 6-year-old ginseng root samples, and 100% methanol-d(4) was chosen as the direct extraction and NMR dissolution solvent. In the PLS model using data from the 100% methanol-d(4) solvent, 5- and 6-year-old ginseng roots were clearly separated, and the model was validated using internal and external data sets. The obtained RMSEE and RMSEP values suggested that the PLS model has strong predictability for discriminating the age of 5- and 6-years-old ginseng roots. The present study suggests that the age of ginseng could be successfully predicted using two solvents, and the developed method in this study can be used as a standard protocol for discriminating and predicting the ages of ginseng root samples.


Assuntos
Panax/crescimento & desenvolvimento , Panax/metabolismo , Fatores Etários , Medicamentos Falsificados , Medicamentos de Ervas Chinesas/química , Metaboloma , Metabolômica/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Panax/química , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solventes/química
9.
J Agric Food Chem ; 59(19): 10435-41, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21916514

RESUMO

An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-Tof MS)-based metabolomic technique was applied for metabolite profiling of 60 Panax ginseng samples aged from 1 to 6 years. Multivariate statistical methods such as principal component analysis and hierarchical clustering analysis were used to compare the derived patterns among the samples. The data set was subsequently applied to various metabolite selection methods for sophisticated classification with the optimal number of metabolites. The results showed variations in accuracy among the classification methods for the samples of different ages, especially for those aged 4, 5, and 6 years. This proposed analytical method coupled with multivariate analysis is fast, accurate, and reliable for discriminating the cultivation ages of P. ginseng samples and is a potential tool to standardize quality control in the P. ginseng industry.


Assuntos
Metabolômica , Panax/química , Panax/classificação , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Análise Multivariada , Panax/metabolismo , Extratos Vegetais/química , Fatores de Tempo
10.
Biol Pharm Bull ; 33(9): 1579-88, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20823578

RESUMO

This study describes an efficient approach for developing sequence tagged sites (STS) for Panax ginseng C.A. MEYER, and their applications for line discrimination. By using the methylation filtering (MF) technique, a genomic library was constructed, in which clone inserts were derived from the hypomethylated regions of ginseng genome. A methylation unfiltered genomic library was also constructed and the clone inserts were compared to those from the MF library in terms of sequence characteristics. Sequence analysis revealed that MF efficiently enriched the protein coding region of P. ginseng, for which the repetitive DNA appeared to be as little as 2.5 fold lower than clones in the unfiltered library, and also indicated that the P. ginseng genome may contain a large fraction of methylated repetitive DNA elements. A total of 99 and 100 highly stringent STS primer sets were designed from the filtered and unfiltered library, respectively. Amplification products were tested for latent polymorphism across six cultivars of P. ginseng and other 2 Panax species using six endonucleases recognizing four-bases. STS primer sets described here will be useful for marker-assisted selection, genome mapping and line discrimination of P. ginseng or its cultivars from other Panax species.


Assuntos
Biblioteca Gênica , Genoma de Planta/genética , Panax/genética , Extratos Vegetais/genética , Sitios de Sequências Rotuladas , Coreia (Geográfico) , Extratos Vegetais/isolamento & purificação , Folhas de Planta/genética , Sementes/genética
11.
Biol Pharm Bull ; 32(11): 1912-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19881307

RESUMO

The present study describes the molecular authentication of 21 Korean Artemisia species using PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) technique based on the trnL-F sequences in chloroplast DNA. Five different banding patterns were generated from 21 Artemisia species using HinfI restriction enzyme. A. apiacea, A. keiskeana and A. sieversiana have specific banding patterns. The remaining 18 species had shared two banding patterns. Phylogenetic analysis based on trnL-F sequence variations showed results similar to PCR-RFLP banding patterns. It suggested that the trnL-F region does not have sufficient variations to identify the 21 Artemisia species. However, the specific banding patterns for A. apiacea, A. keiskeana and A. sieversiana can be utilized as a DNA marker for discriminating them from other Artemisia species. These markers will be also useful for developing A. apiacea, A. keiskeana and A. sieversiana into new medicine and food based on their efficacy.


Assuntos
Artemisia/genética , DNA de Cloroplastos/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Artemisia/classificação , Sequência de Bases , Coreia (Geográfico) , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
12.
Plant Physiol Biochem ; 47(11-12): 998-1002, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19796960

RESUMO

To elucidate the exact function of CabAS in Centella asiatica, which was previously reported as a putative beta-amyrin synthase [Plant Cell Rep, 24:304-311, 2005], this gene was functionally expressed in the lanosterol synthase-deficient yeast mutant (erg7). After inducing the CabAS gene with galactose, a peak consistent with the dammarenediol standard was detected in LC/APCIMS analyses and the accumulated product was confirmed as dammarenediol. CabAS should therefore be renamed to C. asiatica dammarenediol synthase (CaDDS). The confirmation of this gene function may allow us to better understand the generation of numerous triterpene carbon skeletons.


Assuntos
Alquil e Aril Transferases/genética , Centella/enzimologia , Expressão Gênica , Genes de Plantas , Proteínas de Plantas/genética , Saponinas/biossíntese , Sequência de Aminoácidos , Centella/genética , Galactose , Transferases Intramoleculares , Mutação , Filogenia , Saccharomyces cerevisiae/genética , Saponinas/genética , Homologia de Sequência , Triterpenos
13.
Br J Nutr ; 99(1): 67-75, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17697428

RESUMO

Asian plantain (Plantago asiatica) essential oil (PAEO) contains multiple bioactive compounds, but its potential effects on lipid metabolism have not been examined. PAEO was found to be mostly composed of oxygenated monoterpenes, with linalool as the major component (82.5 %, w/w), measured using GC-MS. Incubation of 0-200 microg PAEO/ml with HepG2 cells for 24 h resulted in no significant toxicity. Incubation with 0.2 mg PAEO/ml altered the expression of LDL receptor (+83 %; P < 0.05) and 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase ( - 37 %; P < 0.05), as assessed using RT-PCR. LDL oxidation was markedly inhibited by PAEO treatment due to the prevalence of linalool compounds in PAEO. Oral administration of PAEO for 3 weeks in C57BL/6 mice significantly reduced plasma total cholesterol and TAG concentrations by 29 and 46 %, respectively. The mRNA (+58 %; P < 0.05), but not protein, levels of the LDL receptor were significantly higher, whereas both mRNA and protein levels of HMG-CoA reductase were significantly lower ( - 46 and - 11 %, respectively; P < 0.05) in the liver of PAEO-fed than of control mice. The mRNA levels of CYP7A1 were marginally reduced in HepG2 cells, but not in mouse liver after PAEO treatment. Thus, PAEO may have hypocholesterolaemic effects by altering the expression of HMG-CoA reductase. Reduced TAG and oxidised LDL may provide additional cardiovascular protective benefits.


Assuntos
Colesterol/sangue , Hidroximetilglutaril-CoA Redutases/metabolismo , Fígado/enzimologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Plantago/química , Animais , Western Blotting/métodos , Linhagem Celular , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Depressão Química , Expressão Gênica/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/genética , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Óleos Voláteis/análise , RNA Mensageiro/análise , Receptores de LDL/genética , Receptores de LDL/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Plant Cell Rep ; 26(11): 1941-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17632725

RESUMO

Transformed root ("hairy root") cultures have been shown to be a good model for the study of many secondary metabolites. However, economically important compounds such as asiaticoside and madecassoside are produced in insignificant amounts in the root of Centella asiatica (L.) Urban. To overcome this problem, C. asiatica was transformed using Agrobacterium rhizogenes strain R1000 that harbors pCAMBIA1302 encoding the hygromycin phosphotransferase (hpt) and green fluorescence protein (mgfp5) genes and the hairy culture was coupled with elicitation technique. Hairy roots were obtained at a frequency of up to 14.1% from a tissue junction between the leaf and petiole. Abundant hairy roots were observed when co-cultivation of the plant with A. rhizogenes was done for 7 days (36.1%). Transformation was confirmed by PCR and Southern blot analyses. Five weeks after inoculation, no asiaticoside was detected in the hairy root samples. However, when 0.1 mM methyl jasmonate (MJ) was applied as an elicitor to the culture medium for 3 weeks, a large quantity of asiaticoside was generated (7.12 mg/g, dry wt). In the case of gene expression, 12 h after MJ treatment the expression of the CabAS (C. asiatica putative beta-amyrin synthase) gene in the hairy roots is significantly different from that of the control and this level of transcripts was maintained for 14 days. Our results showed that production of C. asiatica hairy roots could be optimized and the resulting cultures could be elicited with MJ treatment for enhanced production of asiaticoside.


Assuntos
Acetatos/farmacologia , Centella/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Raízes de Plantas/metabolismo , Triterpenos/metabolismo , Células Cultivadas , Centella/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Transferases Intramoleculares/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Rhizobium/genética
15.
Arch Pharm Res ; 30(12): 1625-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18254251

RESUMO

Fingerprinting analysis of fresh ginseng according to root age was performed using 1H-NMR spectroscopy and multivariate analysis techniques. Various peaks were detected in the aliphatic (0-3 ppm), sugar (3-6 ppm), and aromatic (6-9 ppm) regions of the 1H-NMR spectra of the water extracts of fresh ginseng root. The use of principal components (PCs) analysis (PCA) for metabolomic profiling allowed the large 1H-NMR data set obtained for various metabolites to be reduced to PC1, PC2, and PC3. Two dimensional score plots showed clear separations with these three components at different roots ages, and explained 89.6% of the total variance. Canonical discriminant analysis identified the ginseng roots at various ages from the NMR results with over 89.9% discrimination accuracy. These results indicate that the combination of 1H-NMR and PCA provides a very promising tool for the authentication and quality control of fresh ginseng roots at different ages.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Panax/química , Raízes de Plantas/química , Análise de Componente Principal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA