Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Ecotoxicol Environ Saf ; 266: 115568, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832482

RESUMO

The tea plant accumulates elevated levels of fluoride (F) from environmental sources. Drinking tea containing high F levels poses a potential threat to human health. Selenium (Se) was applied by foliar spray to investigate its effects on F accumulation and physiology in tea plant. Foliar application of different forms of Se, i.e., Na2SeO3, Kappa-selenocarrageenan, Selenomethionine and Nanoselenium, reduced F content in tea leaves by 10.17 %-44.28 %, 16.12 %-35.41 %, 22.19 %-45.99 % and 22.24 %-43.82 %, respectively. Foliar spraying Se could increase F accumulation in pectin through increasing pectin content and pectin demethylesterification to bind more F in the cell wall, which decreased the proportion of water-soluble fluoride in tea leaves. Application of Se significantly decreased the contents of chromium (39.6 %-72.0 %), cadmium (48.3 %-84.4 %), lead (2.2 %-44.4 %) and copper (14.1 %-44.6 %) in tea leaves. Foliar spraying various forms of Se dramatically increased the Se content and was efficiently transformed into organic Se accounting for more than 80 % in tea leaves. All Se compounds increased peroxidase activity by 3.3 %-35.5 % and catalase activity by 2.6 %-99.4 %, reduced malondialdehyde content by 5.6 %-37.1 %, and increased the contents of chlorophyll by 0.65 %-31.8 %, carotenoids by 0.24 %-27.1 %, total catechins by 1.6 %-21.0 %, EGCG by 4.4 %-17.6 % and caffeine by 9.1 %-28.6 %. These results indicated that Se application could be served as a potential efficient and safe strategy diminishing the concentration of F in tea leaves.


Assuntos
Camellia sinensis , Selênio , Humanos , Selênio/metabolismo , Fluoretos/análise , Antioxidantes/metabolismo , Camellia sinensis/química , Folhas de Planta/metabolismo , Chá , Pectinas/metabolismo
2.
J Agric Food Chem ; 71(21): 8023-8037, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37203140

RESUMO

The intracellular polysaccharides of Aspergillus cristatus (IPSs) from Fuzhuan brick tea have been demonstrated to improve immune function linked to modulating the gut microbiota. Herein, to further investigate the efficacy of IPSs to maintain gut homeostasis, the protection of the purified fraction of IPSs (IPSs-2) on the mice with colitis induced by dextran sulfate sodium (DSS) and the underlying mechanisms were explored in this study. The results revealed that IPSs-2 alleviated the typical symptoms of colitis and suppressed the excessive inflammatory mediators, regulating the genes related to inflammatory responses in the colon at the mRNA level. Meanwhile, IPSs-2 treatment reinforced the intestinal barrier function by ameliorating the DSS-induced histological injury, facilitating the differentiation of goblet cells to enhance Mucin-2 generation, and enhancing the expression of tight junction proteins to alleviate colitis. In addition, IPSs protected against colitis by promoting the production of short-chain fatty acids (SCFAs), the activation of SCFAs receptors, and the leverage of the gut microbiota via the enrichment of Bacteroides, Parabacteroides, Faecalibacterium, Flavonifractor_plautii, and Butyricicoccus, linking with reducing inflammation and repairing intestinal barrier function. Overall, our research revealed the therapeutic potential of IPSs-2 as a prebiotic for attenuating inflammatory bowel disease and provided a rationale for future investigation.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Aspergillus/genética , Colo , Chá , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Crit Rev Food Sci Nutr ; 63(22): 5447-5464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34964426

RESUMO

Fuzhuan brick tea (FBT) is a traditional popular beverage in the border regions of China. Nowadays, FBT has been attracted great attention due to its uniquely flavor and various health-promoting functions. An increasing number of efforts have been devoted to the studies on health benefits and chemistry of FBT over the last decades. However, FBT was still received much less attention than green tea, oolong tea and black tea. Therefore, it is necessary to review the current encouraging findings about processing, microorganisms, chemical constituents, health benefits and potential risk of FBT. The fungus fermentation is the key stage for processing of FBT, which is involved in a complex and unique microbial fermentation process. The fungal community in FBT is mainly dominated by "golden flower" fungi, which is identified as Aspergillus cristatus. A great diversity of novel compounds is formed and identified after a series of biochemical reactions during the fermentation process of FBT. FBT shows various biological activities, such as antioxidant, anti-inflammatory, anti-obesity, anti-bacterial, and anti-tumor activities. Furthermore, the potential risk of FBT was also discussed. It is expected that this review could be useful for stimulating further research of FBT.


Assuntos
Camellia sinensis , Chá , Chá/química , Camellia sinensis/química , Fungos , Antioxidantes , China , Fermentação
4.
J Agric Food Chem ; 70(42): 13592-13601, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214842

RESUMO

Recent studies indicated a strong relationship between carotenoids and gut microflora. However, their structure-activity relationship remains unclear. This study evaluated the interaction between four typical carotenoids (ß-carotene, lutein, lycopene, and astaxanthin) and gut microflora using an in vitro fermentation model. After 24 h of fermentation, the retention rates of the four carotenoids were 1.40, 1.38, 1.46, and 5.63 times lower than those of their without gut microflora control groups, respectively. All four carotenoid treated groups significantly increased total short-chain fatty acids (SCFAs) production. All carotenoid supplements significantly promoted the abundance of Roseburia and Parasutterella and inhibited the abundance of Collinsella, while ß-carotene, lutein, lycopene, and astaxanthin significantly promoted the abundance of Ruminococcus, Sutterella, Subdoligranulum, and Megamonas, respectively. Furthermore, xanthophylls have a more significant impact on gut microflora than carotenes. This study provides a new way to understand how carotenoids work in the human body with the existing gut microflora.


Assuntos
Carotenoides , Microbioma Gastrointestinal , Humanos , Carotenoides/metabolismo , Luteína/farmacologia , Luteína/metabolismo , beta Caroteno , Licopeno , Fermentação , Xantofilas/farmacologia , Zeaxantinas
5.
Food Chem ; 391: 133203, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597036

RESUMO

The purified fraction 3 of polysaccharides from Fuzhuan brick tea (FBTPS-3) could attenuate the colitis and modulate the gut microbiota. However, the relationship between anti-inflammatory effect of FBTPS-3 and the gut microbiota is still unknown. Thus, the anaerobic fermentation in vitro was used to investigate the potential mechanism. FBTPS-3 could be utilized and degraded by gut microbiota from inflammatory bowel disease (IBD) subjects. Furthermore, FBTPS-3 could modulate the composition and structure of IBD gut microbiota toward to that of healthy group. FBTPS-3 showed a superior modulated effect on IBD gut microbiota by increasing Bacteroides and decreasing Escherichia/Shigella. Furthermore, the fermentation solution rather than FBTPS-3 itself showed anti-inflammatory effects on lipopolysaccharide-treated RAW264.7 macrophages, which might be due to the metabolites such as short-chain fatty acids (SCFAs). Thus, FBTPS-3 can be expected as novel prebiotics for treatment of IBD via modulating gut microbiota, and promoting the production of SCFAs.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Polissacarídeos/química , Polissacarídeos/farmacologia , Chá/química
6.
Food Res Int ; 152: 110901, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35181077

RESUMO

Aspergillus cristatus is the dominant fungus involved in the fermentation of Fuzhuan brick tea (FBT). The intracellular polysaccharides (IPSs) from A. cristatus (MK346334, NCBI), isolated from FBT, exhibited immunomodulatory activity in vitro while the effects in vivo on immune system and gut microbiota remain unclear. In this study, IPSs and the purified fraction (IPSs-2) from IPSs were prepared and their immunomodulatory activities were investigated with cyclophosphamide (Cy)-induced immunosuppressive mice. As results, IPSs strengthened the immune function, manifesting in the improvement of body weight, daily intake, immune organ indices, cytokines and immunoglobulin. Meanwhile, IPSs attenuated Cy-induced intestinal barrier injury and promoted the expression of tight junction proteins and mucin, reinforcing the intestinal barrier function. Moreover, IPSs not only promoted the production of short-chain fatty acids and the expression of G protein-coupled receptor (GPR), but also balanced dysbiosis of gut microbiota through elevating the growth of beneficial bacteria while reducing pathobionts to maintain the homeostasis of the microbial ecology. These results suggested that IPSs exerted immunomodulatory activity linking with the restoration of intestinal barrier function and regulation of gut microbiota, which contributes to the development of novel probiotics and effective immunomodulators for strengthening host immunity and gut health.


Assuntos
Microbioma Gastrointestinal , Animais , Aspergillus , Imunidade , Camundongos , Micélio/metabolismo , Polissacarídeos/farmacologia , Chá/metabolismo
7.
J Nutr Biochem ; 101: 108947, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35017006

RESUMO

In this study, cyclophosphamide (Cy) was used to treat mice to establish an immunosuppressant model in mice, and the regulatory effects of polysaccharides from Fuzhuan brick tea (FBTPSs) including crude FBTPSs (CFBTPSs) and the purified fraction (FBTPSs-3) on the immune function and gut microbiota of mice were investigated. The results showed that CFBTPSs and FBTPSs-3 restored the levels of body weight, feed intake, immune organ index, cytokine and immunoglobulin A in mice. The Cy-induced injury of gut including intestinal morphology and expression of tight junction proteins were also restored. Furthermore, CFBTPSs and FBTPSs-3 could significantly modulate gut microbiota by increasing the relative abundance of Muribaculaceae and reduceing the relative abundances of Lachnospiraceae, Helicobacteraceae, Clostridaceae, Desulfovibrionaceae and Deferribacteraceae. Moreover, the gut microbiota derived short-chain fatty acids might play an important role in improvement of immune function by FBTPSs. Our results showed that FBTPSs could regulate the immune function of mice, which provided evidences for the development of FBTPSs as potentially functional foods to improve human health.


Assuntos
Microbioma Gastrointestinal , Sistema Imunitário/fisiologia , Polissacarídeos/administração & dosagem , Chá , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Peso Corporal , Ciclofosfamida , Citocinas/biossíntese , Ingestão de Alimentos , Ácidos Graxos Voláteis/metabolismo , Alimento Funcional , Imunoglobulinas/sangue , Imunossupressores , Intestinos/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Junções Íntimas/metabolismo
8.
Food Funct ; 13(2): 649-663, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34932051

RESUMO

In this study, the effects of crude Fuzhuan brick tea polysaccharides (CFBTPS) and their purified fraction (FBTPS-3) on colitis induced by dextran sulfate sodium (DSS) in mice were investigated. Both CFBTPS and FBTPS-3 exhibited intestinal anti-inflammatory activities, including restoring body weight, colon length and solid fecal weight, and decreasing the disease activity index score in mice. Moreover, the expression of lipocalin-2 in colitis could be significantly reduced. The inflammatory cytokines (IL-6, IL-1ß, IFN-γ and TNF-α) and lipopolysaccharides in the serum and the expression of inflammation-related mRNA in the colon tissue were decreased. Both CFBTPS and FBTPS-3 could increase tight junction proteins (Occludin, Claudin-1 and ZO-1), promoting the intestinal barrier function. For gut microbiota, DSS treatment resulted in abnormal proliferation of Bifidobacteria, while FBTPS-3 could restore this disorder to a certain extent. In addition, FBPTS-3 promoted the growth of probiotics such as Bacteroides, Parasutterella and Collinsella. Both CFBTPS and FBTPS-3 could attenuate colitis; what's more, FBTPS-3 exhibited a better anti-inflammatory effect than CFBTPS.


Assuntos
Anti-Inflamatórios , Colite/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos , Chá/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , China , Colite/induzido quimicamente , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/química , Polissacarídeos/farmacologia
9.
J Agric Food Chem ; 69(4): 1368-1378, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33481588

RESUMO

Fuzhuan brick tea (FBT), one of the unique dark teas, has various health-promoting functions. In the present study, one polysaccharide fraction, namely FBTPS-2-1, was extracted and purified from FBT, and its structure and potential immunostimulatory activity were investigated. The results showed that FBTPS-2-1,one of typical heteropolysaccharides, was mainly composed of Gal, Ara, and Glc with little molar content of Man, Rha, GalA, and GlcA in molar ratio of 46.59:22.13:13.57:8.20:6.02:2.12:1.38 and molecular weight of 748 kDa. The backbone of FBTPS-2-1 contained →4)-ß-d-Galp-(1→4)-ß-d-Galp-(1→, →4)-ß-d-Galp-(1→4)-α-d-Glcp-(1→, →4)-α-d-Glcp-(1→4)-α-d-Glcp-(1→, →4)-α-d-Glcp-(1→4)-ß-d-Galp-(1→, →3)-ß-d-Galp-(1→4)-ß-d-Galp-(1→, →3,6)-ß-d-Galp-(1→3)-ß-d-Galp-(1→ and →3,6)-ß-d-Galp-(1→3,6)-ß-d-Galp-(1→. The linkages of branches in FBTPS-2-1 were mainly composed of α-l-Araf-(1→3,6)-ß-d-Galp-(1→, →5)-α-l-Araf-(1→3,6)-ß-d-Galp-(1→, →6)-ß-d-Galp-(1→3,6)-ß-d-Galp-(1→, α-l-Araf-(1→3,5)-α-l-Araf-(1→, →3,5)-α-l-Araf-(1→5)-α-l-Araf-(1→, α-d-Galp-(1→3,5)-α-l-Araf-(1→ and →5)-α-l-Araf-(1→6)-ß-d-Galp-(1→. Furthermore, FBTPS-2-1 could increase the phagocytosis of macrophages and promote the secretion of NO and a variety of inflammatory cytokines, including TNF-α, IL-1ß, and IL-6, indicating noticeable immune enhancement activity. Thus, FBTPS-2-1 could serve as a potentially functional food to improve human health by modulating the host immunoreaction.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Camellia sinensis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais , Citocinas/imunologia , Interleucina-6/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Peso Molecular , Células RAW 264.7 , Chá/química
10.
Food Res Int ; 139: 109913, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509480

RESUMO

Polysaccharides from the fruit of Lycium barbarum (LBPs) are functional molecules with diverse biological functions in vivo and in vitro. This study investigated the long-term consumption of LBPs on host's health in BALB/c mice. Six-week-old male mice (n = 10 each group) were fed either a normal control (NC) diet or supplemented with 200 mg/kg (body weight)/d of LBPs for 14 weeks. Compared with the NC diet, the LBPs diet enhanced the expression of mucin 2 and Claudin5, improved the intestinal barrier morphologically, moreover, promoted the growth of Lactobacillus and strongly increased the production of short-chain fatty acids and IgA (p < 0.05). Feeding LBPs increased the levels of superoxide dismutase and reduced glutathione in the serum, liver and spleen while decreased the levels of alanine aminotransferase and lysozyme in serum and spleen. Besides, the LBPs diet increased the expression of cytokines including tumor necrosis factor α and interleukin-6 and related mRNA but decreased the level of lysozyme. To sum up, chronic intake of LBPs in BALB/c mice improved the oxidation resistance, changed the immune status especially promoted the intestinal immunity. These results may have important implications for LBPs as functional food supplement and for realizing the potential value of LBPs for host's health.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Animais , Frutas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos
11.
Food Funct ; 11(12): 10397-10412, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33237077

RESUMO

In this study, the crude exopolysaccharides (CEPSs) from fungus Aspergillus cristatus (MK346334, NCBI) isolated from Fuzhuan brick tea and its main purified fraction (EPSs-2) were investigated. Using the RAW264.7 cell model, EPSs-2 exhibited an excellent immunomodulatory effect in vitro. Then, the regulating effects of EPSs on immune function and gut microbiota were evaluated using a cyclophosphamide (Cy)-induced mice model. It was found that both CEPSs and EPSs-2 improved the body weight loss, immune organ indexes as well as the levels of TNF-α, IL-1ß, IFN-γ and IgA, exhibiting potent immunoregulatory activity. Moreover, CEPSs and EPSs-2 not only attenuated the intestinal tissue damage, but also promoted the production of short-chain fatty acids and modulated the microbial composition by increasing the growth of Muribaculaceae, Prevotellaceae_UCG-001, Bacteroides, Parabacteroides and Tidjanibacter, while decreasing the relative abundances of Helicobacter, Bilophila, Mucispirillum, Lachnospiraceae, Ruminococcaceae and Clostridiales. These results indicated that the EPSs, especially EPSs-2, exhibited immunomodulatory activity associated with the modulation of gut microbiota to maintain gut homeostasis, which provided evidence for the development of novel potential prebiotics and immunomodulators.


Assuntos
Aspergillus/metabolismo , Citocinas/metabolismo , Fungos/isolamento & purificação , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Homeostase , Chá/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Peso Corporal , Sobrevivência Celular , Colo/patologia , Ciclofosfamida , Ácidos Graxos Voláteis , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/patologia , Jejuno/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7
12.
Food Res Int ; 137: 109584, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233193

RESUMO

The flower of tea (Camellia sinensis L.) plant has been paid an increasing attention in the last twenty years, since it was found that tea flowers contained representative constituents similar to those of tea leaves, such as catechins, caffeine and amino acids. Tea flower is theoretically valuable although it has been considered as an industrial waste over a long period of time. This review summarizes the research findings conducted until now on physiological genetics, chemical composition, health benefits and toxicology of tea flowers, aiming to foresee their future applications. A lot of genes are involved in flower development and the synthesis and transmission of various chemicals in tea flowers. The chemical composition of tea flower consists mainly of catechins, polysaccharides, proteins, amino acids and saponins and thus tea flower possesses various health benefits such as antioxidant, anti-inflammatory, immunostimulating, antitumor, hypoglycemic, anti-obesity and anti-allergic activities. Moreover, tea flower contains a protease that can elevate the free amino acids content in the tea infusion by almost two folds. More importantly, the enzymatic activity of the protease is much higher than that of the commercially available proteases. Additionally, aqueous extracts of tea flower are demonstrated to safe to animals. Thus, the potential uses of tea flowers in food and medical fields are warranted.


Assuntos
Camellia sinensis , Catequina , Animais , Catequina/análise , Flores/química , Extratos Vegetais , Chá
13.
Food Funct ; 11(4): 3527-3538, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32255112

RESUMO

Theasinensin A (TSA) and theasinensin B (TSB), dimers of tea catechins produced during the processing of oolong tea and black tea, had superior inhibitory effects on α-glucosidase. However, the potential inhibitory mechanisms on α-glucosidase are still unclear. In the present study, TSA and TSB were chemically synthesized and purified, and their inhibitory effects on α-glucosidase and potential mechanisms were investigated. The results showed that TSA and TSB could inhibit the activity of α-glucosidase in a reversible and noncompetitive manner with IC50 values of 6.342 and 24.464 µg mL-1, respectively, which were much lower than that of acarbose. The fluorescence and circular dichroism spectra revealed that TSA and TSB could alter the microenvironment and the secondary structure of α-glucosidase, thereby decreasing the α-glucosidase activity. Molecular docking results indicated that both TSA and TSB had a strong binding affinity to α-glucosidase by hydrophobic interactions and hydrogen bonds. Moreover, the stronger inhibition of TSA on α-glucosidase might be related to the closer binding site to the active site pocket of α-glucosidase.


Assuntos
Benzopiranos/farmacologia , Catequina/análogos & derivados , Inibidores de Glicosídeo Hidrolases/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Chá , alfa-Glucosidases/efeitos dos fármacos , Catequina/farmacologia , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular
14.
Food Res Int ; 132: 109100, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331644

RESUMO

Camellia sinensis L., its fresh leaves and buds are used to make tea, is an important industrial crop with a long history. However, less attention has been paid to tea flowers. Indeed, tea flower extract (TFE) is a rich source of functional molecules, but its nutritional value remains unclear. This study, from the perspective of "whole food", aimed to investigate the composition of TFE and further explore its possible health-promoting effects on cyclophosphamide-induced mice. It was found that TFE was mainly composed of carbohydrates (34.02 ± 1.42%), phenolic compounds (11.57 ± 0.14%), crude proteins (27.72 ± 3.07%) and saponins (2.81 ± 0.00%). Supplementation of TFE at 200 mg/kg·BW/d regulated intestinal homeostasis by improving the intestinal barrier, alleviating dysbacteriosis (reverse 44 of 68 disordered genera), stimulated immunoreactions with significant enhancement of serum TNF-α, IFN-γ, IL-1ß, IL-2 and IL-6. Furthermore, TFE could improve the liver function through decreasing the hepatic malondialdehyde and aminotransferase levels and increasing the levels of catalase, myeloperoxidase, superoxide dismutase and reduced glutathione. Notably, the ameliorating effects of TFE on cyclophosphamide-induced immunosuppression and the hepatic injury were associated with its modulation of gut microbiota. The results provide the evidence for the application of tea flower as potential functional food.


Assuntos
Flores/química , Valor Nutritivo , Extratos Vegetais/farmacologia , Chá/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Claudina-1/metabolismo , Claudina-5/metabolismo , Ciclofosfamida/toxicidade , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Fezes/microbiologia , Alimento Funcional/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Hospedeiro Imunocomprometido/efeitos dos fármacos , Interferon gama/sangue , Interleucina-1beta/sangue , Interleucina-2/sangue , Interleucina-6/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ocludina/metabolismo , Saponinas/análise , Saponinas/farmacologia , Fator de Necrose Tumoral alfa/sangue
15.
Artigo em Inglês | MEDLINE | ID: mdl-32184894

RESUMO

Intestinal microbiota plays an important role in human health. The aim of this paper is to determine the impact of the phenolics and carbohydrate in buckwheat honey on human intestinal microbiota. We investigated the phenolics and carbohydrate compositions of eight buckwheat honey samples using high-performance liquid chromatography and ion chromatography. The human intestinal microbes were cultured in a medium supplemented with eight buckwheat honey samples or the same concentration of fructooligosaccharides. The bacterial 16S rDNA V4 region sequence of DNA extraction was determined by the Illumina MiSeq platform. 12 phenolics and 4 oligosaccharides were identified in almost all buckwheat honey samples, namely, protocatechuic acid, 4-hydroxy benzoic acid, vanillin, gallic acid, p-coumaric acid, benzoic acid, isoferulic acid, methyl syringate, trans,trans-abscisic acid, cis,trans-abscisic acid, ferulic acid, 4-hydroxybenzaldehyde, kestose, isomaltose, isomaltotriose, and panose. Most notably, this is the first study to reveal the presence of 4-hydroxybenzaldehyde in buckwheat honey. 4-Hydroxybenzaldehyde seems to be a land marker of buckwheat honey. Our results indicate that buckwheat honey can provide health benefits to the human gut by selectively supporting the growth of indigenous Bifidobacteria and restraining the pathogenic bacterium in the gut tract. We infer that buckwheat honey may be a type of natural intestinal-health products.

16.
Food Res Int ; 126: 108595, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732076

RESUMO

Increasing evidence shows that the gut microbiota contributes to the occurrence and development of colitis. Kudingcha (KDC), made from the leaves of Ilex kudingcha, could mitigate inflammation, however, little is known about the relationship between modulatory effect on gut microbiota by KDC and improvement of colitis. In this study, the attenuating effects of KDC extract (KDCE) on dextran sulfate sodium (DSS)-induced colitis and gut microbiota in C57BL/6 mice were investigated. It was found that the supplementation of KDCE could alleviate typical symptoms of IBD including weight loss, colon shortening, intestinal barrier damage, and decreases in the colitis disease activity index and pro-inflammatory cytokines. Moreover, KDCE supplementation could reverse the alteration of gut microbiota in the colitic mice by increasing the abundances of potential beneficial bacteria, e.g. Odoribacter, Prevotella and Helicobacter, and decreasing the abundances of potential harmful bacteria, e.g. Parabacteroides, Bacteroides, Turicibacter, Parasutterella and Lachnospiraceae. The levels of short-chain fatty acids in feces, cecum contents and serum were also regulated by KDCE. Furthermore, the correlation analysis suggested that KDCE could attenuate DSS-induced colitis which might be related to the alteration of gut microbiota. Therefore, the modulation of gut microbiota by KDCE might be a potential strategy for improving inflammation-driven diseases.


Assuntos
Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Ilex/química , Extratos Vegetais/farmacologia , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Colite/patologia , Colo/microbiologia , Colo/patologia , Citocinas/sangue , Modelos Animais de Doenças , Ácidos Graxos Voláteis , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
17.
Int J Biol Macromol ; 140: 858-870, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31446105

RESUMO

One purified fraction from crude Fuzhuan brick tea polysaccharides (FBTPS), FBTPS-3, was obtained through column chromatography of DEAE Sepharose Fast Flow. The chemical properties and probiotic effects of FBTPS-3 were evaluated by fermentation in vitro. Moreover, the effects of FBTPS-3 on the function and metabolic pathway of gut microbiota were investigated by metagenomic sequencing. The results showed that FBTPS-3 was an heteropolysaccharide with molecular weight of 741 kDa, which was mainly composed of Man, Rha, GalA, Gal and Ara in molar ratio of 8.7:15.5:42.2:19.7:13.9. The contents of carbohydrates and uronic acid in FBTPS-3 were 44.78 ±â€¯2.85% and 40.4 ±â€¯2.11%, respectively. After fermentation, the molecular weight of FBTPS-3 and content of carbohydrates were significantly decreased, indicating that FBTPS-3 could be utilized by gut microbiota. Furthermore, the relative abundances of Bacteroides, Megasphaera and Prevotella were significantly increased by FBTPS-3. FBTPS-3 also significantly promoted the production of acetic, propionic and n-butyric acids. Based on the metagenomic sequencing, it was found that FBTPS-3 significantly enriched the metabolic pathway of starch and sucrose. All the results suggest that FBTPS-3 is expected to be developed as functional ingredients or foods to improve the host health through regulating the gut microbiota and physiological metabolic functions.


Assuntos
Anaerobiose , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Chá/química , Fracionamento Químico , Fenômenos Químicos , Biologia Computacional , Humanos , Hidrólise , Metagenoma , Metagenômica/métodos , Polissacarídeos/química
18.
Food Chem Toxicol ; 126: 332-342, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30654100

RESUMO

Increasing evidence has shown that dicaffeoylquinic acids (DiCQAs) have anti-inflammatory activity. However, the underlying molecular mechanisms of the anti-inflammatory effects of DiCQAs are still unclear. In the present study, the anti-inflammatory effects of DiCQAs from the leaves of Ilex kudingcha and the potential molecular mechanisms on LPS-induced inflammatory responses in RAW264.7 macrophage cells were investigated. The results showed that pretreatment with DiCQAs could suppress the production of NO, PGE2 and also pro-inflammatory cytokines TNF-α, IL-1ß and IL-6, and the mRNA expression of two major inflammatory mediators of COX-2 and iNOS. The phosphorylated IκBα, ERK, JNK and p38 proteins in LPS-treated cells were significantly increased, which could be reversed by pretreatment with DiCQAs in a concentration-dependent manner. Taken together, the results suggest that DiCQAs from I. kudingcha have potent anti-inflammatory effects on LPS-induced inflammatory responses by inhibiting the NF-κB and MAPKs pathways and may be a prophylactic for inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Ilex/química , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ácido Quínico/análogos & derivados , Animais , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/imunologia , Camundongos , Extratos Vegetais/química , Ácido Quínico/análise , Ácido Quínico/farmacologia , Células RAW 264.7
19.
J Agric Food Chem ; 67(19): 5350-5360, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30474370

RESUMO

Tea polysaccharides (TPS) are regarded as some of the main bioactive constituents of tea made from the leaves and buds of the tea plant ( Camellia sinensis L.). An increasing number of studies have demonstrated that TPS can reduce the risk of type 2 diabetes, obesity, and other metabolic diseases. However, the potential mechanisms responsible for antidiabetic and antiobesogenic activities of TPS remain unclear. Therefore, the cellular and physiological mechanisms that underlie the antidiabetic and antiobesogenic effects, including antioxidant and anti-inflammation effects, inhibition of digestive enzymes, prevention of macronutrient absorption, and expression of gene and protein, were summarized in this review. Furthermore, the gastrointestinal functions of TPS and the role of gut microbiota in the prevention and treatment of metabolic diseases were discussed. It is expected that the present review will be helpful for enhancing our knowledge about the health-promoting effects of TPS on metabolic diseases and stimulating further works on TPS.


Assuntos
Camellia sinensis/química , Hipoglicemiantes/administração & dosagem , Doenças Metabólicas/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Animais , Humanos , Hipoglicemiantes/química , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Extratos Vegetais/metabolismo , Polissacarídeos/química
20.
J Agric Food Chem ; 67(1): 171-183, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30561211

RESUMO

Kudingcha made from the leaves of Ilex kudingcha and chlorogenic acid have antiobesity and intestinal microbiota modulating effects. However, the effects of kudingcha dicaffeoylquinic acids (diCQAs) on obesity and intestinal microbiota are still poorly understood. In the present study, the effects of kudingcha diCQAs on adipose accumulation and intestinal microbiota were investigated in high-fat-diet-fed mice. As a result, kudingcha diCQAs decreased the liver and adipose tissue masses, concentrations of serum inflammatory factors, and hepatic expressions of lipid synthesis related genes and increased the expressions of genes involved in lipid degradation in the liver. Kudingcha diCQAs also exhibited considerable effects on intestinal microbiota. They increased the relative abundances of Bifidobacterium and Akkermansia and affected the function of the microbial community including bile acid biosynthesis. Kudingcha diCQAs had antiobesity potential, possibly acting through affecting intestinal microbiota. Furthermore, the effects of kudingcha diCQAs on fat accumulation and intestinal microbiota had a dose-dependent manner.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Ilex/química , Intestinos/microbiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Ácido Quínico/análogos & derivados , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Dieta Hiperlipídica/efeitos adversos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia , Extratos Vegetais/química , Ácido Quínico/administração & dosagem , Ácido Quínico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA