Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 988748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120293

RESUMO

Artemisinin, isolated from the traditional Chinese medicinal plant qing hao (Artemisia annua) and its derivatives are used for treatment of malaria. With treatment failures now being recorded for the derivatives and companion drugs used in artemisinin combination therapies new drug combinations are urgently required. The amino-artemisinins artemiside and artemisone display optimal efficacies in vitro against asexual and sexual blood stages of the malaria parasite Plasmodium falciparum and are active against tumour cell lines. In continuing the evolution of combinations of the amino-artemisinins with new drugs, we examine the triterpenoid quinone methide celastrol isolated from the traditional Chinese medicinal plant léi gong téng (Tripterygium wilfordii). This compound is redox active, and has attracted considerable attention because of potent biological activities against manifold targets. We report that celastrol displays good IC50 activities ranging from 0.50-0.82 µM against drug-sensitive and resistant asexual blood stage Pf, and 1.16 and 0.28 µM respectively against immature and late stage Pf NF54 gametocytes. The combinations of celastrol with each of artemisone and methylene blue against asexual blood stage Pf are additive. Given that celastrol displays promising antitumour properties, we examined its activities alone and in combinations with amino-artemisinins against human liver HepG2 and other cell lines. IC50 values of the amino-artemisinins and celastrol against HepG2 cancer cells ranged from 0.55-0.94 µM. Whereas the amino-artemisinins displayed notable selectivities (SI > 171) with respect to normal human hepatocytes, in contrast, celastrol displayed no selectivity (SI < 1). The combinations of celastrol with artemiside or artemisone against HepG2 cells are synergistic. Given the promise of celastrol, judiciously designed formulations or structural modifications are recommended for mitigating its toxicity.

2.
J Ethnopharmacol ; 297: 115551, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35850311

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aloe marlothii A.Berger (Xanthorrhoeaceae) is indigenous to southern African countries where its aqueous preparations are used in traditional medicine to treat several ailments including hypertension, respiratory infections, venereal diseases, chest pain, sore throat and malaria. AIM OF THE STUDY: The aims of this study were as follows: (i) isolate and identify the antiplasmodial active compounds in A. marlothii roots. As the water extract was previously inactive, the dichloromethane:methanol (DCM:MeOH) (1:1) was used, (ii) examine the activity of the isolated compounds against Plasmodium falciparum asexual blood stage (ABS) parasites as well as for transmission-blocking activity against gametocytes and gametes, and (iii) to use in silico tools to predict the target(s) of the active molecules. MATERIALS AND METHODS: The crude DCM:MeOH (1:1) extract of A. marlothii roots was fractionated on a reverse phase C8 column, using a positive pressure solid-phase extraction (ppSPE) workstation to produce seven fractions. The resulting fractions and the crude DCM:MeOH extract were tested in vitro against P. falciparum (NF54) ABS parasites using the malaria SYBR Green I based-fluorescence assay. Flash silica chromatography and mass-directed preparative high-performance liquid chromatography were utilised to isolate the active compounds. The isolated compounds were evaluated in vitro against P. falciparum asexual (NF54 and K1 strains) and sexual (gametocytes and gametes) stage parasites. Molecular docking was then used for the in silico prediction of targets for the isolated active compounds in P. falciparum. RESULTS: The crude extract and two SPE fractions displayed good antiplasmodial activity with >97% and 100% inhibition of ABS parasites proliferation at 10 and 20 µg/mL, respectively. Following UPLC-MS analysis of these active fractions, a targeted purification resulted in the isolation of six compounds identified as aloesaponol I (1), aloesaponarin I (2), aloesaponol IV (3), ß-sorigenin-1-O-methylether (4), emodin (5), and chrysophanol (6). Aloesaponarin I (2) was the most bioactive, compared to other isolated constituents, against P. falciparum ABS parasites exhibiting equipotency against the drug-sensitive (NF54) (IC50 = 1.54 µg/mL (5 µM)) and multidrug-resistant (K1) (IC50 = 1.58 µg/mL (5 µM)) strains. Aloesaponol IV (3) showed pronounced activity against late-stage (>90% stage IV/V) gametocytes (IC50 = 6.53 µg/mL (22.6 µM)) demonstrating a 3-fold selective potency towards these sexual stages compared to asexual forms of the parasite (IC50 = 19.77 ± 6.835 µg/mL (68 µM)). Transmission-blocking potential of aloesaponol IV (3) was validated by in vitro inhibition of exflagellation of male gametes (94% inhibition at 20 µg/mL). In silico studies identified ß-hematin and DNA topoisomerase II as potential biological targets of compounds 2 and 3, respectively. CONCLUSION: The findings from our study substantiate the traditional use of A. marlothii to treat malaria. To our knowledge, this study has provided the first report on the isolation and identification of antiplasmodial compounds from A. marlothii roots. Furthermore, our study has provided the first report on the transmission-blocking potential of one of the compounds from the genus Aloe, motivating for the investigation of other species within this genus for their potential P. falciparum transmission-blocking activity.


Assuntos
Aloe , Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Antimaláricos/uso terapêutico , Cromatografia Líquida , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Masculino , Simulação de Acoplamento Molecular , Extratos Vegetais/uso terapêutico , Plasmodium falciparum , Espectrometria de Massas em Tandem
3.
Artigo em Inglês | MEDLINE | ID: mdl-32505117

RESUMO

The discovery and development of multistage antimalarial drugs targeting intra-erythrocytic asexual and sexual Plasmodium falciparum parasites is of utmost importance to achieve the ambitious goal of malaria elimination. Here, we report the validation of naphthylisoquinoline (NIQ) alkaloids and their synthetic analogues as multistage active antimalarial drug candidates. A total of 30 compounds were tested, of which 17 exhibited IC50 values <1 µM against drug-sensitive P. falciparum parasites (NF54 strain); 15 of these retained activity against a panel of drug-resistant strains. These compounds showed low in vitro cytotoxicity against HepG2 cells, with selectivity indices of >10. The tested compounds showed activity in vitro against both early- and late-stage P. falciparum gametocytes while blocking male gamete formation (>70% inhibition of exflagellation at 2 µM). Additionally, five selected compounds were found to have good solubility (≥170 µM in PBS at pH 6.5), while metabolic stability towards human, mouse, and rat microsomes ranged from >90% to >7% after 30 min. Dioncophylline C (2a) emerged as a front runner from the study, displaying activity against both asexual parasites and gametocytes, a lack of cross-resistance to chloroquine, good solubility, and microsomal stability. Overall, this is the first report on the multistage activity of NIQs and their synthetic analogues including gametocytocidal and gametocidal effects induced by this class of compounds.


Assuntos
Antimaláricos/farmacologia , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Alcaloides/farmacologia , Alcaloides/toxicidade , Animais , Antimaláricos/toxicidade , Produtos Biológicos/farmacologia , Produtos Biológicos/toxicidade , Eritrócitos/efeitos dos fármacos , Humanos , Isoquinolinas/farmacologia , Isoquinolinas/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Camundongos , Naftóis/farmacologia , Naftóis/toxicidade , Extratos Vegetais/toxicidade , Ratos
4.
Malar J ; 18(1): 65, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849984

RESUMO

BACKGROUND: Optimal adoption of the malaria transmission-blocking strategy is currently limited by lack of safe and efficacious drugs. This has sparked the exploration of different sources of drugs in search of transmission-blocking agents. While plant species have been extensively investigated in search of malaria chemotherapeutic agents, comparatively less effort has been channelled towards exploring them in search of transmission-blocking drugs. Artemisia afra (Asteraceae), a prominent feature of South African folk medicine, is used for the treatment of a number of diseases, including malaria. In search of transmission-blocking compounds aimed against Plasmodium parasites, the current study endeavoured to isolate and identify gametocytocidal compounds from A. afra. METHODS: A bioassay-guided isolation approach was adopted wherein a combination of solvent-solvent partitioning and gravity column chromatography was used. Collected fractions were continuously screened in vitro for their ability to inhibit the viability of primarily late-stage gametocytes of Plasmodium falciparum (NF54 strain), using a parasite lactate dehydrogenase assay. Chemical structures of isolated compounds were elucidated using UPLC-MS/MS and NMR data analysis. RESULTS: Two guaianolide sesquiterpene lactones, 1α,4α-dihydroxybishopsolicepolide and yomogiartemin, were isolated and shown to be active (IC50 < 10 µg/ml; ~ 10 µM) against both gametocytes and intra-erythrocytic asexual P. falciparum parasites. Interestingly, 1α,4α-dihydroxybishopsolicepolide was significantly more potent against late-stage gametocytes than to early-stage gametocytes and intra-erythrocytic asexual P. falciparum parasites. Additionally, both isolated compounds were not overly cytotoxic against HepG2 cells in vitro. CONCLUSION: This study provides the first instance of isolated compounds from A. afra against P. falciparum gametocytes as a starting point for further investigations on more plant species in search of transmission-blocking compounds.


Assuntos
Antiprotozoários/farmacologia , Artemisia/química , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Parasitária , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas em Tandem
5.
Trends Parasitol ; 32(9): 669-681, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27209388

RESUMO

The ability to target human-mosquito parasite transmission challenges global malaria elimination. However, it is not obvious what a transmission-blocking drug will look like; should it target only parasite transmission stages; be combined with a partner drug killing the pathogenic asexual stages; or kill both the sexual and asexual blood stages, preferably displaying polypharmacology? The development of transmission-blocking antimalarials requires objective analyses of the current strategies. Here, pertinent issues and questions regarding the target candidate profile of a transmission-blocking compound, and its role in malaria elimination strategies, are highlighted and novel perspectives proposed. The essential role of a test cascade that integrates screening and validation strategies to identify next-generation transmission-blocking antimalarials is emphasised.


Assuntos
Antimaláricos/uso terapêutico , Erradicação de Doenças/tendências , Avaliação Pré-Clínica de Medicamentos , Malária/prevenção & controle , Animais , Humanos , Estágios do Ciclo de Vida , Malária/tratamento farmacológico , Malária/transmissão
6.
J Biol Chem ; 287(26): 22367-76, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22577137

RESUMO

Glutamine amidotransferase/aminodeoxychorismate synthase (GAT-ADCS) is a bifunctional enzyme involved in the synthesis of p-aminobenzoate, a central component part of folate cofactors. GAT-ADCS is found in eukaryotic organisms autonomous for folate biosynthesis, such as plants or parasites of the phylum Apicomplexa. Based on an automated screening to search for new inhibitors of folate biosynthesis, we found that rubreserine was able to inhibit the glutamine amidotransferase activity of the plant GAT-ADCS with an apparent IC(50) of about 8 µM. The growth rates of Arabidopsis thaliana, Toxoplasma gondii, and Plasmodium falciparum were inhibited by rubreserine with respective IC(50) values of 65, 20, and 1 µM. The correlation between folate biosynthesis and growth inhibition was studied with Arabidopsis and Toxoplasma. In both organisms, the folate content was decreased by 40-50% in the presence of rubreserine. In both organisms, the addition of p-aminobenzoate or 5-formyltetrahydrofolate in the external medium restored the growth for inhibitor concentrations up to the IC(50) value, indicating that, within this range of concentrations, rubreserine was specific for folate biosynthesis. Rubreserine appeared to be more efficient than sulfonamides, antifolate drugs known to inhibit the invasion and proliferation of T. gondii in human fibroblasts. Altogether, these results validate the use of the bifunctional GAT-ADCS as an efficient drug target in eukaryotic cells and indicate that the chemical structure of rubreserine presents interesting anti-parasitic (toxoplasmosis, malaria) potential.


Assuntos
Ácido 4-Aminobenzoico/farmacologia , Apicomplexa/metabolismo , Ácido Fólico/metabolismo , Fisostigmina/análogos & derivados , Extratos Vegetais/farmacologia , Animais , Antiparasitários/farmacologia , Arabidopsis/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Concentração Inibidora 50 , Cinética , Modelos Químicos , Fisostigmina/farmacologia , Fitoterapia/métodos , Plasmodium falciparum/metabolismo , Proteínas Recombinantes/metabolismo , Toxoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA