Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050052

RESUMO

The screening of chemical libraries based on cellular biosensors is a useful approach to identify new hits for novel therapeutic targets involved in rare genetic pathologies, such as ß-thalassemia and sickle cell disease. In particular, pharmacologically mediated stimulation of human γ-globin gene expression, and increase of fetal hemoglobin (HbF) production, have been suggested as potential therapeutic strategies for these hemoglobinopathies. In this article, we screened a small chemical library, constituted of 150 compounds, using the cellular biosensor K562.GR, carrying enhanced green fluorescence protein (EGFP) and red fluorescence protein (RFP) genes under the control of the human γ-globin and ß-globin gene promoters, respectively. Then the identified compounds were analyzed as HbF inducers on primary cell cultures, obtained from ß-thalassemia patients, confirming their activity as HbF inducers, and suggesting these molecules as lead compounds for further chemical and biological investigations.


Assuntos
Anemia Falciforme/sangue , Descoberta de Drogas/métodos , Hemoglobina Fetal/biossíntese , Biossíntese de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Talassemia beta/sangue , Anemia Falciforme/tratamento farmacológico , Técnicas Biossensoriais/métodos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Humanos , Células K562 , Proteínas Luminescentes/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Globinas beta/genética , Talassemia beta/tratamento farmacológico , gama-Globinas/genética , Proteína Vermelha Fluorescente
2.
Pharmacol Res Perspect ; 6(6): e00445, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30534379

RESUMO

Neuropeptide S (NPS) is the endogenous ligand of the neuropeptide S receptor (NPSR). NPS modulates several biological functions including anxiety, wakefulness, pain, and drug abuse. The aim of this study was the investigation of the pharmacological profile of NPSR using the dynamic mass redistribution (DMR) assay. DMR is a label-free assay that offers a holistic view of cellular responses after receptor activation. HEK293 cells stably transfected with the murine NPSR (HEK293mNPSR) have been used. To investigate the nature of the NPS-evoked DMR signaling, FR900359 (Gq inhibitor), pertussis toxin (Gi inhibitor), and rolipram (phosphodiesterase inhibitor) were used. To determine the pharmacology of NPSR, several selective ligands (agonists, partial agonists, antagonists) have been tested. NPS, through selective NPSR activation, evoked a robust DMR signal with potency in the nanomolar range. This signal was predominantly, but not completely, blocked by FR900359, suggesting the involvement of the Gq-dependent signaling cascade. NPSR ligands (agonists and antagonists) displayed potency values in DMR experiments similar, but not identical, to those reported in the literature. Furthermore, partial agonists produced a higher efficacy in DMR than in calcium experiments. DMR can be successfully used to study the pharmacology and signaling properties of novel NPSR ligands. This innovative approach will likely increase the translational value of in vitro pharmacological studies.


Assuntos
Bioensaio/métodos , Técnicas Biossensoriais/métodos , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Cálcio/metabolismo , Depsipeptídeos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Ligantes , Toxina Pertussis/farmacologia , Receptores de Neuropeptídeos/metabolismo , Rolipram/farmacologia
3.
J Anesth ; 32(1): 48-53, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29128909

RESUMO

BACKGROUND: Neuropeptide S (NPS) is an endogenous neuropeptide controlling anxiolysis, wakefulness, and analgesia. NPS containing neurons exist near to the locus coeruleus (LC) involved in the descending anti-nociceptive system. NPS interacts with central noradrenergic neurons; thus brain noradrenergic signaling may be involved in NPS-induced analgesia. We tested NPS analgesia in noradrenergic neuron-lesioned rats using a selective LC noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4). METHODS: A total 66 male Sprague-Dawley rats weighing 350-450 g were used. Analgesic effects of NPS were evaluated using hot-plate and tail-flick test with or without DSP-4. The animal allocated into 3 groups; hot-plate with NPS alone intracerebroventricular (icv) (0.0, 1.0, 3.3, and 10.0 nmol), tail-flick NPS alone icv (0.0 and 10.0 nmol), and hot-plate with NPS and DSP-4 (0 or 50 mg/kg ip). In hot-plate with NPS and DSP-4 group, noradrenaline content in the cerebral cortex, pons, hypothalamus, were measured. RESULTS: NPS 10 nmol icv prolonged hot plate (%MPE) but not tail flick latency at 30 and 40 min after administration. DSP-4 50 mg/kg decreased noradrenaline content in the all 3 regions. The NA depletion inhibited NPS analgesic effect in the hot plate test but not tail flick test. There was a significant correlation between hot plate latency (percentage of maximum possible effect: %MPE) with NPS 10 nmol and NA content in the cerebral cortex (p = 0.017, r 2 = 0.346) which noradrenergic innervation arisen mainly from the LC. No other regions had the correlation. CONCLUSIONS: NPS analgesia interacts with LC noradrenergic neuronal activity.


Assuntos
Analgésicos/farmacologia , Benzilaminas/farmacologia , Norepinefrina/metabolismo , Dor/tratamento farmacológico , Animais , Encéfalo/metabolismo , Hipotálamo/metabolismo , Locus Cerúleo/metabolismo , Masculino , Neurônios/metabolismo , Medição da Dor , Ratos , Ratos Sprague-Dawley
4.
Sci Rep ; 6: 27198, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250901

RESUMO

Demonstrating a candidate drug's interaction with its target protein in live cells is of pivotal relevance to the successful outcome of the drug discovery process. Although thymidylate synthase (hTS) is an important anticancer target protein, the efficacy of the few anti-hTS drugs currently used in clinical practice is limited by the development of resistance. Hence, there is an intense search for new, unconventional anti-hTS drugs; there are approximately 1600 ongoing clinical trials involving hTS-targeting drugs, both alone and in combination protocols. We recently discovered new, unconventional peptidic inhibitors of hTS that are active against cancer cells and do not result in the overexpression of hTS, which is a known molecular source of resistance. Here, we propose an adaptation of the recently proposed tetracysteine-arsenic-binding-motif technology to detect and quantitatively characterize the engagement of hTS with one such peptidic inhibitor in cell lysates. This new model can be developed into a test for high-throughput screening studies of intracellular target-protein/small-molecule binding.


Assuntos
Arsênio/química , Cisteína/química , Inibidores Enzimáticos/química , Timidilato Sintase/química , Motivos de Aminoácidos , Arsênio/metabolismo , Domínio Catalítico , Cisteína/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Timidilato Sintase/antagonistas & inibidores
5.
FEBS Lett ; 590(4): 582-91, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26821608

RESUMO

Many age-related neurodegenerative diseases, including Alzheimer Disease (AD), are elicited by an interplay of genetic, environmental, and dietary factors. Food rich in Omega-3 phospholipids seems to reduce the AD incidence. To investigate the molecular basis of this beneficial effect, we have investigated by CD and ESR studies the interaction between the Alzheimer peptide Aß-(1-42) and biomimetic lipid bilayers. The inclusion of 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine does not change significantly the bilayers organization, but favors its Aß-(1-42) interaction. The Omega-3 lipid amount modulates the effect intensity, suggesting a peptide selectivity for membranes containing polyunsatured fatty acids (PUFA) and providing hints for the mechanism and therapy of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Ômega-3/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Materiais Biomiméticos/química , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Bicamadas Lipídicas/química , Dados de Sequência Molecular , Conformação Proteica , Solubilidade
6.
Psychopharmacology (Berl) ; 226(2): 347-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23149909

RESUMO

RATIONALE: Previous studies have shown that activation of brain neuropeptide S receptor (NPSR) facilitates reinstatement of cocaine seeking elicited by environmental cues predictive of drug availability. This finding suggests the possibility that blockade of NPSR receptors may be of therapeutic benefit in cocaine addiction. To evaluate this hypothesis, we investigated the effect of two newly synthetized NPSR antagonists, namely the quinolinone-amide derivative NPSR-QA1 and the NPS peptidic analogue [D-Cys(tBu)5]NPS on cocaine self-administration and on discriminative cue-induced relapse to cocaine seeking in the rat. METHODS: Separate groups of rats self-administered food and cocaine 0.25 mg/kg/inf in FR1 and FR5 (fixed ratio reinforcement schedules) for 30-min and 2-h sessions per day. After food and cocaine intake reached baseline levels, the effect of NPSR-QA1 was tested on cocaine and food self-administration. The NPSR-QA1 was injected intraperitoneally and its effect on discriminative cue-induced reinstatement was evaluated, while [D-Cys(tBut)5]NPS was injected intracranially, intra-lateral hypothalamus, intra-perifornical area of the hypothalamus, and intra-central amygdala. The effect of the NPSR-QA1 on extinction of cocaine seeking was also assessed. RESULTS: Intraperitoneal administration of NPSR-QA1 (15-30 mg/kg) did not affect cocaine self-administration. Conversely, NPSR-QA1 (15-30 mg/kg) decreased discriminative cue-induced cocaine relapse. At the lowest dose, this effect was specific, while at the highest dose, NPSR-QA1 also reduced food self-administration. The efficacy of NPSR antagonism on cocaine seeking was confirmed with [D-Cys(tBu)5]NPS (10-30 nmol/rat) as it markedly inhibited relapse behavior following site-specific injection into the lateral hypothalamus and the perifornical area of the hypothalamus but not into the central amygdala. CONCLUSIONS: The identification of the NPS/NPSR system as an important new element involved in the physiopathology of cocaine addiction and the discovery of the anti-addictive properties of NPSR antagonists opens the possibility of exploring a new mechanism for cocaine addiction treatment.


Assuntos
Cocaína/farmacologia , Sinais (Psicologia) , Hipotálamo/metabolismo , Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/efeitos dos fármacos , Amidas/farmacologia , Animais , Comportamento Aditivo/tratamento farmacológico , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/efeitos dos fármacos , Masculino , Neuropeptídeos/farmacologia , Quinolonas/farmacologia , Ratos , Ratos Wistar
7.
Pain ; 148(1): 107-113, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19945794

RESUMO

Chemical modifications of nociceptin/orphanin FQ (N/OFQ) peptide that result in increased potency and resistance to degradation have recently lead to the discovery of [(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112), a novel N/OFQ peptide (NOP) receptor agonist. The aim of this study was to investigate the pharmacological profile of intrathecally administered UFP-112 in monkeys under different behavioral assays. Intrathecal UFP-112 (1-10 nmol) dose-dependently produced antinociception against an acute noxious stimulus (50 degrees C water) and capsaicin-induced thermal hyperalgesia. Intrathecal UFP-112-induced antinociception could be reversed by a NOP receptor antagonist, J-113397 (0.1mg/kg), but not by a classic opioid receptor antagonist, naltrexone (0.03 mg/kg). Like intrathecal morphine, UFP-112 produced antinociception in two primate pain models with a similar magnitude of effectiveness and a similar duration of action that last for 4-5h. Unlike intrathecal morphine, UFP-112 did not produce itch/scratching responses. In addition, intrathecal inactive doses of UFP-112 and morphine produced significant antinociceptive effects when given in combination without increasing scratching responses. These results demonstrated that intrathecal UFP-112 produced long-lasting morphine-comparable antinociceptive effects without potential itch side effect. This study is the first to provide functional evidence that selective NOP receptor agonists such as UFP-112 alone or in conjunction with morphine may improve the quality of spinal analgesia.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Peptídeos Opioides/agonistas , Peptídeos Opioides/uso terapêutico , Animais , Benzimidazóis/farmacologia , Capsaicina/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Injeções Espinhais/métodos , Macaca mulatta , Masculino , Morfina/uso terapêutico , Naltrexona/farmacologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Piperidinas/farmacologia , Nociceptina
8.
Naunyn Schmiedebergs Arch Pharmacol ; 379(6): 599-607, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19183962

RESUMO

In this study, the Galpha(qi5) protein was used to force the human nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor to signal through the Ca(2+) pathway in CHO cells. [Ca(2+)](i) levels were monitored using the fluorometer FlexStation II and the Ca(2+) dye Fluo 4 AM. Concentration response curves were generated with a panel of full and partial agonists, while NOP antagonists were assessed in inhibition-response curves. The following rank order of potency of antagonists was measured: SB - 612111 > J - 113397 = Trap - 101 > or = UFP - 101 > [Nphe1]N/OF Q(1 - 13)NH2 >> naloxone, which is superimposable to literature findings. The rank order of potency of full and partial agonists is also similar to that obtained in previous studies with the exception of a panel of ligands (UFP-112, Ro 64-6198, ZP120, UFP-113) whose potency was relatively low in the Galpha(qi5)-NOP receptor calcium assay. Interestingly, these NOP ligands are characterized by slow kinetic of interaction with the NOP receptor, as demonstrated by bioassay experiments. These results demonstrated that the FlexStation II-Galpha(qi5)-NOP receptor calcium assay represents an adequate and useful screening for NOP receptor ligands, particularly for antagonists.


Assuntos
Sinalização do Cálcio/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Piperidinas/metabolismo , Piperidinas/farmacologia , Receptores Opioides/agonistas , Receptor de Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA