Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1183406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469771

RESUMO

The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.

2.
J Nutr Biochem ; 111: 109173, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228975

RESUMO

The antidiabetic effects of green tea have been demonstrated in clinical trials and epidemiological studies. This study investigated the antidiabetic effects of green tea extract (GTE) and its underlying molecular mechanisms using a leptin receptor-deficient db/db mouse model (Leprdb/db). Treatment with GTE for 2 weeks improved glucose tolerance and insulin sensitivity in Leprdb/db mice. In addition, GTE treatment reduced the body weight and adiposity of Leprdb/db mice. Furthermore, GTE treatment reduced pro-inflammatory gene expression, including nuclear factor kappa B (NF-κB) in white adipose tissue (WAT), and also reduced dipeptidyl peptidase-4 (DPP4) expression levels in WAT as well as in the serum. The promoter region of Dpp4 contains the NF-κB binding site, and DPP4 was found to be a direct target of NF-κB. Consistently, in vitro treatment of cells with GTE or its main constituent epigallocatechin gallate reduced lipopolysaccharide-induced NF-κB/DPP4 expression in 3T3-L1 adipocytes and RAW264.7 cells. Overall, our data demonstrated that GTE exerts an anti-diabetic effect by regulating the expression levels of NF-κB and DPP4 in WAT.


Assuntos
Dipeptidil Peptidase 4 , Hipoglicemiantes , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/metabolismo , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Tecido Adiposo/metabolismo , Chá/química
3.
Hortic Res ; 7: 112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637140

RESUMO

Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1 Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of ß-amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families.

4.
PLoS One ; 15(5): e0225564, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32380515

RESUMO

Senna tora is an annual herb with rich source of anthraquinones that have tremendous pharmacological properties. However, there is little mention of genetic information for this species, especially regarding the biosynthetic pathways of anthraquinones. To understand the key genes and regulatory mechanism of anthraquinone biosynthesis pathways, we performed spatial and temporal transcriptome sequencing of S. tora using short RNA sequencing (RNA-Seq) and long-read isoform sequencing (Iso-Seq) technologies, and generated two unigene sets composed of 118,635 and 39,364, respectively. A comprehensive functional annotation and classification with multiple public databases identified array of genes involved in major secondary metabolite biosynthesis pathways and important transcription factor (TF) families (MYB, MYB-related, AP2/ERF, C2C2-YABBY, and bHLH). Differential expression analysis indicated that the expression level of genes involved in anthraquinone biosynthetic pathway regulates differently depending on the degree of tissues and seeds development. Furthermore, we identified that the amount of anthraquinone compounds were greater in late seeds than early ones. In conclusion, these results provide a rich resource for understanding the anthraquinone metabolism in S. tora.


Assuntos
Antraquinonas/metabolismo , Sementes/genética , Extrato de Senna/metabolismo , Senna/genética , Senna/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA de Plantas/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética
5.
Mitochondrial DNA B Resour ; 4(2): 2485-2486, 2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-33365593

RESUMO

Chinese magnolia vine (Schisandra chinensis) is an economically important oriental medicinal plant that belongs to the Schisandraceae family. The complete mitochondrial genome sequence of S. chinensis was 946,141 bp in length. A total of 45 genes was annotated, including 30 protein-coding genes, 12 tRNA genes, and 3 rRNA genes. A phylogenetic tree based on the mitochondrial genome demonstrated that S. chinensis was most closely related to Schisandra sphenanthera of the Schisandraceae family.

6.
Mitochondrial DNA B Resour ; 4(2): 3133-3134, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-33365886

RESUMO

Chrysanthemum morifolium (Dendranthema grandiflorum), known as florist's daisy is an important ornamental and medicinal plant of the Asteraceae family. The complete chloroplast genome sequence of one economic cultivar 'Baekma' was 151,060 bp in length with a large single copy (LSC) region (82,862 bp), a small single copy (SSC) region (18,294 bp) and two inverted repeats (IRs) (24,952 bp). It contained 130 genes, including 85 protein-coding genes, 8 rRNAs and 37 tRNAs. The overall GC content was 37%. Phylogenetic analysis showed that C. morifolium 'Baekma' was grouped together with other Chrysanthemum species.

7.
J Med Chem ; 61(23): 10665-10699, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30423248

RESUMO

Ongoing interest in the discovery of selective JAK3 inhibitors led us to design novel covalent inhibitors that engage the JAK3 residue Cys909 by cyanamide, a structurally and mechanistically differentiated electrophile from other cysteine reacting groups previously incorporated in JAK3 covalent inhibitors. Through crystallography, kinetic, and computational studies, interaction of cyanamide 12 with Cys909 was optimized leading to potent and selective JAK3 inhibitors as exemplified by 32. In relevant cell-based assays and in agreement with previous results from this group, 32 demonstrated that selective inhibition of JAK3 is sufficient to drive JAK1/JAK3-mediated cellular responses. The contribution from extrahepatic processes to the clearance of cyanamide-based covalent inhibitors was also characterized using metabolic and pharmacokinetic data for 12. This work also gave key insights into a productive approach to decrease glutathione/glutathione S-transferase-mediated clearance, a challenge typically encountered during the discovery of covalent kinase inhibitors.


Assuntos
Cianamida/química , Cianamida/farmacologia , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Cianamida/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Janus Quinase 3/química , Masculino , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Distribuição Tecidual
8.
J Med Chem ; 61(3): 1130-1152, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29298069

RESUMO

Janus kinases (JAKs) are intracellular tyrosine kinases that mediate the signaling of numerous cytokines and growth factors involved in the regulation of immunity, inflammation, and hematopoiesis. As JAK1 pairs with JAK2, JAK3, and TYK2, a JAK1-selective inhibitor would be expected to inhibit many cytokines involved in inflammation and immune function while avoiding inhibition of the JAK2 homodimer regulating erythropoietin and thrombopoietin signaling. Our efforts began with tofacitinib, an oral JAK inhibitor approved for the treatment of rheumatoid arthritis. Through modification of the 3-aminopiperidine linker in tofacitinib, we discovered highly selective JAK1 inhibitors with nanomolar potency in a human whole blood assay. Improvements in JAK1 potency and selectivity were achieved via structural modifications suggested by X-ray crystallographic analysis. After demonstrating efficacy in a rat adjuvant-induced arthritis (rAIA) model, PF-04965842 (25) was nominated as a clinical candidate for the treatment of JAK1-mediated autoimmune diseases.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Ciclobutanos/farmacologia , Janus Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Sulfonamidas/farmacologia , Animais , Artrite Experimental/tratamento farmacológico , Ciclobutanos/química , Ciclobutanos/farmacocinética , Ciclobutanos/uso terapêutico , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Janus Quinase 1/química , Janus Quinase 2/antagonistas & inibidores , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Pirróis/química , Pirróis/farmacocinética , Pirróis/uso terapêutico , Ratos , Especificidade por Substrato , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico , Distribuição Tecidual
9.
Plant J ; 77(6): 906-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24456463

RESUMO

Ginseng (Panax ginseng) is a famous medicinal herb, but the composition and structure of its genome are largely unknown. Here we characterized the major repeat components and inspected their distribution in the ginseng genome. By analyzing three repeat-rich bacterial artificial chromosome (BAC) sequences from ginseng, we identified complex insertion patterns of 34 long terminal repeat retrotransposons (LTR-RTs) and 11 LTR-RT derivatives accounting for more than 80% of the BAC sequences. The LTR-RTs were classified into three Ty3/gypsy (PgDel, PgTat and PgAthila) and two Ty1/Copia (PgTork and PgOryco) families. Mapping of 30-Gbp Illumina whole-genome shotgun reads to the BAC sequences revealed that these five LTR-RT families occupy at least 34% of the ginseng genome. The Ty3/Gypsy families were predominant, comprising 74 and 33% of the BAC sequences and the genome, respectively. In particular, the PgDel family accounted for 29% of the genome and presumably played major roles in enlargement of the size of the ginseng genome. Fluorescence in situ hybridization (FISH) revealed that the PgDel1 elements are distributed throughout the chromosomes along dispersed heterochromatic regions except for ribosomal DNA blocks. The intensity of the PgDel2 FISH signals was biased toward 24 out of 48 chromosomes. Unique gene probes showed two pairs of signals with different locations, one pair in subtelomeric regions on PgDel2-rich chromosomes and the other in interstitial regions on PgDel2-poor chromosomes, demonstrating allotetraploidy in ginseng. Our findings promote understanding of the evolution of the ginseng genome and of that of related species in the Araliaceae.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Panax/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Evolução Molecular , Heterocromatina , Hibridização in Situ Fluorescente , Modelos Genéticos , Dados de Sequência Molecular , Panax/citologia , Filogenia , Análise de Sequência de DNA , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA