Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phytomedicine ; 128: 155475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492368

RESUMO

BACKGROUND: The intricate interactions between chronic psychological stress and susceptibility to breast cancer have been recognized, yet the underlying mechanisms remain unexplored. Danzhi Xiaoyao Powder (DZXY), a traditional Chinese medicine (TCM) formula, has found clinical utility in the treatment of breast cancer. Macrophages, as the predominant immune cell population within the tumor microenvironment (TME), play a pivotal role in orchestrating tumor immunosurveillance. Emerging evidence suggests that lipid oxidation accumulation in TME macrophages, plays a critical role in breast cancer development and progression. However, a comprehensive understanding of the pharmacological mechanisms and active components of DZXY related to its clinical application in the treatment of stress-aggravated breast cancer remains elusive. PURPOSE: This study sought to explore the plausible regulatory mechanisms and identify the key active components of DZXY contributing to its therapeutic efficacy in the context of breast cancer. METHODS: Initially, we conducted an investigation into the relationship between the phagocytic capacity of macrophages damaged by psychological stress and phospholipid peroxidation using flow cytometry and LC-MS/MS-based phospholipomics. Subsequently, we evaluated the therapeutic efficacy of DZXY based on the results of the tumor size, tumor weight, the phospholipid peroxidation pathway and phagocytosis of macrophage. Additionally, the target-mediated characterization strategy based on binding of arachidonate 15-lipoxygenase (ALOX15) to phosphatidylethanolamine-binding protein-1 (PEBP1), including molecular docking analysis, microscale thermophoresis (MST) assay, co-immunoprecipitation analysis and activity verification, has been further implemented to reveal the key bio-active components in DZXY. Finally, we evaluated the therapeutic efficacy of isochlorogenic acid C (ICAC) based on the results of tumor size, tumor weight, the phospholipid peroxidation pathway, and macrophage phagocytosis in vivo. RESULTS: The present study demonstrated that phospholipid peroxides, as determined by LC-MS/MS-based phospholipidomics, triggered in macrophages, which in turn compromised their capacity to eliminate tumor cells through phagocytosis. Furthermore, we elucidate the mechanism behind stress-induced PEBP1 to form a complex with ALOX15, thereby mediating membrane phospholipid peroxidation in macrophages. DZXY, demonstrates potent anti-breast cancer therapeutic effects by disrupting the ALOX15/PEBP1 interaction and inhibiting phospholipid peroxidation, ultimately enhancing macrophages' phagocytic capability towards tumor cells. Notably, ICAC emerged as a promising active component in DZXY, which can inhibit the ALOX15/PEBP1 interaction, thereby mitigating phospholipid peroxidation in macrophages. CONCLUSION: Collectively, our findings elucidate stress increases the susceptibility of breast cancer by driving lipid peroxidation of macrophages and suggest the ALOX15/PEBP1 complex as a promising intervention target for DZXY.


Assuntos
Araquidonato 15-Lipoxigenase , Medicamentos de Ervas Chinesas , Peroxidação de Lipídeos , Macrófagos , Fosfolipídeos , Microambiente Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Feminino , Camundongos , Araquidonato 15-Lipoxigenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Humanos , Neoplasias da Mama/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Simulação de Acoplamento Molecular , Fagocitose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Células RAW 264.7
2.
Chin J Nat Med ; 20(7): 506-517, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35907649

RESUMO

Gut bacterial nitroreductases play an important role in reduction of various nitroaromatic compounds to the corresponding N-nitroso compounds, hydroxylamines or aromatic amines, most of which are carcinogenic and mutagenic agents. Inhibition of gut nitroreductases has been recognized as an attractive approach for reducing mutagen metabolites in the colon, so as to prevent colon diseases. In this study, the inhibitory effects of 55 herbal medicines against Escherichia coli(E. coli) nitroreductase (EcNfsA) were examined. Compared with other herbal extracts, Syzygium aromaticum extract showed superior inhibitory potency toward EcNfsA mediated nitrofurazone reduction. Then, the inhibitory effects of 22 major constituents in Syzygium aromaticum against EcNfsA were evaluted. Compared with other tested natural compounds, ellagic acid, corilagin, betulinic acid, oleanic acid, ursolic acid, urolithin M5 and isorhamnetin were found with strong to moderate inhibitory effect against EcNfsA, with IC50 values ranging from 0.67 to 28.98 mol·L-1. Furthermore, the inhibition kinetic analysis and docking simulation demonstrated that ellagic acid and betulinic acid potently inhibited EcNfsA (Ki < 2 µmol·L -1) in a competitively inhibitory manner, which created strong interactions with the catalytic triad of EcNfsA. In summary, our findings provide new scientific basis for explaining the anti-mutagenic activity of Syzygium aromaticum, where some newly identified EcNfsA inhibitors can be used for developing novel agents to reduce the toxicity induced by bacterial nitroreductase.


Assuntos
Syzygium , Ácido Elágico/farmacologia , Escherichia coli , Cinética , Nitrorredutases/farmacologia , Extratos Vegetais/farmacologia
3.
Planta Med ; 87(8): 631-641, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33733438

RESUMO

Intestinal bacterial ß-glucuronidases, the key enzymes responsible for the hydrolysis of various glucuronides into free aglycone, have been recognized as key targets for treating various intestinal diseases. This study aimed to investigate the inhibitory effects and mechanisms of the Mulberry bark constituents on E. coli ß-glucuronidase (EcGUS), the most abundant ß-glucuronidases produced by intestinal bacteria. The results showed that the flavonoids isolated from Mulberry bark could strongly inhibit E. coli ß-glucuronidase, with IC50 values ranging from 1.12 µM to 10.63 µM, which were more potent than D-glucaric acid-1,4-lactone. Furthermore, the mode of inhibition of 5 flavonoids with strong E. coli ß-glucuronidase inhibitory activity (IC50 ≤ 5 µM) was carefully investigated by a set of kinetic assays and in silico analyses. The results demonstrated that these flavonoids were noncompetitive inhibitors against E. coli ß-glucuronidase-catalyzed 4-nitrophenyl ß-D-glucuronide hydrolysis, with Ki values of 0.97 µM, 2.71 µM, 3.74 µM, 3.35 µM, and 4.03 µM for morin (1: ), sanggenon C (2: ), kuwanon G (3: ), sanggenol A (4: ), and kuwanon C (5: ), respectively. Additionally, molecular docking simulations showed that all identified flavonoid-type E. coli ß-glucuronidase inhibitors could be well-docked into E. coli ß-glucuronidase at nonsubstrate binding sites, which were highly consistent with these agents' noncompetitive inhibition mode. Collectively, our findings demonstrated that the flavonoids in Mulberry bark displayed strong E. coli ß-glucuronidase inhibition activity, suggesting that Mulberry bark might be a promising dietary supplement for ameliorating ß-glucuronidase-mediated intestinal toxicity.


Assuntos
Glucuronidase , Morus , Escherichia coli , Simulação de Acoplamento Molecular , Casca de Planta
4.
J Diabetes Investig ; 12(7): 1263-1271, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33244871

RESUMO

AIMS/INTRODUCTION: To explore relationships between polyunsaturated fatty acids (PUFA) and non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes, and whether insulin action has an interactive effect with PUFA on NAFLD progression. MATERIALS AND METHODS: We extracted clinical and omics data of 482 type 2 diabetes patients from a tertiary hospital consecutively from April 2018 to April 2019. NAFLD was estimated by ultrasound at admission. Plasma fasting n3 and n6 fatty acids were quantified by liquid chromatography-tandem mass spectrometry analysis. Restricted cubic spline nested in binary logistic regression was used to select the cut-off point, and estimate odds ratios and 95% confidence intervals. Additive interactions of the n6 : n3 ratio with insulin action for NAFLD were estimated using relative excess risk due to interaction, attributable proportion due to interaction and synergy index. Relative excess risk due to interaction >0, attributable proportion due to interaction >0 or synergy index >1 indicates biological interaction. Spearman correlation analysis was used to obtain partial correlation coefficients between PUFA and hallmarks of NAFLD. RESULTS: Of 482 patients, 313 were with and 169 were without NAFLD. N3 ≥800 and n6 PUFA ≥8,100 µmol/L were independently associated with increased NAFLD risk; n6 : n3 ratio ≤10 was associated with NAFLD (odds ratio 1.80, 95% confidence interval 1.20-2.71), and the effect size was amplified by high C-peptide (odds ratio 8.89, 95% confidence interval 4.48-17.7) with significant interaction. The additive interaction of the n6 : n3 ratio and fasting insulin was not significant. CONCLUSION: Decreased n6 : n3 ratio was associated with increased NAFLD risk in type 2 diabetes patients, and the effect was only significant and amplified when there was the co-presence of high C-peptide.


Assuntos
Peptídeo C/sangue , Diabetes Mellitus Tipo 2/sangue , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Idoso , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Pacientes Internados/estatística & dados numéricos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/etiologia , Razão de Chances
5.
Chin J Nat Med ; 18(5): 369-378, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32451094

RESUMO

Pancreatic lipase (PL), a crucial enzyme in the digestive system of mammals, has been proven as a therapeutic target to prevent and treat obesity. The purpose of this study is to evaluate and characterize the PL inhibition activities of the major constituents from Fructus Psoraleae (FP), one of the most frequently used Chinese herbs with lipid-lowering activity. To this end, a total of eleven major constituents isolated from Fructus Psoraleae have been obtained and their inhibition potentials against PL have been assayed by a fluorescence-based assay. Among all tested compounds, isobavachalcone, bavachalcone and corylifol A displayed strong inhibition on PL (IC50 < 10 µmol·L-1). Inhibition kinetic analyses demonstrated that isobavachalcone, bavachalcone and corylifol A acted as mixed inhibitors against PL-mediated 4-methylumbelliferyl oleate (4-MUO) hydrolysis, with the Ki values of 1.61, 3.77 and 10.16 µmol·L-1, respectively. Furthermore, docking simulations indicated that two chalcones (isobavachalcone and bavachalcone) could interact with the key residues located in the catalytic cavity of PL via hydrogen binding and hydrophobic interactions. Collectively, these finding provided solid evidence to support that Fructus Psoraleae contained bioactive compounds with lipid-lowering effects via targeting PL, and also suggested that the chalcones in Fructus Psoraleae could be used as ideal leading compounds to develop novel PL inhibitors.


Assuntos
Medicamentos de Ervas Chinesas/química , Inibidores Enzimáticos/química , Lipase/antagonistas & inibidores , Psoralea/química , Animais , Chalconas/química , Flavonas/química , Frutas/química , Lipase/química , Pancrelipase/metabolismo , Suínos
6.
Int J Biol Macromol ; 145: 620-633, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31883893

RESUMO

Herbal medicines are frequently used for the prevention and treatment of obesity and obesity-related disorders. Our preliminary screening showed that St. John's Wort (SJW) displayed potent inhibition on pancreatic lipase (PL), a key hydrolase responsible for lipid digestion and absorption in mammals. Herein, the inhibition potentials and inhibitory mechanism of SJW extract and its major constituents on PL were fully investigated by a set of in vitro and in silico studies. The results clearly demonstrated that the naphthodianthrones, biflavones and most of flavonoids in SJW displayed strong to moderate inhibition on PL. Among all tested natural compounds, two naphthodianthrones (hypericin and pseudohypericin) and one biflavone (I3,II8-biapigenin) isolated from SJW exhibited potent PL inhibition activity, with the IC50 values of <1 µM. Inhibition kinetics analyses showed that hypericin, pseudohypericin and I3,II8-biapigenin inhibited PL via a mixed manner, while molecular dynamics simulations revealed that three newly identified PL inhibitors could bind on PL at both the catalytic cavity and the interface between colipase and the C-terminal domain of PL. Collectively, our findings suggested that part of major constituents in SJW displayed potent PL inhibition activities, which could be used as lead compounds for the development of novel PL inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Hypericum/química , Lipase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Sítios de Ligação , Domínio Catalítico , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Hidrólise , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Pâncreas/enzimologia , Extratos Vegetais/química , Relação Estrutura-Atividade
7.
Chem Biol Interact ; 308: 339-349, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170387

RESUMO

Magnolol, the most abundant bioactive constituent of the Chinese herb Magnolia officinalis, has been found with multiple biological activities, including anti-oxidative, anti-inflammatory and enzyme-regulatory activities. In this study, the inhibitory effects and inhibition mechanism of magnolol on human carboxylesterases (hCEs), the key enzymes responsible for the hydrolytic metabolism of a variety of endogenous esters as well as ester-bearing drugs, have been well-investigated. The results demonstrate that magnolol strongly inhibits hCE1-mediated hydrolysis of various substrates, whereas the inhibition of hCE2 by magnolol is substrate-dependent, ranging from strong to moderate. Inhibition of intracellular hCE1 and hCE2 by magnolol was also investigated in living HepG2 cells, and the results showed that magnolol could strongly inhibit intracellular hCE1, while the inhibition of intracellular hCE2 was weak. Inhibition kinetic analyses and docking simulations revealed that magnolol inhibited both hCE1 and hCE2 in a mixed manner, which could be partially attributed to its binding at two distinct ligand-binding sites in each carboxylesterase, including the catalytic cavity and the regulatory domain. In addition, the potential risk of the metabolic interactions of magnolol via hCE1 inhibition was predicted on the basis of a series of available pharmacokinetic data and the inhibition constants. All these findings are very helpful in deciphering the metabolic interactions between magnolol and hCEs, and also very useful for avoiding deleterious interactions via inhibition of hCEs.


Assuntos
Compostos de Bifenilo/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Lignanas/metabolismo , Sítios de Ligação , Biocatálise , Compostos de Bifenilo/química , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Domínio Catalítico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Células Hep G2 , Humanos , Hidrólise , Cinética , Lignanas/química , Simulação de Acoplamento Molecular
8.
Int J Biol Macromol ; 134: 622-630, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31047931

RESUMO

Thrombin, a multifunctional serine protease responsible for the proteolytic hydrolysis of soluble fibrinogen, plays a pivotal role in the blood coagulation cascade. Currently, thrombin inhibitor therapy has been recognized as an effective therapeutic strategy for the prevention and treatment of thrombotic diseases. In this study, the inhibitory effects of natural constituents in St. John's Wort against human thrombin are carefully investigated by a fluorescence-based biochemical assay. The results clearly demonstrate that most of naphthodianthrones, flavonoids and biflavones exhibit strong to moderate inhibition on human thrombin. Among all tested compounds, hypericin shows the most potent inhibitory capability against thrombin, with the IC50 value of 3.00 µM. Further investigation on inhibition kinetics demonstrates that hypericin is a potent and reversible inhibitor against thrombin-mediated Z-GGRAMC acetate hydrolysis, with the Ki value of 2.58 µM. Inhibition kinetic analyses demonstrate that hypericin inhibits thrombin-mediated Z-GGRAMC acetate hydrolysis in a mixed manner, which agrees well with the results from docking simulations that hypericin can bind on both catalytic cavity and anion binding exosites. All these findings suggest that hypericin is a natural thrombin inhibitor with a unique dianthrone skeleton, which can be used as a good candidate to develop novel thrombin inhibitors with improved properties.


Assuntos
Fibrinolíticos/química , Fibrinolíticos/farmacologia , Hypericum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antracenos , Relação Dose-Resposta a Droga , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Perileno/análogos & derivados , Perileno/química , Perileno/farmacologia , Proteólise , Relação Estrutura-Atividade
9.
Int J Biol Macromol ; 126: 653-661, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594625

RESUMO

Flavonoids are widely distributed phytochemicals in vegetables, fruits and medicinal plants. Recent studies demonstrate that some natural flavonoids are potent inhibitors of the human UDP-glucuronosyltransferase 1A1 (UGT1A1), a key enzyme in detoxification of endogenous harmful compounds such as bilirubin. In this study, the inhibitory effects of 56 natural and synthetic flavonoids on UGT1A1 were assayed, while the structure-inhibition relationships of flavonoids as UGT1A1 inhibitors were investigated. The results demonstrated that the C-3 and C-7 hydroxyl groups on the flavone skeleton would enhance UGT1A1 inhibition, while flavonoid glycosides displayed weaker inhibitory effects than their corresponding aglycones. Further investigation on inhibition kinetics of two strong flavonoid-type UGT1A1 inhibitors, acacetin and kaempferol, yielded interesting results. Both flavonoids were competitive inhibitors against UGT1A1-mediated NHPN-O-glucuronidation, but were mixed and competitive inhibitors toward UGT1A1-mediated NCHN-O-glucuronidation, respectively. Furthermore, docking simulations showed that the binding areas of NHPN, kaempferol and acacetin on UGT1A1 were highly overlapping, and convergence with the binding area of bilirubin within UGT1A1. In summary, detailed structure-inhibition relationships of flavonoids as UGT1A1 inhibitors were investigated carefully and the findings shed new light on the interactions between flavonoids and UGT1A1, and will contribute considerably to the development of flavonoid-type drugs without strong UGT1A1 inhibition.


Assuntos
Flavonoides/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Domínio Catalítico , Flavonas/química , Flavonas/farmacologia , Flavonoides/química , Corantes Fluorescentes/metabolismo , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Humanos , Concentração Inibidora 50 , Quempferóis/química , Quempferóis/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Especificidade por Substrato/efeitos dos fármacos
10.
Bioorg Chem ; 80: 577-584, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30032067

RESUMO

Pancreatic lipase (PL), a key enzyme responsible for the hydrolysis of triacylglycerides in the gastrointestinal tract, has been identified as the therapeutic target for the regulation of lipid absorption. In the present study, six major constituents from a famous Chinese herbal medicine Cortex Mori Radicis (also named sangbaipi in Chinese), have been collected and their inhibitory effects on PL have been carefully investigated and well characterized by a fluorescence-based assay. The results clearly demonstrated that all tested bioactive constituents from Cortex Mori Radicis including sanggenone C (SC), sanggenone D (SD), kuwanon C (KC), kuwanon G (KG), morin and morusin displayed strong to moderate inhibitory effects towards PL with the IC50 values ranging from 0.77 µM to 20.56 µM. Further investigations on inhibition kinetics demonstrated that SC, SD, KC and KG functioned as potent and mixed inhibitors against PL-mediated 4-MU oleate hydrolysis, with the Ki values less than 5.0 µM. Furthermore, molecular docking simulations demonstrated that SD (the most potent PL inhibitor from Cortex Mori Radicis) could create strong interaction with Ser152 (the key amino acid in the catalytic triad) of PL via hydrogen bonding. All these findings provided a new powerful evidence for explaining the hypolipidemic effect of Cortex Mori Radicis, also suggested that some abundant natural compounds in this herbal medicine could be served as lead compounds for the development of new PL inhibitors.


Assuntos
Derivados de Benzeno/farmacologia , Benzofuranos/farmacologia , Cromonas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Lipase/antagonistas & inibidores , Animais , Derivados de Benzeno/química , Benzofuranos/química , Cromonas/química , Medicamentos de Ervas Chinesas/química , Inibidores Enzimáticos/química , Flavonoides/química , Lipase/metabolismo , Simulação de Acoplamento Molecular , Morus/química , Pâncreas/enzimologia , Suínos
11.
Phytother Res ; 32(7): 1311-1319, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29468758

RESUMO

Shikonin, a natural naphthoquinone compound derived from the herb Lithospermum erythrorhizon, is widely used for its various pharmacological activities. However, its potential interactions with other medications by inhibiting human carboxylesterases 2 (hCE2) remain unknown. In this study, the inhibitory effects of shikonin on the activity of hCE2 in human liver microsomes are investigated by using fluorescein diacetate (FD), N-(2-butyl-1,3-dioxo-2,3-dihydro-1H-phenalen-6-yl)-2-chloroacetamide (NCEN), and CPT-11 as substrates of hCE2. The results demonstrate that shikonin significantly inhibits the activity of hCE2 when FD and NCEN are used as substrates, whereas the half inhibition concentration value of shikonin increased by 5-30 times when CPT-11 was used as the substrate. The inhibition types of shikonin against hCE2 activity reflected by 3 substrates were all best fit to noncompetitive manners. In addition, shikonin was found to distinctly suppress endogenous hCE2 activity, characterized with attenuated fluorescence. Furthermore, for drugs metabolized by hCE2 with the similar binding sites with FD or NCEN, the estimated magnitudes of area under the curve variation were approximately 9-357% in the presence of shikonin. Also, the area under the curve of CPT-11 could be increased by 1-14% following administration of shikonin. These findings have clear clinical implications for the combination of shikonin and hCE2-metabolizing prodrugs.


Assuntos
Carboxilesterase/efeitos dos fármacos , Combinação de Medicamentos , Naftoquinonas/uso terapêutico , Plantas Medicinais/química , Humanos , Naftoquinonas/farmacologia
12.
Xenobiotica ; 48(5): 452-458, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28548030

RESUMO

1. Everolimus is an inhibitor of mammalian target of rapamycin (mTOR) and has been clinically utilized to prevent the rejection of organ transplants. This study aims to determine the inhibition of everolimus on the activity of phase-II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs). 2. The results showed that 100 µM of everolimus exerted more than 80% inhibition toward UGT1A1, UGT-1A3 and UGT-2B7. UGT1A3 and UGT2B7 were selected to elucidate the inhibition mechanism, and in silico docking showed that hydrogen bonds and hydrophobic interactions mainly contributed to the strong binding of everolimus toward the activity cavity of UGT1A3 and UGT2B7. Inhibition kinetic-type analysis using Lineweaver-Burk plot showed competitive inhibition toward all these UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 2.3, 0.07 and 4.4 µM for the inhibition of everolimus toward UGT1A1, UGT-1A3 and UGT-2B7, respectively. 3. In vitro-in vivo extrapolation (IVIVE) showed that [I]/Ki value was calculated to be 0.004, 0.14 and 0.002 for UGT1A1, UGT-1A3 and UGT-2B7, respectively. Therefore, high DDI potential existed between everolimus and clinical drugs mainly undergoing UGT1A3-catalyzed glucuronidation.


Assuntos
Inibidores Enzimáticos/farmacologia , Everolimo/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Glucuronosiltransferase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Isoformas de Proteínas/metabolismo
13.
Molecules ; 22(6)2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621744

RESUMO

Mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera Indica L., has been investigated extensively because of its remarkable pharmacological effects. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used to investigate the inhibition of mangiferin and aglycone norathyriol towards various isoforms of UGTs in our study, which evaluated the inhibitory capacity of MGF and its aglycone norathyriol (NTR) towards UDP-glucuronosyltransferase (UGT) isoforms. Initial screening experiment showed that deglycosylation of MGF into NTR strongly increased the inhibitory effects towards almost all the tested UGT isoforms at a concentration of 100 µM. Kinetic experiments were performed to further characterize the inhibition of UGT1A3, UGT1A7 and UGT1A9 by NTR. NTR competitively inhibited UGT1A3, UGT1A7 and UGT1A9, with an IC50 value of 8.2, 4.4, and 12.3 µM, and a Ki value of 1.6, 2.0, and 2.8 µM, respectively. In silico docking showed that only NTR could dock into the activity cavity of UGT1A3, UGT1A7 and UGT1A9. The binding free energy of NTR to UGT1A3, 1A7, 1A9 were -7.4, -7.9 and -4.0 kcal/mol, respectively. Based on the inhibition evaluation standard ([I]/Ki < 0.1, low possibility; 0.1 < [I]/Ki < 1, medium possibility; [I]/Ki > 1, high possibility), an in vivo herb-drug interaction between MGF/NTR and drugs mainly undergoing UGT1A3-, UGT1A7- or UGT1A9-catalyzed metabolism might occur when the plasma concentration of NTR is above 1.6, 2.0 and 2.8 µM, respectively.


Assuntos
Glucuronosiltransferase/metabolismo , Isoenzimas/metabolismo , Xantonas/química , Glucuronosiltransferase/antagonistas & inibidores , Interações Ervas-Drogas , Isoenzimas/antagonistas & inibidores , Xantenos/química
14.
Pharm Biol ; 55(1): 1703-1709, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28466663

RESUMO

CONTENTS: Danshen is a popular herb employed to treat cardiovascular and cerebrovascular diseases worldwide. Danshen-drug interaction has not been well studied. OBJECTIVE: The inhibitory effects of four major tanshinones (tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone I) on UDP-glucuronosyltransferases (UGTs) isoforms were determined to better understand the mechanism of danshen-prescription drugs interaction. MATERIALS AND METHODS: In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed. Tanshinones (100 µM) was used to perform the initial screening of inhibition capability. High-performance liquid chromatography (HPLC) was used to separate 4-MU and its glucuronide. In vitro-in vivo extrapolation (IV-IVE) was employed to predict in vivo inhibition situation. RESULTS: Cryptotanshinone inhibited UGT1A7 and UGT1A9 with IC50 values of 1.91 ± 0.27 and 0.27 ± 0.03 µM, respectively. Dihydrotanshinone I inhibited UGT1A9-catalyzed 4-MU glucuronidation reaction with the IC50 value of 0.72 ± 0.04 µM. The inhibition of cryptotanshinone towards UGT1A7 and UGT1A9 was best fit to competitive inhibition type, and UGT1A9 was non-competitively inhibited by dihydrotanshinone I. Using in vitro inhibition kinetic parameters (Ki) and in vivo maximum plasma concentration (Cmax) of cryptotanshinone and dihydrotanshinone I, the change of area-under-the-concentration-time curve (AUC) was predicted to be 0.4-4.2%, 3.7-56.3%, and 0.6-6.4% induced by cryptotanshinone and dihydrotanshinone inhibition towards UGT1A7 and UGT1A9, respectively. DISCUSSION AND CONCLUSION: The inhibitory effects of tanshinones towards important UGT isoforms were evaluated in the present study, which provide helpful information for exploring the mechanism of danshen-clinical drugs interaction.


Assuntos
Abietanos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Fenantrenos/farmacologia , Salvia miltiorrhiza/química , Abietanos/administração & dosagem , Abietanos/farmacocinética , Animais , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Interações Ervas-Drogas , Concentração Inibidora 50 , Isoenzimas , Fenantrenos/administração & dosagem , Fenantrenos/farmacocinética , Ratos
15.
Fitoterapia ; 119: 26-31, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28344076

RESUMO

Gomisin C (GC) and gomisin G (GG) are two lignan analogs isolated from the Traditional Chinese Medicine Schisandra chinensis which possesses multiple pharmacological activities. However, the potential herb-drug interactions (HDI) between these lignans and other drugs through inhibiting human cytochrome P450 3A4 (CYP3A4) and CYP3A5 remains unclear. In the present study, the inhibitory action of GC and GG on CYP3A4 and CYP3A5 were investigated. The results demonstrated that both GC and GG strongly inhibited CYP3A-mediated midazolam 1'-hydroxylation, nifedipine oxidation and testosterone 6ß-hydroxylation. Notably, the inhibitory intensity of GC towards CYP3A4 was stronger than CYP3A5 when using midazolam and nifedipine as substrates. While inhibition of GC towards CYP3A5 was weaker than CYP3A4 when using testosterone as substrate. In contrast, GG showed a stronger inhibitory activity on CYP3A5 than CYP3A4 without substrate-dependent behavior. In addition, docking simulations indicated that the π-π interaction between CYP3A4 and GC, and hydrogen-bond interaction between CYP3A5 and GG might result in their different inhibitory actions. Furthermore, the AUC of drugs metabolized by CYP3A was estimated to increase by 8%-321% and 2%-3190% in the presence of GC and GG, respectively. These findings strongly suggested that GC and GG showed high HDI potentials, and the position of methylenedioxy group determined their different inhibitory effect towards CYP3A4 and CYP3A5, which are of significance for the application of Schisandra chinensis-containing herbs.


Assuntos
Ciclo-Octanos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Dioxóis/farmacologia , Lignanas/farmacologia , Schisandra/química , Citocromo P-450 CYP3A/metabolismo , Interações Ervas-Drogas , Humanos , Hidroxilação , Midazolam/farmacologia , Estrutura Molecular , Nifedipino/farmacologia , Oxirredução , Testosterona/farmacologia
16.
Fitoterapia ; 112: 56-64, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27223851

RESUMO

The inhibition of UDP-glucuronosyltransferases (UGTs) by herbal components might be an important reason for clinical herb-drug interaction (HDI). The inhibitory effects on UGTs via nor-oleanane triterpenoid saponins, which were the bioactive ingredients from Stauntonia brachyanthera, a traditional Chinese folk medicines with highly biological values, were evaluated comprehensively with recombinant UGT isoforms as enzyme source and a nonspecific substrate 4-methylumbelliferone (4-MU) as substrate. The results showed that there are seven compounds, 2, 3, 4, 8, 9, 13 and 14, respectively, exhibited potential inhibitions towards UGT1A1, UGT1A3 and UGT1A10 among all 23 compounds isolated from the plants. The IC50 values were 17.1µM, 13.5µM, 9.5µM, 15.7µM, 16.3µM, 1.1µM, and 0.3µM, respectively. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A10, UGT1A1 and UGT1A3 was best fit to noncompetitive type and competitive, respectively. The inhibition kinetic parameter (Ki) was calculated to be 39µM, 17µM, 3.3µM, 10µM, 9.3µM, 0.19µM, and 0.016µM, respectively. All these experimental data suggested that HDI might occur when compounds containing herbs were co-administered with drugs which mainly undergo UGTs-mediated metabolism.


Assuntos
Glucuronosiltransferase/antagonistas & inibidores , Magnoliopsida/química , Ácido Oleanólico/análogos & derivados , Saponinas/química , Medicamentos de Ervas Chinesas , Interações Ervas-Drogas , Estrutura Molecular , Ácido Oleanólico/química
17.
Xenobiotica ; 46(6): 503-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26560012

RESUMO

1. Fructus psoraleae (FP) is the dried ripe seeds of Psoralea corylifolia L. (Fabaceae) widely used in Asia, and has been reported to exert important biochemical and pharmacological activities. The adverse effects of FP remain unclear. The present study aims to determine the inhibition of human carboxylesterase 1 (CES1) by FP's major ingredients, including neobavaisoflavone, corylifolinin, coryfolin, psoralidin, corylin and bavachinin. 2. The probe substrate of CES1 2-(2-benzoyl-3-methoxyphenyl) benzothiazole (BMBT) was derived from 2-(2-hydroxy-3-methoxyphenyl) benzothiazole (HMBT), and human liver microsomes (HLMs)-catalyzed BMBT metabolism was used to phenotype the activity of CES1. In silico docking method was employed to explain the inhibition mechanism. 3. All the tested compounds exerted strong inhibition towards the activity of CES1 in a concentration-dependent behavior. Furthermore, the inhibition kinetics was determined for the inhibition of neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin towards CES1. Both Dixon and Lineweaver-Burk plots showed that neobavaisoflavone, corylifolinin, coryfolin and corylin noncompetitively inhibited the activity of CES1, and bavachinin competitively inhibited the activity of CES1. The inhibition kinetic parameters (Ki) were calculated to be 5.3, 9.4, 1.9, 0.7 and 0.5 µM for neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin, respectively. In conclusion, the inhibition behavior of CES1 by the FP's constituents was given in this article, indicating the possible adverse effects of FP through the disrupting CES1-catalyzed metabolism of endogenous substances and xenobiotics.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Extratos Vegetais/farmacologia , Psoralea/química , Fabaceae , Flavonoides/farmacologia , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Extratos Vegetais/química
18.
Phytother Res ; 30(1): 25-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26536846

RESUMO

Drug-metabolizing enzymes inhibition-based drug-drug interaction remains to be the key limiting factor for the research and development of efficient herbal components to become clinical drugs. The present study aims to determine the inhibition of uridine 5'-diphospho-glucuronosyltransferases (UGTs) isoforms by two important efficient herbal ingredients isolated from Atractylodes macrocephala Koidz, atractylenolide I and III. In vitro recombinant UGTs-catalysed glucuronidation of 4-methylumbelliferone was used to determine the inhibition capability and kinetics of atractylenolide I and III towards UGT2B7, and in silico docking method was employed to explain the possible mechanism. Atractylenolide I and III exhibited specific inhibition towards UGT2B7, with negligible influence towards other UGT isoforms. Atractylenolide I exerted stronger inhibition potential than atractylenolide III towards UGT2B7, which is attributed to the different hydrogen bonds and hydrophobic interactions. Inhibition kinetic analysis was performed for the inhibition of atractylenolide I towards UGT2B7. Inhibition kinetic determination showed that atractylenolide I competitively inhibited UGT2B7, and inhibition kinetic parameter (Ki) was calculated to be 6.4 µM. In combination of the maximum plasma concentration of atractylenolide I after oral administration of 50 mg/kg atractylenolide I, the area under the plasma concentration-time curve ration AUCi /AUC was calculated to be 1.17, indicating the highly possible drug-drug interaction between atractylenolide I and drugs mainly undergoing UGT2B7-catalysed metabolism.


Assuntos
Glucuronosiltransferase/antagonistas & inibidores , Lactonas/química , Sesquiterpenos/química , Interações Medicamentosas , Glucuronosiltransferase/metabolismo , Humanos , Himecromona/metabolismo , Cinética , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo
19.
Toxicol Appl Pharmacol ; 289(1): 70-8, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26348140

RESUMO

As an edible traditional Chinese herb, Fructus psoraleae (FP) has been widely used in Asia for the treatment of vitiligo, bone fracture and osteoporosis. Several cases on markedly elevated bilirubin and acute liver injury following administration of FP and its related proprietary medicine have been reported, but the mechanism in FP-associated toxicity has not been well investigated yet. This study aimed to investigate the inhibitory effects of FP extract and its major constituents against human UDP-glucuronosyltransferase 1A1 (UGT1A1), the key enzyme responsible for metabolic elimination of bilirubin. To this end, N-(3-carboxy propyl)-4-hydroxy-1,8-naphthalimide (NCHN), a newly developed specific fluorescent probe for UGT1A1, was used to evaluate the inhibitory effects of FP extract or its fractions in human liver microsomes (HLM), while LC-UV fingerprint and UGT1A1 inhibition profile were combined to identity and characterize the naturally occurring inhibitors of UGT1A1 in FP. Our results demonstrated that both the extract of FP and five major components of FP displayed evident inhibitory effects on UGT1A1 in HLM. Among these five identified naturally occurring inhibitors, bavachin and corylifol A were found to be strong inhibitors of UGT1A1 with the inhibition kinetic parameters (Ki) values lower than 1 µM, while neobavaisoflavone, isobavachalcone, and bavachinin displayed moderate inhibitory effects against UGT1A1 in HLM, with the Ki values ranging from 1.61 to 9.86µM. These findings suggested that FP contains natural compounds with potent inhibitory effects against human UGT1A1, which may be one of the important reasons for triggering FP-associated toxicity, including elevated bilirubin levels and liver injury.


Assuntos
Glucuronosiltransferase/antagonistas & inibidores , Extratos Vegetais/toxicidade , Psoralea/química , Bilirrubina/metabolismo , Chalconas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Flavonas/toxicidade , Flavonoides/toxicidade , Frutas/química , Glucuronosiltransferase/metabolismo , Humanos , Isoflavonas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo
20.
Pharmazie ; 70(4): 239-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26012253

RESUMO

UDP-glucuronosyltransferases (UGTs) are involved in the clearance of many important drugs and endogenous substances, and inhibition of UGTs' activity by herbal components might induce severe herb-drug interactions or metabolic disturbances of endogenous substances. The present study aims to determine the inhibition of UGTs' activity by podophyllotoxin derivatives, trying to indicate the potential herb-drug interaction or metabolic influence towards endogenous substances' metabolism. Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the podophyllotoxin derivatives' inhibition potential. Structure-dependent inhibition behavior of podophyllotoxin derivatives towards UGT isoforms was detected. Inhibition kinetic type and parameter (Ki) were determined for the inhi- bition of podophyllotoxin towards UGT1A1, and competitive inhibition of podophyllotoxin towards UGT1A1 was observed with the inhibition kinetic parameter (Ki) to be 4.0 µM. Furthermore, podophyllotoxin was demonstrated to exert medium and weak inhibition potential towards human liver microsomes (HLMs)-catalyzed SN-38 glucuronidation and estradiol-3-glucuronidation. In conclusion, podophyllotoxin inhibited UGT1A1 activity, indicating potential herb-drug interactions between podophyllotoxin-containing herbs and drugs mainly undergoing UGT1A1-mediated metabolism.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Podofilotoxina/farmacologia , Ligação Competitiva/efeitos dos fármacos , Camptotecina/análogos & derivados , Camptotecina/metabolismo , Interações Medicamentosas , Inibidores Enzimáticos/química , Estradiol/metabolismo , Glucuronídeos/metabolismo , Humanos , Himecromona/metabolismo , Técnicas In Vitro , Irinotecano , Isoenzimas/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Podofilotoxina/química , Relação Estrutura-Atividade , Especificidade por Substrato , Trifluoperazina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA