Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 152: 113220, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671583

RESUMO

Given the risk of Candida albicans overgrowth in the gut, novel complementary therapies should be developed to reduce fungal dominancy. This study highlights the antifungal characteristics of a Bacillus subtilis-derived secondary metabolite, surfactin with high potential against C. albicans. Surfactin inhibited the growth of C. albicans following a 1-hour exposure, in addition to reduced adhesion and morphogenesis. Specifically, surfactin did not affect the level of reactive oxygen species but increased the level of reduced glutathione. Surprisingly, ethanol production was increased following 2 h of surfactin exposure. Surfactin treatment caused a significant reduction in intracellular iron, manganese and zinc content compared to control cells, whereas the level of copper was not affected. Alongside these physiological properties, surfactin also enhanced fluconazole efficacy. To gain detailed insights into the surfactin-related effects on C. albicans, genome-wide gene transcription analysis was performed. Surfactin treatment resulted in 1390 differentially expressed genes according to total transcriptome sequencing (RNA-Seq). Of these, 773 and 617 genes with at least a 1.5-fold increase or decrease in transcription, respectively, were selected for detailed investigation. Several genes involved in morphogenesis or related to metabolism (e.g., glycolysis, ethanol and fatty acid biosynthesis) were down-regulated. Moreover, surfactin decreased the expression of ERG1, ERG3, ERG9, ERG10 and ERG11 involved in ergosterol synthesis, whereas genes associated with ribosome biogenesis and iron metabolism and drug transport-related genes were up-regulated. Our data demonstrate that surfactin significantly influences the physiology and gene transcription of C. albicans, and could contribute to the development of a novel innovative complementary therapy.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Ergosterol/metabolismo , Etanol/farmacologia , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Testes de Sensibilidade Microbiana
2.
Microorganisms ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35456809

RESUMO

As a consequence of the worsening situation with multidrug-resistant (MDR) pathogens and a disparity in the commercialization of novel antimicrobial agents, scientists have been prompted to seek out new compounds with antimicrobial activity from a wide range of sources, including medicinal plants. In the present study, the antibacterial, antifungal, anti-virulence, and resistance-modulating properties of the essential oil from the Sardinian endemic Juniperus oxycedrus L. ssp. macrocarpa aerial parts were evaluated. The GC/MS analysis showed that the main compounds in the oil were α-pinene (56.63 ± 0.24%), limonene (14.66 ± 0.11%), and ß-pinene (13.42 ± 0.09%). The essential oil showed potent antibacterial activity against Gram-positive bacteria (0.25-2 v/v%) and Salmonella spp. (4 v/v%). The strongest fungicidal activity was recorded against Candida auris sessile cells (median FICI was 0.088) but not against C. albicans biofilms (median FICI was 1). The oil showed potent efflux pump inhibitory properties in the case of Staphylococcus aureus and Escherichia coli. The therapeutic potential of Juniperus may be promising for future more extensive research and in vivo tests to develop new drugs against antibiotic and antifungal resistance.

3.
mSphere ; 6(5): e0071021, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643421

RESUMO

The antifungal resistance threat posed by Candida auris necessitates bold and innovative therapeutic options. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment regimens. To gain further insights into the farnesol-related effect on C. auris, genome-wide gene transcription analysis was performed using transcriptome sequencing (RNA-Seq). Farnesol exposure resulted in 1,766 differentially expressed genes. Of these genes, 447 and 304 genes with at least 1.5-fold increase or decrease in transcription, respectively, were selected for further investigation. Genes involved in morphogenesis, biofilm events (maturation and dispersion), gluconeogenesis, iron metabolism, and regulation of RNA biosynthesis showed downregulation, whereas those related to antioxidative defense, transmembrane transport, glyoxylate cycle, fatty acid ß-oxidation, and peroxisome processes were upregulated. In addition, farnesol treatment increased the transcription of certain efflux pump genes, including MDR1, CDR1, and CDR2. Growth, measured by the change in the number of CFU, was significantly inhibited within 2 h of the addition of farnesol (5.8 × 107 ± 1.1 × 107 and 1.1 × 107 ± 0.3 × 107 CFU/ml for untreated control and farnesol-exposed cells, respectively) (P < 0.001). In addition, farnesol treatment caused a significant reduction in intracellular iron (152.2 ± 21.1 versus 116.0 ± 10.0 mg/kg), manganese (67.9 ± 5.1 versus 18.6 ± 1.8 mg/kg), and zinc (787.8 ± 22.2 versus 245.8 ± 34.4 mg/kg) (P < 0.05 to 0.001) compared to untreated control cells, whereas the level of cooper was significantly increased (274.6 ± 15.7 versus 828.8 ± 106.4 mg/kg) (P < 0.001). Our data demonstrate that farnesol significantly influences the growth, intracellular metal ion contents, and gene transcription related to fatty acid metabolism, which could open new directions in developing alternative therapies against C. auris. IMPORTANCE Candida auris is a dangerous fungal pathogen that causes outbreaks in health care facilities, with infections associated with a high mortality rate. As conventional antifungal drugs have limited effects against the majority of clinical isolates, new and innovative therapies are urgently needed. Farnesol is a key regulator molecule of fungal morphogenesis, inducing phenotypic adaptations and influencing biofilm formation as well as virulence. Alongside these physiological modulations, it has a potent antifungal effect alone or in combination with traditional antifungals, especially at supraphysiological concentrations. However, our knowledge about the mechanisms underlying this antifungal effect against C. auris is limited. This study has demonstrated that farnesol enhances the oxidative stress and reduces the fungal survival strategies. Furthermore, it inhibits manganese, zinc transport, and iron metabolism as well as increases fungal intracellular copper content. In addition, metabolism was modulated toward ß-oxidation. These results provide definitive explanations for the observed antifungal effects.


Assuntos
Candida auris/efeitos dos fármacos , Candida auris/genética , Candida auris/fisiologia , Farneseno Álcool/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Testes de Sensibilidade Microbiana , Percepção de Quorum , Ativação Transcricional/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genética
4.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466640

RESUMO

Candida auris is a potential multidrug-resistant pathogen able to persist on indwelling devices as a biofilm, which serve as a source of catheter-associated infections. Neosartorya fischeri antifungal protein 2 (NFAP2) is a cysteine-rich, cationic protein with potent anti-Candida activity. We studied the in vitro activity of NFAP2 alone and in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin against C. auris biofilms. The nature of interactions was assessed utilizing the fractional inhibitory concentration index (FICI), a Bliss independence model, and LIVE/DEAD viability assay. NFAP2 exerted synergy with all tested antifungals with FICIs ranging between 0.312-0.5, 0.155-0.5, 0.037-0.375, 0.064-0.375, and 0.064-0.375 for fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. These results were confirmed using a Bliss model, where NFAP2 produced 17.54 µM2%, 2.16 µM2%, 33.31 µM2%, 10.72 µM2%, and 111.19 µM2% cumulative synergy log volume in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. In addition, biofilms exposed to echinocandins (32 mg/L) showed significant cell death in the presence of NFAP2 (128 mg/L). Our study shows that NFAP2 displays strong potential as a novel antifungal compound in alternative therapies to combat C. auris biofilms.


Assuntos
Antifúngicos/metabolismo , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Neosartorya/metabolismo , Antifúngicos/farmacologia , Candida/fisiologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Sinergismo Farmacológico , Proteínas Fúngicas/farmacologia , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-30478163

RESUMO

As a consequence of emerging numbers of vulvovaginitis cases caused by azole-resistant and biofilm-forming Candida species, fast and efficient treatment of this infection has become challenging. The problem is further exacerbated by the severe side effects of azoles as long-term-use medications in the recurrent form. There is therefore an increasing demand for novel and safely applicable effective antifungal therapeutic strategies. The small, cysteine-rich, and cationic antifungal proteins from filamentous ascomycetes are potential candidates, as they inhibit the growth of several Candida spp. in vitro; however, no information is available about their in vivo antifungal potency against yeasts. In the present study, we investigated the possible therapeutic application of one of their representatives in the treatment of vulvovaginal candidiasis, Neosartorya fischeri antifungal protein 2 (NFAP2). NFAP2 inhibited the growth of a fluconazole (FLC)-resistant Candida albicans strain isolated from a vulvovaginal infection, and it was effective against both planktonic cells and biofilm in vitro We observed that the fungal cell-killing activity of NFAP2 is connected to its pore-forming ability in the cell membrane. NFAP2 did not exert cytotoxic effects on primary human keratinocytes and dermal fibroblasts at the MIC in vitro. In vivo murine vulvovaginitis model experiments showed that NFAP2 significantly decreases the number of FLC-resistant C. albicans cells, and combined application with FLC enhances the efficacy. These results suggest that NFAP2 provides a feasible base for the development of a fundamental new, safely applicable mono- or polytherapeutic topical agent for the treatment of superficial candidiasis.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Neosartorya/metabolismo , Animais , Candidíase Vulvovaginal/microbiologia , Farmacorresistência Fúngica , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
6.
J Chemother ; 30(4): 233-239, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025501

RESUMO

We determined micafungin, caspofungin and amphotericin B (AMB) minimum inhibitory concentration (MICs) and killing rates in RPMI-1640 and in RPMI-1640 with 50% serum against three Candida krusei bloodstream isolates. MIC ranges in RPMI-1640 were 0.125-0.25, 0.25 and 0.125-0.5 mg/L, in RPMI-1640 with 50% serum, MICs were 64-128-, 8- and 4-16-fold higher, respectively. In RPMI-1640 micafungin and caspofungin at 1, 4, 16 and 32 mg/L as well as AMB at 2 mg/L were fungicidal against all isolates in ≤3.96, ≤4.42 and 14.96 h, respectively. In RPMI-1640 with 50% serum, caspofungin was fungicidal for all isolates only at 32 mg/L, micafungin and AMB were fungistatic. In neutropenic mice, 5 mg/kg caspofungin and 1 mg/kg AMB were ineffective against two of the three isolates. Thus, in vivo efficacy of echinocandins and AMB is weak or absent against C. krusei. Prescribers treating C. krusei infections with echinocandins should watch out for clinical resistance and therapeutic failure.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidemia/tratamento farmacológico , Caspofungina/farmacologia , Micafungina/farmacologia , Anfotericina B/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Caspofungina/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Micafungina/uso terapêutico , Testes de Sensibilidade Microbiana
7.
J Microbiol ; 54(11): 753-760, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27796932

RESUMO

Farnesol is a quorum-sensing molecule that inhibits biofilm formation in Candida albicans. Previous in vitro data suggest that, in combination with certain antifungals, farnesol may have an adjuvant anti-biofilm agent. However, the in vivo efficacy of farnesol is very questionable. Therefore, the in vitro and in vivo activity of fluconazole combined with farnesol was evaluated against C. albicans biofilms using fractional inhibitory concentration index (FICI) determination, time-kill experiments and a murine vulvovaginitis model. The median biofilm MICs of fluconazole-sensitive C. albicans isolates ranged between 4 -> 512 mg/L and 150-300 µM for fluconazole and farnesol, respectively. These values were 512 -> 512 mg/L and > 300 µM for fluconazole-resistant clinical isolates. Farnesol decreased the median MICs of fluconazole by 2-64-fold for biofilms. Based on FICI, synergistic interaction was observed only in the case of the sessile SC5314 reference strain (FICIs: 0.16-0.27). In time-kill studies, only the 512 mg/L fluconazole and 512 mg/L fluconazole + 75 µM farnesol reduced biofilm mass significantly at each time point in the case of all isolates. The combination reduced the metabolic activity of biofilms for all isolates in a concentration- and time-dependent manner. Our findings revealed that farnesol alone was not protective in a murine vulvovaginitis model. Farnesol was not beneficial in combination with fluconazole for fluconazole-susceptible isolates, but partially increased fluconazole activity against one fluconazole-resistant isolate, but not the other one.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Candidíase/tratamento farmacológico , Farneseno Álcool/farmacologia , Farneseno Álcool/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Animais , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Candidíase/microbiologia , Modelos Animais de Doenças , Farmacorresistência Fúngica , Sinergismo Farmacológico , Feminino , Camundongos , Testes de Sensibilidade Microbiana , Percepção de Quorum/efeitos dos fármacos , Vagina/microbiologia , Virulência , Vulvovaginite/microbiologia
8.
J Basic Microbiol ; 55(8): 973-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25707543

RESUMO

The fluorinated glucocorticoid betamethasone stimulated both the extracellular phospholipase production and hypha formation of the opportunistic human pathogen Candida albicans and also decreased the efficiency of the polyene antimycotics amphotericin B and nystatin against C. albicans in a dose-dependent manner. Importantly, betamethasone increased synergistically the anti-Candida activity of the oxidative stress generating agent menadione, which may be exploited in future combination therapies to prevent or cure C. albicans infections, in the field of dermatology.


Assuntos
Antifúngicos/farmacologia , Betametasona/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Vitamina K 3/farmacologia , Anfotericina B/farmacologia , Candida albicans/patogenicidade , Candida albicans/fisiologia , Candidíase/microbiologia , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Nistatina/farmacologia , Estresse Oxidativo
9.
J Med Microbiol ; 63(Pt 2): 186-194, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24184471

RESUMO

Killing rates (K) of 1-32 µg ml(-1) caspofungin were determined in RPMI-1640 and in 50 % serum using time-kill methodology against three Candida krusei (MICs of all three isolates 0.25 µg ml(-1) in RPMI-1640 and 2 µg ml(-1) in serum) and three Candida inconspicua clinical isolates (MIC ranges 0.06-0.12 µg ml(-1) in RPMI-1640 and 0.25-0.5 µg ml(-1) in serum), against C. krusei ATCC 6258 and against one C. krusei isolate that was resistant to echinocandins (MIC 8 µg ml(-1) in RPMI-1640 and 32 µg ml(-1) in serum). In RPMI-1640, the highest mean K values were observed at 4 (-1.05 h(-1)) and 16 (-0.27 h(-1)) µg ml(-1) caspofungin for C. krusei and C. inconspicua clinical isolates, respectively. In 50 % serum, mean K value ranges at 1-32 and 4-32 µg ml(-1) concentrations for C. inconspicua and C. krusei were -1.12 to -1.44 and -0.42 to -0.57 h(-1), respectively. While K values against C. krusei in RPMI-1640 and 50 % serum were comparable, serum significantly increased the killing rate against C. inconspicua (P<0.0003 for all tested concentrations). In a neutropenic murine model, daily caspofungin at 1, 2, 3, 5 and 15 mg kg(-1) significantly decreased the fungal tissue burden of C. inconspicua in the kidneys (P<0.05-0.001). Against C. krusei, doses of 3, 5 and 15 mg kg(-1) caspofungin were effective (P<0.05-0.01). All effective doses were comparably efficacious for both species. Only the highest 15 mg kg(-1) caspofungin dose was effective even against the echinocandin-resistant C. krusei isolate. In 50 % serum, killing was concentration independent at effective concentrations (≥4 and ≥1 µg ml(-1) for C. krusei and C. inconspicua, respectively), suggesting that the efficacy of dose escalation is questionable. These in vitro results were also supported by the murine model.


Assuntos
Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Equinocandinas/uso terapêutico , Animais , Candida/isolamento & purificação , Candidíase/microbiologia , Caspofungina , Modelos Animais de Doenças , Equinocandinas/farmacologia , Feminino , Humanos , Lipopeptídeos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Viabilidade Microbiana/efeitos dos fármacos , Neutropenia/complicações , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA