Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Food Res Int ; 179: 113981, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342530

RESUMO

Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.


Assuntos
Corantes de Alimentos , Gardenia , Extratos Vegetais , Corantes
2.
Carbohydr Polym ; 327: 121694, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171651

RESUMO

Salecan, a natural ß-glucan compromising nine residues connected by ß-(1 â†’ 3)/α-(1 â†’ 3) glycosidic bonds, is one of the newly approved food ingredients. Salecan has multiple health-improving effects, yet its mechanism against Type 2 diabetes mellitus (T2DM) remains poorly understood. In this study, the hypoglycemic effect and underlying mechanism of Salecan intervention on STZ-induced diabetic model mice were investigated. After 8 weeks of gavage, Salecan attenuated insulin resistance and repaired pancreatic ß cells in a dose-dependent manner. In addition, Salecan supplement remodel the structure of the gut microbiota and altered the level of intestinal metabolites. Serum metabolites, especially unsaturated fatty acids, were also affected significantly. In addition, tight junction proteins in the colon and autophagy-related proteins in the pancreas were upregulated. Multiomics analysis indicated that Lactobacillus johnsonii, Muribaculaceae, and Lachnoclostridium were highly associated with fatty acid esters of hydroxy fatty acids (FAHFA) levels in the colon, accordingly enhancing arachidonic acid and linoleic acid in serum, and promoting GLP-1 release in the intestine and insulin secretion in the pancreas, thus relieving insulin resistance and exhibiting hypoglycemic effects. These findings provide a novel understanding of the anti-diabetic effect of Salecan in mice from a molecular perspective, paving the way for the wide use of Salecan.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , beta-Glucanas , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Multiômica , beta-Glucanas/química
3.
Food Chem ; 438: 137400, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38039864

RESUMO

The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.


Assuntos
Ácidos Graxos não Esterificados , Óleo de Semente do Linho , Humanos , Idoso , Óleo de Girassol , Trato Gastrointestinal , Óleo de Amendoim , Digestão/fisiologia
4.
Environ Pollut ; 343: 123215, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145635

RESUMO

The cooking fumes generated from thermal cooking oils contains various of hazardous components and shows deleterious health effects. The edible oil refining is designed to improve the oil quality and safety. While, there remains unknown about the connections between the characteristics and health risks of the cooking fumes and oils with different refining levels. In this study, the hazardous compounds, including aldehydes, ketones, polycyclic aromatic hydrocarbons (PAHs), and particulate matter (PM) in the fumes emitted from heated soybean oils with different refining levels were characterized, and their health risks were assessed. Results demonstrated that the concentration range of aldehydes and ketones (from 328.06 ± 24.64 to 796.52 ± 29.67 µg/m3), PAHs (from 4.39 ± 0.19 to 7.86 ± 0.51 µg/m3), and PM (from 0.36 ± 0.14 to 5.08 ± 0.15 mg/m3) varied among soybean oil with different refining levels, respectively. The neutralized oil showed the highest concentration of aldehydes and ketones, whereas the refined oil showed the lowest. The highest concentration levels of PAHs and PM were observed in fumes emitted from crude oil. A highly significant (p < 0.001) positive correlation between the acid value of cooking oil and the concentrations of PM was found, suggesting that removing free fatty acids is critical for mitigating PM concentration in cooking fumes. Additionally, the incremental lifetime cancer risk (ILCR) values of PAHs and aldehydes were 5.60 × 10-4 to 8.66 × 10-5 and 5.60 × 10-4 to 8.66 × 10-5, respectively, which were substantially higher than the acceptable levels (1.0 × 10-6) established by US EPA. The present study quantifies the impact of edible oil refining on hazardous compound emissions and provides a theoretical basis for controlling the health risks of cooking fumes via precise edible oil processing.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Óleo de Soja , Óleo de Soja/análise , Óleos de Plantas , Hidrocarbonetos Policíclicos Aromáticos/análise , Material Particulado , Gases/análise , Medição de Risco , Culinária/métodos , Aldeídos/análise , Cetonas/análise
5.
Food Funct ; 14(17): 7946-7958, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37552523

RESUMO

The green and low-carbon awareness drives the consumption demand for "clean-label" plant-based milk, which is limited by its physicochemical stability. Herein, the effects of enzymatic hydrolysis on the stability of cashew-based milk (CM) are explored in detail. Our results showed that a maximum protein solubility of 41.36 ± 2.14% was achieved under bromelain treatment of CM either for 60 min or with the addition of 600 U g-1. Under these hydrolysis conditions, CM showed smaller particle size, larger zeta potential, and more uniform size distribution in comparison with the control. Similar behavior was also observed in the apparent viscosity and macroscopic stability, demonstrating the fortification of moderate hydrolysis on the physical stability of CM. Interestingly, bromelain hydrolysis could favor improving the oxidative stability of CM, for which the peroxide value and thiobarbituric acid reactive substances were decreased by 90% and 60%, respectively, after 14 days of storage in comparison with the control. The correlation analysis confirmed that the physical and oxidative stability was highly associated with protein solubility and secondary structures like α-helix. Therefore, our findings could provide scientific support for developing plant-based milk with fortified physicochemical stability.


Assuntos
Anacardium , Leite , Bromelaínas , Leite/química , Tamanho da Partícula , Viscosidade
6.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903257

RESUMO

Rapeseed polyphenols have cardiovascular protective effects. Sinapine, one main rapeseed polyphenol, possesses antioxidative, anti-inflammatory, and antitumor properties. However, no research has been published about the role of sinapine in alleviating macrophage foaming. This study aimed to reveal the macrophage foaming alleviation mechanism of sinapine by applying quantitative proteomics and bioinformatics analyses. A new approach was developed to retrieve sinapine from rapeseed meals by using hot-alcohol-reflux-assisted sonication combined with anti-solvent precipitation. The sinapine yield of the new approach was significantly higher than in traditional methods. Proteomics was performed to investigate the effects of sinapine on foam cells, and it showed that sinapine can alleviate foam cell formation. Moreover, sinapine suppressed CD36 expression, enhanced the CDC42 expression, and activated the JAK2 and the STAT3 in the foam cells. These findings suggest that the action of sinapine on foam cells inhibits cholesterol uptake, activates cholesterol efflux, and converts macrophages from pro-inflammatory M1 to anti-inflammatory M2. This study confirms the abundance of sinapine in rapeseed oil by-products and elucidates the biochemical mechanisms of sinapine that alleviates macrophage foaming, which may provide new perspectives for reprocessing rapeseed oil by-products.


Assuntos
Brassica napus , Brassica rapa , Óleo de Brassica napus/metabolismo , Proteômica , Macrófagos/metabolismo , Células Espumosas/metabolismo , Brassica napus/metabolismo , Brassica rapa/química , Anti-Inflamatórios/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo
7.
J Agric Food Chem ; 71(13): 5403-5416, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951298

RESUMO

Human milk (HM) lipid plays a crucial role in infant development, whereas its complex lipid profiles and its dynamic changes during prolonged lactation have not been investigated yet. Comparative lipidomic analyses were employed in investigating the lipid profiles of breast milk covering all lactation stages herein. Results revealed significant differences between colostrum and the remaining lactations. A total of 237 species of glycerolipids (GLs) and 231 phospholipids (PLs) were identified. Colostrum had the most abundant lipid species and was enriched with triacylglycerols (TGs) with a high molecular weight. TG(17:1/18:1/24:1), TG(24:1/24:1/26:1), TG(24:0/24:1/26:1), and SM(d20:1/14:1) were characteristic lipids of colostrum. Differential lipid species which were responsible for distinguishing the adjacent lactations were also indicated. Our findings can help deepen the overall understanding of HM lipid profiles and its dynamic changes, which will facilitate the development of infant formulas suitable for Chinese babies in diverse age groups.


Assuntos
Lipidômica , Leite Humano , Feminino , Humanos , Lactente , Gravidez , Colostro/química , População do Leste Asiático , Lactação , Leite Humano/química , Fosfolipídeos/análise
8.
Food Res Int ; 163: 112282, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596189

RESUMO

The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.


Assuntos
Brassica napus , Brassica rapa , Humanos , Brassica napus/química , Óleo de Brassica napus/química , Disponibilidade Biológica , Brassica rapa/química , Polifenóis
9.
Mol Nutr Food Res ; 67(2): e2200508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36382382

RESUMO

SCOPE: Molecular networking (MN) analysis intends to provide chemical insight of untargeted mass spectrometry (MS) data to the user's underlying biological questions. Foodomics is the study of chemical compounds in food using advanced omics methods. In this study, an MS-MN-based foodomics approach is developed to investigate the composition and anti-obesity activity of cannabinoids in hemp oil. METHODS AND RESULTS: A total of 16 cannabinoids are determined in optimized microwave pretreatment of hemp oil using the developed approach. Untargeted metabolomics analysis reveals that cannabinoid extract (CE) and its major constituent (cannabidiol, CBD), can alleviate high glucose-induced increases in lipids and carbohydrates, and decreases in amino acid and nucleic acid. Moreover, CE and CBD are also found to suppress the expression levels of mdt-15, sbp-1, fat-5, fat-6, fat-7, daf-2, and elevate the expression level of daf-1, daf-7, daf-16, sod-3, gst-4, lipl-4, resulting in the decrease of lipid synthesis and the enhance of kinetism. Canonical correspondence analysis (CCA) uncovers strong associations between specific metabolic alterations and gene expression levels. CONCLUSION: These findings from this exploratory study offer a new insight into the roles of cannabinoids in the treatment of obesity and related complications.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabinoides/farmacologia , Canabinoides/análise , Canabinoides/química , Cannabis/química , Canabidiol/química , Extratos Vegetais , Espectrometria de Massas em Tandem/métodos
10.
Front Nutr ; 9: 884537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734370

RESUMO

A great deal of attention has been paid to charactering the protein hydrolysates prepared by enzymatic hydrolysis, while the influence of molecular weight (MW) distributions on the resultant hydrolysates remains unclear. This study aimed to explore the physicochemical and antioxidant characteristics of protein hydrolysate and its peptide fractions. Bromelain has been commonly used to hydrolyze black bean protein via response surface methodology (RSM). The optimal hydrolysis parameters were observed at 52°C, pH 7, E/S ratio of 2.2 (ratio of enzyme to substrate), and 4 h. Under these parameters, the hydrolysate (BPH) presented DPPH radical scavenging activity and Fe2+ chelating activity with IC50 values of 100.08 ± 2.42 and 71.49 ± 0.81 µg/mL, respectively. This might be attributed to structural characteristics, varying with different molecular weight distributions. Interestingly, among BPH and its peptide fractions, peptides smaller than 3 kDa were noted to exhibit the strongest DPPH and ABTS radical scavenging activity. More intriguingly, this peptide fraction (<3 kDa) could predominantly prolong the induction period of sunflower oil, which was, respectively increased to 1.31 folds. This may be due to high proportions of hydrophobic amino acids. Unexpectedly, the optimal Fe2+ chelating activity was observed in the peptide fraction measuring at 3-10 kDa, showing highly positive correlations with histidine and arginine. These identified peptide fractions derived from black bean protein can therefore be employed for food fortification acting as natural antioxidant alternatives.

11.
Mol Omics ; 18(5): 430-438, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35411365

RESUMO

Dietary lipids play an important role in human health, but their influence on aging and longevity remains to be ascertained. This study tests the hypothesis that the consumption of fats with elevated unsaturation might slow down aging and prolong lifespan better than that with greater saturation. The metabolomic analysis of Caenorhabditis elegans (C. elegans) administrated with different dietary oils (palm oil, rapeseed oil, sunflower oil and linseed oil) revealed novel changes in lipid, carbohydrate, amino acid and purine metabolism. Elevated levels of eicosanoic acid, stearic acid, palmitic acid, L-isoleucine, L-lysine, L-tyrosine, and D-fructose, along with decreased content of arachidonic acid (ARA), eicosapentaenoic acid (EPA), and alpha-linolenic acid (ALA) were found in C. elegans with the intake of dietary oils with higher saturation. Declined gene expression levels of daf-2 and akt-1, as well as increased levels of daf-16, sod-3, hsp-16.2, hsf-1, nhr-80, fat-5, fat-6, and fat-7, were noted in the higher unsaturation dietary oil groups. Carbohydrates and amino acids showed moderate to strong correlations with daf-2 and akt-1 (negative), as well as daf-16, sod-3, hsp-16.2, and hsf-1 (positive). Otherwise, our data suggested significant positive relationships between polyunsaturated fatty acids (ARA, EPA, ALA) and nhr-80, fat-5, fat-6 and fat-7. Taken together, this study demonstrates that unsaturated dietary oils can slow down aging and prolong the lifespan of C. elegans via the insulin signaling pathway and the biosynthesis of unsaturated fatty acids.


Assuntos
Envelhecimento , Caenorhabditis elegans , Gorduras Insaturadas na Dieta , Longevidade , Animais , Caenorhabditis elegans/metabolismo , Gorduras na Dieta , Ácidos Graxos Insaturados/metabolismo , Metabolômica , Proteínas Proto-Oncogênicas c-akt , Superóxido Dismutase
12.
Food Chem ; 381: 131745, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124493

RESUMO

The effect of different types of oils including camellia oil (CLO), sunflower oil (SFO), corn oil (CO) and linseed oil (LO) on the formation, crystal network structure and mechanical properties of 4%wt beeswax (BW) in oleogel was investigated. BW oleogels containing oils with higher contents of polyunsaturated fatty acids gelled first (1%wt), especially LO with higher contents of linolenic acid rather than CLO with higher contents of monounsaturated fatty acids. In comparison, oils with higher polyunsaturated fatty acid contents exhibited higher Db with more extensive microstructure at different cooling rates, which was related to shorter nucleation induction time of crystal and higher crystallinity. Stronger van der Waals forces were observed in oleogels with higher polyunsaturated fatty acid contents especially for LO oleogel. Rheology also showed that LO oleogel with higher content of linolenic acid had higher crystallinity and lower crystal melting interfacial tension, resulting in the formation of a more stable network structure.


Assuntos
Óleos de Plantas , Ceras , Ácidos Graxos Insaturados , Compostos Orgânicos , Óleos de Plantas/química , Ceras/química
13.
J Sci Food Agric ; 102(8): 3160-3168, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34786719

RESUMO

BACKGROUND: Deep-frying oil has been found to cause inflammatory bowel disease (IBD). However, the molecular mechanism of the effect of deep-frying palm oil on IBD still remains undetermined. RESULTS: In the present study, bioinformatics and cell biology were used to investigate the functions and signal pathway enrichments of differentially expressed genes. The bioinformatics analysis of three original microarray datasets (GSE73661, GSE75214 and GSE126124) in the NCBI-Gene Expression Omnibus database showed 17 down-regulated genes (logFC < 0) and 2 up-regulated genes (logFC > 0) existed in the enteritis tissue. Meanwhile, pathway enrichment and protein-protein interaction network analysis suggested that IBD is relevant to cytotoxicity, inflammation and apoptosis. Furthermore, Caco-2 cells were treated with the main oxidation products of deep-frying oil-total polar compounds (TPC) and its components (polymerized triglyceride, oxidized triglycerides and triglyceride degradation products) isolated from deep-frying oil. The flow cytometry experiment revealed that TPC and its components could induce apoptosis, especially for oxidized triglyceride. A quantitative polymerase chain reaction analysis demonstrated that TPC and its component could induce Caco-2 cell apoptosis through AQP8/CXCL1/TNIP3/IL-1. CONCLUSION: The present study provides fundamental knowledge for understanding the effects of deep-frying oils on the cytotoxic and inflammatory of Caco-2 cells, in addition to clarifying the molecular function mechanism of deep-frying oil in IBD. © 2021 Society of Chemical Industry.


Assuntos
Temperatura Alta , Doenças Inflamatórias Intestinais , Apoptose , Células CACO-2 , Culinária , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Óleos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Triglicerídeos/química
14.
J Sci Food Agric ; 102(8): 3179-3192, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34787315

RESUMO

BACKGROUND: The palm oil (PO), leaf lard oil (LO), rapeseed oil (RO), sunflower oil (SO) and linseed oil (LN) are five of the most typical dietary lipids in most Asian countries. However, their influences on gut health, and the connections between the fatty acid composition, the gut microbiota, and the bile acid metabolism are not fully understood. RESULTS: In the present study, results showed that compared with polyunsaturated fatty acid (PUFA)-rich SO and LN, the saturated fatty acid (SFA)-rich and monounsaturated fatty acid (MUFA)-rich PO, LO and RO were more likely to decrease the re-absorption of bile acid in the colon, which was probably caused by their different role in modulating the gut microbiota structure. LO consumption significantly up-regulated the Cyp27a1, FXR and TGR5 gene expression level (P < 0.05). The correlation results suggested that the C18:0 was significantly positive correlated with these three genes, indicating that intake of SFA-rich dietary lipids, especially for the C18:0, could specifically increase the bile acid production by stimulating the bile acid alternative synthesis pathway. Although the bile acid receptor expression in the colon was increased, the re-absorption of bile acid did not show a significant increase (P > 0.05) as compared with other dietary lipids. Moreover, the C18:2-rich SO maintained the bile acid metabolic balance probably by decreasing the Romboutsia, while increasing the Bifidobacterium abundance in the colon. CONCLUSIONS: The different dietary lipids showed different effects on the bile acid metabolism, which was probably connected with the alterations in the gut microbiota structure. The present study could provide basic understandings about the influences of the different dietary lipids consumption on gut homeostasis and bile acid metabolism. © 2021 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Animais , Ratos , Ácidos e Sais Biliares , Gorduras na Dieta/metabolismo , Ácidos Graxos , Óleo de Semente do Linho/metabolismo , Metabolismo dos Lipídeos , Óleo de Palmeira , Óleos de Plantas/química , Óleo de Brassica napus , Ratos Sprague-Dawley , Óleo de Girassol
15.
Food Funct ; 13(1): 270-279, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34888592

RESUMO

Extraction technology can influence the vegetable oil functional quality. Polyphenols in rapeseed oil have been proved to be beneficial for cardiovascular health. In this study, we evaluated the effect of extraction methods on the functional quality of rapeseed oil from the perspective of phenolic compounds. The results showed that hot pressing produces the highest amount of phenolic compounds in rapeseed oil. Its most abundant phenolic compound, sinapine (9.18 µg g-1), showed the highest activity in inhibiting anaerobic choline metabolism with an EC50 value of 1.9 mM, whose downstream products are related to cardiovascular diseases. Molecular docking and molecular dynamics (MD) simulations revealed that sinapine exhibits good binding affinity toward CutC, and CutC-sinapine is a stable complex with fewer conformational fluctuations and similar tightness. Taken together, hot pressing can be considered the best extraction method for rapeseed oil from the perspective of phenolic compounds.


Assuntos
Polifenóis , Óleo de Brassica napus/química , Cromatografia Líquida , Simulação de Acoplamento Molecular , Polifenóis/análise , Polifenóis/química , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Espectrometria de Massas em Tandem
16.
J Food Sci ; 86(9): 3987-4000, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34390266

RESUMO

Wax-based oleogels attract considerable attention for their perfect gelation properties, but the waxy mouthfeel severely limits their implementation in food. Herein, we developed a novel strategy via designing the crystal network to produce wax-based oleogels with a suitable mouthfeel. Four natural waxes with different melting points were selected as oleogelators to investigate the gelation behavior. All waxes at 5 wt% concentrations could form stable oleogels with low-frequency dependence. Especially, rice bran wax (RBW) and beeswax (BW) with high oil-binding capacity indicated that the ordered crystal network with fiber or needle-like morphology is more suitable for trapping liquid oil. Interestingly, China lacquer wax (ZLW) presented satisfactory oral melting characteristics according to the melting properties. Subsequently, to enhance the structure of ZLW-oleogel, RBW and BW with desirable crystal networks were added at varying mass ratios (100:0, 75:25, 50:50, 25:75, and 0:100). The binary oleogels exhibited monotectic behavior from thermodynamic phase diagrams. The polarization microscope indicated that similar needle-like crystals in BW/ZLW system enhanced the order of network structure, while long fiber-like crystals by RBW dominated the crystallization of RBW/ZLW binary oleogels. Finally, the BW/ZLW binary oleogels with ratios of 25:75 and 50:50 showed no-waxy mouthfeels in sensory analysis. These findings provide strong theoretical support for the application of wax-based oleogels in plastic fats replacement. PRACTICAL APPLICATION: Natural wax-based oleogel has been widely investigated due to the high oil binding capacity and perfect gelation properties. But its waxy mouthfeel severely limits the application in the food industry. In this study, oleogels with no-waxy an mouthfeel were obtained by designing wax-blend crystalline network. These findings provide strong theoretical support for the application of wax-based oleogels in plastic fats replacement.


Assuntos
Análise de Alimentos , Géis , Óleo de Girassol , Ceras , China , Cristalização , Congelamento , Géis/química , Óleo de Girassol/química , Ceras/química
17.
J Food Sci ; 86(7): 2990-3000, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34146421

RESUMO

Effects of infrared ray roasting (IRR) on the oxidation stability and flavors of virgin rapeseed oil (VROs) at 110-170°C were investigated and compared with traditional roller roasting (TRR). Results showed that IRR samples showed lower acid and peroxides values, higher oxidation stability index, and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity than TRR ones. IRR samples displayed better thermal expansion of rapeseed for internal fragmentation from microstructures, which facilitated the release of tocophenols (652.63-748.78 mg/kg) and 4-vinylsyringol (7.54-678.19 mg/kg), compared with TRR ones with tocophenols (652.63-689.28 mg/kg) and 4-vinylsyringol (7.54-524.18 mg/kg) contributing to better oxidation stability. Moreover, important volatile compounds, including pyrazines, isothiocyanates, nitriles and aldehydes, were formed quantitatively more in IRR than TRR samples, which was attributed to better heat transfer efficiency and internal fragmentation promoting complex reactions inside rapeseed. Therefore, IRR has more positive roasting effects on VROs than TRR. PRACTICAL APPLICATION: Virgin rapeseed oil is a massively consumed flavor vegetable oil, but the traditional high-temperature roller seed roasting process can cause serious quality problems. Our work applied a novel roasting technology, infrared ray roasting to rapeseed pretreatment. The results show that this new type of roasting technology is more efficient and stable and has important applications in the production of virgin rapeseed oil with better oxidative stability and flavor.


Assuntos
Brassica napus/química , Aromatizantes/química , Manipulação de Alimentos/métodos , Óleo de Brassica napus/química , Sementes/efeitos da radiação , Brassica napus/efeitos da radiação , Culinária , Aromatizantes/efeitos da radiação , Manipulação de Alimentos/instrumentação , Temperatura Alta , Raios Infravermelhos , Oxirredução , Sementes/química
18.
J Food Biochem ; 45(4): e13695, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33694208

RESUMO

In the present study, the influences of five typical dietary oils (i.e., palm oil, PO; leaf lard oil, LO; rapeseed oil, RO; sunflower oil, SO; and linseed oil, LN) consumption on the nutrients malabsorption were studied using adult male Sprague Dawley rats. Results suggested that the C16:0 (24.534 ± 2.26% to 54.269 ± 1.28%) and C18:0 (18.433 ± 4.421% to 36.455 ± 3.316%) were the dominant fatty acids in fecal samples in different groups. After 6-week intervention by different dietary oils, the fecal moisture and water soluble protein content in PO group, the reducing sugar content in PO, LO, and RO groups were significantly increased compared with those in the control group (p < .05). Moreover, the Na, K, and Fe contents in LO group were all the highest among the all groups. These effects were probably due to the different fatty acids composition as illustrated in the correlation analysis results. The different effects were probably due to their distinct fatty acids composition as illustrated in the correlation analysis results. Results further indicated that the different dietary oils treatment, especially for the PO (SFAs, 43.17 ± 0.98%) and LO (SFAs, 36.44 ± 0.65%), increased the upstream inflammatory cytokine expression level in the Toll-like receptor signal pathway (i.e., TLR4 and MyD88), enhancing the gut permeability. This resulted in significant increase of serum lipopolysaccharide (LPS) levels (p < .05), which was closely connected with different metabolic diseases. The present study may provide basic understandings about different dietary oil enteral nutrition and their effects on gut health. PRACTICAL APPLICATIONS: The PO, LO, RO, SO, and LN are the five of the most typical dietary lipids in Asia countries, especially in China. They are the natural edible oils which are rich in C16:0, C18:0, C18:1, C18:2ω6, and C18:3ω3, respectively. The present study indicated that the different dietary lipid consumption may result in different dietary nutrients malabsorption, which are related with the dietary lipid fatty acid composition.


Assuntos
Gorduras Insaturadas na Dieta , Animais , China , Masculino , Nutrientes , Óleos de Plantas/farmacologia , Ratos , Ratos Sprague-Dawley
19.
Food Funct ; 12(5): 2020-2031, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33565560

RESUMO

The consumption of saturated lipids in combination with a sedentary lifestyle increases the risk of obesity and metabolic syndrome. However, the distribution of endogenous fatty acids (FA) after the consumption of saturated lipids and the connection between FA distribution and lipid metabolism-related genes relative expression have not been fully elucidated to date. In this study, we characterized FA profiles in the liver and visceral fats of Sprague Dawley (SD) rats fed with a high-palm-oil diet. The investigation showed that the levels of C16:0 and C18:1 (n-9) increased significantly (P < 0.05) in the liver of the high-palm-oil group (POG), while C16:1 (n-7) and C18:2 (n-6) accumulated markedly (P < 0.05) in the visceral fats of the control group (CN). A correlation analysis indicated a negative correlation between C16:0 and C16:1 (n-7) in the epididymal fat of POG. Our study also demonstrated that the intake of saturated lipids caused changes in lipid metabolism-related gene expression, especially stearoyl-CoA desaturase (SCD), which was upregulated at the third week but was inhibited in the subsequent weeks in the POG liver and perirenal fat. The SCD had a notable positive correlation with C16:1 (n-7) in the POG liver and perirenal fat but a significant negative correlation with C16:0 in the POG epididymal fat. In conclusion, the results of this study indicate that a high-C16:0 diet may result in adaptive SCD expression, and these findings may help to elucidate the effects of dietary fat on lipid metabolism.


Assuntos
Tecido Adiposo , Fígado , Óleo de Palmeira , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Ácidos Graxos/metabolismo , Gordura Intra-Abdominal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Óleo de Palmeira/administração & dosagem , Óleo de Palmeira/farmacologia , Ratos , Ratos Sprague-Dawley
20.
Food Funct ; 11(10): 8724-8734, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32945323

RESUMO

The black bean protein has been widely utilized to prepare hydrolysates with different bioactive properties. Herein, we hydrolyzed the black bean protein to prepare hydrolysate with calcium binding activity and characterized its behavior. Our results showed that ficin was superior in obtaining hydrolysate with calcium binding capacity in comparison with trypsin, alcalase and bromelain. In particular, the optimal capacity of ficin hydrolysate reached 77.54 ± 1.61 µg mg-1, where the optimal hydrolysis conditions of ficin were a temperature of 70 °C, a pH value of 6.2, an enzyme concentration of 1.61% and a time of 3 h. This might be due to high proportions of aspartic acid and glutamic acid (35.59%). Further spectral analysis evidenced the formation of hydrolysate-calcium complexes, demonstrating that the interaction between hydrolysate and calcium ions primarily occur on carboxyl oxygen atoms and amino nitrogen atoms. These findings provide a possible utilization of black bean hydrolysate to serve as a calcium supplement nutraceutical to enhance the absorption and bioavailability.


Assuntos
Proteínas de Ligação ao Cálcio/química , Cálcio/química , Phaseolus/química , Hidrolisados de Proteína/química , Ácido Aspártico/metabolismo , Bromelaínas/química , Suplementos Nutricionais , Ficina/química , Ácido Glutâmico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Análise Espectral , Subtilisinas/química , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA