Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 129(1): 29-40, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35473947

RESUMO

Dietary l-carnitine (LC) is a nutritional factor that reduces liver lipid content. However, whether dietary LC can improve lipid metabolism via simultaneous activation of mitochondrial fatty acid (FA) ß-oxidation and suppression of endoplasmic reticulum (ER) stress is still unknown. Large yellow croaker were fed with a high-fat diet (HFD) supplemented with dietary LC at 0, 1·2 or 2·4 ‰ for 10 weeks. The results indicated that a HFD supplemented with LC reduced the liver total lipid and TAG content and improved serum lipid profiles. LC supplementation administered to this fish increased the liver antioxidant capacity by decreasing serum and liver malondialdehyde levels and enhancing the liver antioxidant capacity, which then relieved the liver damage. Dietary LC increased the ATP dynamic process and mitochondrial number, decreased mitochondrial DNA damage and enhanced the protein expression of mitochondrial ß-oxidation, biogenesis and mitophagy. Furthermore, dietary LC supplementation increased the expression of genes and proteins related to peroxisomal ß-oxidation and biogenesis. Interestingly, feeding fish with LC-enriched diets decreased the protein levels indicative of ER stress, such as glucose-regulated protein 78, p-eukaryotic translational initiation factor 2a and activating transcription factor 6. Dietary LC supplementation downregulated mRNA expression relative to FA synthesis, reduced liver lipid and relieved liver damage through regulating ß-oxidation and biogenesis of mitochondria and peroxisomes, as well as the ER stress pathway in fish fed with HFD. The present study provides the first evidence that dietary LC can improve lipid metabolism via simultaneously promoting FA ß-oxidation capability and suppressing the ER stress pathway in fish.


Assuntos
Metabolismo dos Lipídeos , Perciformes , Animais , Dieta Hiperlipídica/efeitos adversos , Antioxidantes/metabolismo , Carnitina/metabolismo , Fígado/metabolismo , Ácidos Graxos/metabolismo , Perciformes/genética , Estresse do Retículo Endoplasmático , Lipídeos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34603472

RESUMO

METHODS: Screen the biologically active components and potential targets of SNFYT through Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID), and related literature. In addition, DrugBank, OMIM, DisGeNET, and the Therapeutic Target Database were searched to explore the therapeutic targets of IS. The cross-targets of SNFYT potential targets and IS treatment targets were taken as candidate gene targets, and GO and KEGG enrichment analyses were performed on the candidate targets. On this basis, the SNFYT-component-target network and protein-protein interaction (PPI) network were constructed using Cytoscape 3.7.2. Finally, AutoDock was used to verify the molecular docking of core components and core targets. RESULTS: We screened out 95 potentially active components and 143 candidate targets. SNFYT-component-target network, PPI network, and Cytoscape analysis identified four core active ingredients and 14 core targets. GO enrichment analyzed 2333 biological processes, 79 cell components, and 149 molecular functions. There are 170 KEGG-related signal pathways (P < 0.05), including the IL-17 signal pathway, TNF signal pathway, and HIF-1 signal pathway. The molecular docking results of the core components and the core targets showed good binding power. CONCLUSIONS: SNFYT may achieve the effect of treating ischemic stroke through its anti-inflammatory effect through a signal pathway with core targets as the core.

3.
J Nutr ; 150(9): 2322-2335, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32720689

RESUMO

BACKGROUND: Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid ß-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES: This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. METHODS: Carnitine-depleted male Nile tilapia (initial weight: 4.29 ± 0.12 g; 3 mo old) were established by feeding them with mildronate diets (1000 mg/kg/d) for 6 wk. Zebrafish deficient in the carnitine palmitoyltransferase 1b gene (cpt1b) were produced by using CRISPR/Cas9 gene-editing technology, and their males (154 ± 3.52 mg; 3 mo old) were used for experiments. Normal Nile tilapia and wildtype zebrafish were used as controls. We assessed nutrient metabolism and energy homeostasis-related biochemical and molecular parameters, and performed 14C-labeled nutrient tracking and transcriptomic analyses. RESULTS: The mitochondrial FAO decreased by 33.1-88.9% (liver) and 55.6-68.8% (muscle) in carnitine-depleted Nile tilapia and cpt1b-deficient zebrafish compared with their controls (P < 0.05). Notably, glucose oxidation and muscle protein deposition increased by 20.5-24.4% and 6.40-8.54%, respectively, in the 2 fish models compared with their corresponding controls (P < 0.05). Accordingly, the adenosine 5'-monophosphate-activated protein kinase/protein kinase B-mechanistic target of rapamycin (AMPK/AKT-mTOR) signaling was significantly activated in the 2 fish models with inhibited mitochondrial FAO (P < 0.05). CONCLUSIONS: These data show that inhibited mitochondrial FAO in fish induces energy homeostasis remodeling and enhances glucose utilization and protein deposition. Therefore, fish with inhibited mitochondrial FAO could have high potential to utilize carbohydrate. Our results demonstrate a potentially new approach for increasing protein deposition through energy homeostasis regulation in cultured animals.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Metilidrazinas/farmacologia , Mitocôndrias/metabolismo , Proteínas/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Ciclídeos , Citocromos b/genética , Citocromos b/metabolismo , DNA , Metabolismo Energético , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Homeostase , Insulina , Masculino , Mutação , Oxirredução , Peixe-Zebra
4.
Fish Shellfish Immunol ; 68: 500-508, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28774846

RESUMO

Energy metabolism plays important roles in stress resistance and immunity in mammals, however, such functions have not been established in fish. In the present study, Nile tilapia (Oreochromis niloticus) was fed with mildronate, an inhibitor of mitochondrial fatty acid (FA) ß-oxidation, for six weeks subsequently challenged with Aeromonas hydrophila and ammonia nitrogen exposure. Mildronate treatment reduced significantly l-carnitine concentration and mitochondrial FA ß-oxidation efficiency, while it increased lipid accumulation in liver. The fish with inhibited hepatic FA catabolism had lower survival rate when exposed to Aeromonas hydrophila and ammonia nitrogen. Moreover, fish fed mildronate supplemented diet had lower immune enzymes activities and anti-inflammatory cytokine genes expressions, but had higher pro-inflammatory cytokine genes expressions. However, the oxidative stress-related biochemical indexes were not significantly affected by mildronate treatment. Taken together, inhibited mitochondrial FA ß-oxidation impaired stress resistance ability in Nile tilapia mainly through inhibiting immune functions and triggering inflammation. This is the first study showing the regulatory effects of lipid catabolism on stress resistance and immune functions in fish.


Assuntos
Ciclídeos , Ácidos Graxos/metabolismo , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Metilidrazinas/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Aeromonas hydrophila/fisiologia , Amônia/metabolismo , Ração Animal , Animais , Carnitina/metabolismo , Ciclídeos/metabolismo , Dieta , Suplementos Nutricionais , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Mitocôndrias/efeitos dos fármacos , Nitrogênio/metabolismo , Oxirredução/efeitos dos fármacos , Distribuição Aleatória
5.
Sci Rep ; 7: 41706, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139735

RESUMO

Peroxisome proliferation activated receptor α (PPARα) is an important transcriptional regulator of lipid metabolism and is activated by high-fat diet (HFD) and fibrates in mammals. However, whether nutritional background affects PPARα activation and the hypolipidemic effects of PPARα ligands have not been investigated in fish. In the present two-phase study of Nile tilapia (Oreochromis niloticus), fish were first fed a HFD (13% fat) or low-fat diet (LFD; 1% fat) diet for 10 weeks, and then fish from the first phase were fed the HFD or LFD supplemented with 200 mg/kg body weight fenofibrate for 4 weeks. The results indicated that the HFD did not activate PPARα or other lipid catabolism-related genes. Hepatic fatty acid ß-oxidation increased significantly in the HFD and LFD groups after the fenofibrate treatment, when exogenous substrates were sufficiently provided. Only in the HFD group, fenofibrate significantly increased hepatic PPARα mRNA and protein expression, and decreased liver and plasma triglyceride concentrations. This is the first study to show that body fat deposition and dietary lipid content affects PPARα activation and the hypolipidemic effects of fenofibrate in fish, and this could be due to differences in substrate availability for lipid catabolism in fish fed with different diets.


Assuntos
Ciclídeos/fisiologia , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Fenômenos Fisiológicos da Nutrição , Animais , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Especificidade de Órgãos/genética , Oxirredução , PPAR alfa/genética , PPAR alfa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Sci Rep ; 7: 40815, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102299

RESUMO

Excess fat accumulation has been observed widely in farmed fish; therefore, efficient lipid-lowering factors have obtained high attention in the current fish nutrition studies. Dietary L-carnitine can increase fatty acid ß-oxidation in mammals, but has produced contradictory results in different fish species. To date, the mechanisms of metabolic regulation of L-carnitine in fish have not been fully determined. The present study used zebrafish to investigate the systemic regulation of nutrient metabolism by dietary L-carnitine supplementation. L-carnitine significantly decreased the lipid content in liver and muscle, accompanied by increased concentrations of total and free carnitine in tissues. Meanwhile, L-carnitine enhanced mitochondrial ß-oxidation activities and the expression of carnitine palmitoyltransferase 1 mRNA significantly, whereas it depressed the mRNA expression of adipogenesis-related genes. In addition, L-carnitine caused higher glycogen deposition in the fasting state, and increased and decreased the mRNA expressions of gluconeogenesis-related and glycolysis-related genes, respectively. L-carnitine also increased the hepatic expression of mTOR in the feeding state. Taken together, dietary L-carnitine supplementation decreased lipid deposition by increasing mitochondrial fatty acid ß-oxidation, and is likely to promote protein synthesis. However, the L-carnitine-enhanced lipid catabolism would cause a decrease in glucose utilization. Therefore, L-carnitine has comprehensive effects on nutrient metabolism in fish.


Assuntos
Carnitina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Suplementos Nutricionais , Gluconeogênese/genética , Glicogênio/metabolismo , Glicólise/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/metabolismo , Músculos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA