Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 184: 114230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609219

RESUMO

This study explored differences in microbial lipid metabolites among sunflower seeds, soybeans, and walnuts. The matrices were subjected to in vitro digestion and colonic fermentation. Defatted digested materials and fiber/phenolics extracted therefrom were added to sunflower oil (SO) and also fermented. Targeted and untargeted lipidomics were employed to monitor and tentatively identify linoleic acid (LA) metabolites. Walnut fermentation produced the highest free fatty acids (FFAs), LA, and conjugated LAs (CLAs). Defatted digested walnuts added to SO boosted FFAs and CLAs production; the addition of fibre boosted CLAs, whereas the addition of phenolics only increased 9e,11z-CLA and 10e,12z-CLA. Several di-/tri-hydroxy-C18-FAs, reported as microbial LA metabolites for the first time, were annotated. Permutational multivariate analysis of variance indicated significant impacts of food matrix presence and type on lipidomics and C18-FAs. Our findings highlight how the food matrices affect CLA production from dietary lipids, emphasizing the role of food context in microbial lipid metabolism.


Assuntos
Microbioma Gastrointestinal , Juglans , Fermentação , Nozes , Gorduras na Dieta , Ácidos Graxos não Esterificados , Ácido Linoleico , Fenóis , Óleo de Girassol , Colo
2.
Food Chem ; 398: 133801, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35961168

RESUMO

Effects of pectin, inulin, and their combination on the production of microbiota-derived indoles and short-chain fatty acids (SCFAs) from different colon segments were investigated in a batch system inoculated with microbiota from proximal colon (PC) and distal colon (DC) compartments of the Simulator of Human Intestinal Microbial Ecosystem. Bacteria from DC compartment had a higher abundance of Firmicutes and a stronger capacity to produce indoles and SCFAs than bacteria from PC compartment. Fiber supplementation significantly increased the production of SCFAs, indole-3-propionic acid, and indole-3-lactic acid, but decreased the production of oxindole, tryptamine, and serotonin. Pectin specifically promoted the production of indole-3-acetic acid and indole-3-aldehyde. Interestingly, supplementation of pectin or inulin increased the relative abundance of Bacteroidetes whereas supplementation of a mixture of two fibers decreased it. Overall, these results suggest that fiber supplementation and colon segment affect the composition of gut microbiota and the microbial catabolism of tryptophan.


Assuntos
Inulina , Microbiota , Bactérias/genética , Bactérias/metabolismo , Colo/metabolismo , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos , Indóis/metabolismo , Inulina/metabolismo , Pectinas/metabolismo
3.
Food Funct ; 13(20): 10737-10747, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36178118

RESUMO

This research assessed the influence of fermentation and germination as well as of particle size on lignan bioaccessibility from flaxseed by simulated in vitro gastrointestinal digestion. In vitro simulated colonic fermentation was used to study lignan release and its conversion into enterolignans. In addition, tea was included as a representative sample to investigate the stability of lignans in the gastrointestinal tract. Only secoisolariciresinol (SECO) was detected in flaxseed samples. SECO bioaccessibility in fermented flaxseed was highest among all matrices but limited to ≈1% (P < 0.001). Lignan bioaccessibility was significantly influenced by particle size too (P < 0.001 for both). In the colon, fermented flaxseed produced the highest SECO release among all flaxseed samples (≈65%), and the highest conversion of enterolignan (≈1.0%), whereas the conversion of lignans in tea brew was relatively high (≈15%). Lignan conversion varies greatly among donors due to inter-individual differences in microbiota activity. Food fermentation could be a viable strategy for increasing lignan release and conversion to enterolignan.


Assuntos
Linho , Lignanas , Butileno Glicóis , Colo/química , Fermentação , Trato Gastrointestinal/química , Lignanas/análise , Chá
4.
J Agric Food Chem ; 70(13): 3958-3968, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344652

RESUMO

The aryl hydrocarbon receptor (AhR) plays an important role in intestinal homeostasis, and some microbial metabolites of tryptophan are known AhR agonists. In this study, we assessed the impact of tryptophan supplementation on the formation of tryptophan metabolites, AhR activation, and microbiota composition in the simulator of the human intestinal microbial ecosystem (SHIME). AhR activation, microbial composition, and tryptophan metabolites were compared during high tryptophan supplementation (4 g/L tryptophan), control, and wash-out periods. During tryptophan supplementation, the concentration of several tryptophan metabolites was increased compared to the control and wash-out period, but AhR activation by fermenter supernatant was significantly decreased. This was due to the higher levels of tryptophan, which was found to be an antagonist of AhR signaling. Tryptophan supplementation induced most microbial changes in the transverse colon including increased relative abundance of lactobacillus. We conclude that tryptophan supplementation leads to increased formation of AhR agonists in the colon.


Assuntos
Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Triptofano , Suplementos Nutricionais , Humanos , Receptores de Hidrocarboneto Arílico/agonistas , Triptofano/farmacologia
5.
Food Funct ; 13(8): 4513-4526, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35348564

RESUMO

It has been recognized that, next to dietary fibre and proteins, gut microbiota can metabolize lipids producing bioactive metabolites. However, the metabolism of dietary lipids by human gut microbiota has been poorly explored so far. This study aimed to examine the change in lipids, particularly linoleic acid (LA), induced by the chemical form of lipids and the presence of the plant matrix. Short-chain fatty acid (SCFA) production was monitored to get an insight into microbial activity. Free LA, glyceryl trilinoleate and soybean oil as well as digested intact (DS) and broken (BS) soybean cells were subjected to in vitro fermentation using human faecal inoculums. Confocal microscopy was used to visualize the soybean cell integrity. Three LA metabolites, including two conjugated fatty acids (CLAs, 9z,11e and 9e,11e) and 12hydroxy, 9z C18:1, were identified and monitored. Free LA addition improved the LA metabolite production but reduced SCFA concentrations compared to trilinoleate and soybean oil. Breaking cell integrity had impacts on CLA, hydroxy C18:1 and SCFA production and free fatty acid release within the first 24 h of fermentation, but this effect vanished with time. In contrast, soybean oil only increased free LA release and hydroxy C18:1 production. The content of several FAs decreased during fermentation suggesting a substantial conversion in microbial metabolites. Besides, LA metabolites were also identified in the fermentation pellets suggesting the incorporation of microbial FA metabolites into bacterial cells. This study expands our understanding of microbial metabolism of dietary lipids with a special emphasis on the role of food- and diet-related factors.


Assuntos
Microbioma Gastrointestinal , Ácido Linoleico , Ácidos Graxos/metabolismo , Ácidos Graxos Voláteis , Humanos , Ácido Linoleico/farmacologia , Óleo de Soja
6.
Food Chem ; 361: 130047, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029903

RESUMO

Inhibition of maltase, sucrase, isomaltase and glucoamylase activity by acarbose, epigallocatechin gallate, epicatechin gallate and four polyphenol-rich tea extract from white, green, oolong, black tea, were investigated by using rat intestinal enzymes and human Caco-2 cells. Regarding rat intestinal enzyme mixture, all four tea extracts were very effective in inhibiting maltase and glucoamylase activity, but only white tea extract inhibited sucrase and isomaltase activity and the inhibition was limited. Mixed-type inhibition on rat maltase activity was observed. Tea extracts in combination with acarbose, produced a synergistic inhibitory effect on rat maltase activity. Caco-2 cells experiments were conducted in Transwells. Green tea extract and epigallocatechin gallate show dose-dependent inhibition on human sucrase activity, but no inhibition on rat sucrase activity. The opposite was observed on maltase activity. The results highlighted the different response in the two investigated model systems and show that tea polyphenols are good inhibitors for α-glucosidase activity.


Assuntos
Glicosídeo Hidrolases/antagonistas & inibidores , Intestinos/enzimologia , Extratos Vegetais/química , Polifenóis/farmacologia , Chá/química , Acarbose/farmacologia , Animais , Células CACO-2 , Catequina/análogos & derivados , Catequina/farmacologia , Glucana 1,4-alfa-Glucosidase/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Cinética , Oligo-1,6-Glucosidase/antagonistas & inibidores , Ratos , Sacarase/antagonistas & inibidores , alfa-Glucosidases/efeitos dos fármacos
7.
Food Funct ; 11(7): 5933-5943, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32567616

RESUMO

The inhibitory effect of tea polyphenols on starch digestibility can contribute to the control of the glycaemic index of starchy food. In this study, wheat bread and gluten-free bread were co-digested in vitro with different amounts of tea polyphenols. The kinetics of starch digestion and polyphenol bio-accessibility during in vitro digestion were monitored. The results showed that co-digestion of bread with tea polyphenols dose-dependently slowed the starch digestion kinetics and this effect is influenced by the types of polyphenols and the presence of gluten. The presence of gluten lowered the inhibitory efficacy of tannins on starch digestibility to 7.4% and 47.5% when 25 mg of tannins were co-digested with wheat bread and gluten-free bread, respectively. In contrast, the presence of gluten had little impact on the inhibitory efficacy of monomeric polyphenols. This study shows that the release of tea polyphenols in the digestive environment is a promising strategy for controlling the glycaemic index of starchy food and that monomeric and polymeric tea polyphenols differently affect starch digestion according to the presence of gluten.


Assuntos
Digestão/efeitos dos fármacos , Glutens/análise , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Chá/química , Glicemia , Pão/análise , Índice Glicêmico , Amido/química , Triticum/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
8.
J Agric Food Chem ; 68(7): 1844-1850, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31081326

RESUMO

The extract of microalga Nitzschia laevis (NLE) is considered a source of dietary fucoxanthin, a carotenoid possessing a variety of health benefits. In the present study, the bioaccessibility and deacetylation of fucoxanthin were studied by simulated in vitro gastrointestinal digestion and colonic batch fermentation. In the gastric phase, higher fucoxanthin loss was observed at pH 3 compared to pH 4 and 5. Lipases are crucial for the deacetylation of fucoxanthin into fucoxanthinol. Fucoxanthinol production decreased significantly in the order: pure fucoxanthin (25.3%) > NLE (21.3%) > fucoxanthin-containing emulsion (11.74%). More than 32.7% of fucoxanthin and fucoxanthinol was bioaccessible after gastrointestinal digestion of NLE. During colon fermentation of NLE, a higher loss of fucoxanthin and changes of short-chain fatty acid production were observed but no fucoxanthinol was detected. Altogether, we provided novel insights on the fucoxanthin fate along the human digestion tract and showed the potential of NLE as a promising source of fucoxanthin.


Assuntos
Colo/metabolismo , Diatomáceas/química , Microalgas/química , Extratos Vegetais/metabolismo , Xantofilas/metabolismo , Diatomáceas/metabolismo , Digestão , Fermentação , Humanos , Microalgas/metabolismo
9.
Food Funct ; 9(4): 2508-2516, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29658029

RESUMO

Previous studies have proved that the physical encapsulation of nutrients by the cell walls of plant foods modulates macronutrient bioaccessibility during human digestion. In this study, we investigated structural factors that modulate lipid hydrolysis during in vitro digestion of raw and roasted hazelnut particles and isolated oil bodies. Isolated oil bodies exhibited a significantly higher lipid hydrolysis compared to hazelnut particles. Moreover, roasting had an impact on the structure of hazelnut cell walls implying a more efficient diffusion of digestive fluids and enzymes into the hazelnut cells. Heat treatment also caused destabilization of oil body interfacial protein membranes, facilitating their proteolysis under gastric conditions, altering the emulsion properties and enhancing fatty acid release during intestinal digestion. This study underlined the barrier role played by the plant cell wall as well as the impact of heat processing on lipid bioaccessibility in hazelnuts.


Assuntos
Corylus/química , Óleos de Plantas/química , Sementes/química , Culinária , Corylus/metabolismo , Digestão , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Humanos , Tamanho da Partícula , Óleos de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sementes/metabolismo
10.
Ann N Y Acad Sci ; 1126: 89-100, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18448800

RESUMO

Potato products contain high amounts of acrylamide, which sometimes exceeds the concentration of 1 mg/L. However, many strategies for acrylamide reduction in potato products are possible. In this work, the different approaches for reducing acrylamide formation have been reviewed, keeping in mind that in the application of strategies for acrylamide formation, the main criteria to be maintained are the overall organoleptic and nutritional qualities of the final product.


Assuntos
Acrilamida/antagonistas & inibidores , Culinária , Solanum tuberosum/metabolismo , Asparagina/química , Glucose/química , Glicina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA