Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Pathol Clin Res ; 8(4): 395-407, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35257510

RESUMO

In this study, we evaluate the impact of whole genome and transcriptome analysis (WGTA) on predictive molecular profiling and histologic diagnosis in a cohort of advanced malignancies. WGTA was used to generate reports including molecular alterations and site/tissue of origin prediction. Two reviewers analyzed genomic reports, clinical history, and tumor pathology. We used National Comprehensive Cancer Network (NCCN) consensus guidelines, Food and Drug Administration (FDA) approvals, and provincially reimbursed treatments to define genomic biomarkers associated with approved targeted therapeutic options (TTOs). Tumor tissue/site of origin was reassessed for most cases using genomic analysis, including a machine learning algorithm (Supervised Cancer Origin Prediction Using Expression [SCOPE]) trained on The Cancer Genome Atlas data. WGTA was performed on 652 cases, including a range of primary tumor types/tumor sites and 15 malignant tumors of uncertain histogenesis (MTUH). At the time WGTA was performed, alterations associated with an approved TTO were identified in 39 (6%) cases; 3 of these were not identified through routine pathology workup. In seven (1%) cases, the pathology workup either failed, was not performed, or gave a different result from the WGTA. Approved TTOs identified by WGTA increased to 103 (16%) when applying 2021 guidelines. The histopathologic diagnosis was reviewed in 389 cases and agreed with the diagnostic consensus after WGTA in 94% of non-MTUH cases (n = 374). The remainder included situations where the morphologic diagnosis was changed based on WGTA and clinical data (0.5%), or where the WGTA was non-contributory (5%). The 15 MTUH were all diagnosed as specific tumor types by WGTA. Tumor board reviews including WGTA agreed with almost all initial predictive molecular profile and histopathologic diagnoses. WGTA was a powerful tool to assign site/tissue of origin in MTUH. Current efforts focus on improving therapeutic predictive power and decreasing cost to enhance use of WGTA data as a routine clinical test.


Assuntos
Neoplasias , Algoritmos , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Cancers (Basel) ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205656

RESUMO

BACKGROUND: Classifying diffuse large B-cell lymphoma (DLBCL) into cell-of-origin (COO) subtypes could allow for personalized cancer control. Evidence suggests that subtype-guided treatment may be beneficial in the activated B-cell (ABC) subtype of DLBCL, among patients under the age of 60. METHODS: We estimated the cost-effectiveness of age- and subtype-specific treatment guided by gene expression profiling (GEP). A probabilistic Markov model examined costs and quality-adjusted life-years gained (QALY) accrued to patients under GEP-classified COO treatment over a 10-year time horizon. The model was calibrated to evaluate the adoption of ibrutinib as a first line treatment among patients under 60 years with ABC subtype DLBCL. The primary data source for efficacy was derived from published estimates of the PHOENIX trial. These inputs were supplemented with patient-level, real-world data from BC Cancer, which provides comprehensive cancer services to the population of British Columbia. RESULTS: We found the cost-effectiveness of GEP-guided treatment vs. standard care was $77,806 per QALY (24.3% probability of cost-effectiveness at a willingness-to-pay (WTP) of $50,000/QALY; 53.7% probability at a WTP of $100,000/QALY) for first-line treatment. Cost-effectiveness was dependent on assumptions around decision-makers' WTP and the cost of the assay. CONCLUSIONS: We encourage further clinical trials to reduce uncertainty around the implementation of GEP-classified COO personalized treatment in this patient population.

3.
Clin Case Rep ; 9(3): 1472-1477, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33768871

RESUMO

This is the first report of a NACC2-NTRK2 fusion in a histological glioblastoma. Oncogenomic analysis revealed this actionable fusion oncogene in a pediatric cerebellar glioblastoma, which would not have been identified through routine diagnostics, demonstrating the value of clinical genome profiling in cancer care.

4.
J Pathol ; 249(3): 319-331, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31236944

RESUMO

Despite being the most common childhood bone tumor, the genomic characterization of osteosarcoma remains incomplete. In particular, very few osteosarcoma metastases have been sequenced to date, critical to better understand mechanisms of progression and evolution in this tumor. We performed an integrated whole genome and exome sequencing analysis of paired primary and metastatic pediatric osteosarcoma specimens to identify recurrent genomic alterations. Sequencing of 13 osteosarcoma patients including 13 primary, 10 metastatic, and 3 locally recurring tumors revealed a highly heterogeneous mutational landscape, including cases of hypermutation and microsatellite instability positivity, but with virtually no recurrent alterations except for mutations involving the tumor suppressor genes RB1 and TP53. At the germline level, we detected alterations in multiple cancer related genes in the majority of the cohort, including those potentially disrupting DNA damage response pathways. Metastases retained only a minimal number of short variants from their corresponding primary tumors, while copy number alterations showed higher conservation. One recurrently amplified gene, KDR, was highly expressed in advanced cases and associated with poor prognosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Osteossarcoma/genética , Osteossarcoma/secundário , Sequenciamento Completo do Genoma , Fatores Etários , Colúmbia Britânica , Variações do Número de Cópias de DNA , Feminino , Amplificação de Genes , Dosagem de Genes , Heterogeneidade Genética , Predisposição Genética para Doença , Humanos , Masculino , Instabilidade de Microssatélites , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Transcriptoma , Estados Unidos , Sequenciamento do Exoma
5.
Clin Cancer Res ; 16(18): 4572-82, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20651058

RESUMO

PURPOSE: Neuroblastoma (NB) is an aggressive tumor of the developing peripheral nervous system that remains difficult to cure in the advanced stages. The poor prognosis for high-risk NB patients is associated with common disease recurrences that fail to respond to available therapies. NB tumor-initiating cells (TICs), isolated from metastases and primary tumors, may escape treatment and contribute to tumor relapse. New therapies that target the TICs may therefore prevent or treat tumor recurrences. EXPERIMENTAL DESIGN: We undertook a system-level characterization of NB TICs to identify potential drug targets against recurrent NB. We used next-generation RNA sequencing and/or human exon arrays to profile the transcriptomes of 11 NB TIC lines from six NB patients, revealing genes that are highly expressed in the TICs compared with normal neural crest-like cells and unrelated cancer tissues. We used gel-free two-dimensional liquid chromatography coupled to shotgun tandem mass spectrometry to confirm the presence of proteins corresponding to the most abundant TIC-enriched transcripts, thereby providing validation to the gene expression result. RESULTS: Our study revealed that genes in the BRCA1 signaling pathway are frequently misexpressed in NB TICs and implicated Aurora B kinase as a potential drug target for NB therapy. Treatment with a selective AURKB inhibitor was cytotoxic to NB TICs but not to the normal neural crest-like cells. CONCLUSION: This work provides the first high-resolution system-level analysis of the transcriptomes of 11 primary human NB TICs and identifies a set of candidate NB TIC-enriched transcripts for further development as therapeutic targets.


Assuntos
Antineoplásicos/uso terapêutico , Células-Tronco Neoplásicas/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Aurora Quinase B , Aurora Quinases , Cromatografia Líquida/métodos , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Análise em Microsséries , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/metabolismo , Neuroblastoma/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Biologia de Sistemas/métodos , Espectrometria de Massas em Tandem/métodos , Terapias em Estudo/métodos , Terapias em Estudo/tendências , Estudos de Validação como Assunto
6.
BMC Genomics ; 9: 57, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18230180

RESUMO

BACKGROUND: The genus Populus includes poplars, aspens and cottonwoods, which will be collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant tree species in many forest ecosystems in the Northern Hemisphere and are of substantial economic value in plantation forestry. Poplar has been established as a model system for genomics studies of growth, development, and adaptation of woody perennial plants including secondary xylem formation, dormancy, adaptation to local environments, and biotic interactions. RESULTS: As part of the poplar genome sequencing project and the development of genomic resources for poplar, we have generated a full-length (FL)-cDNA collection using the biotinylated CAP trapper method. We constructed four FLcDNA libraries using RNA from xylem, phloem and cambium, and green shoot tips and leaves from the P. trichocarpa Nisqually-1 genotype, as well as insect-attacked leaves of the P. trichocarpa x P. deltoides hybrid. Following careful selection of candidate cDNA clones, we used a combined strategy of paired end reads and primer walking to generate a set of 4,664 high-accuracy, sequence-verified FLcDNAs, which clustered into 3,990 putative unique genes. Mapping FLcDNAs to the poplar genome sequence combined with BLAST comparisons to previously predicted protein coding sequences in the poplar genome identified 39 FLcDNAs that likely localize to gaps in the current genome sequence assembly. Another 173 FLcDNAs mapped to the genome sequence but were not included among the previously predicted genes in the poplar genome. Comparative sequence analysis against Arabidopsis thaliana and other species in the non-redundant database of GenBank revealed that 11.5% of the poplar FLcDNAs display no significant sequence similarity to other plant proteins. By mapping the poplar FLcDNAs against transcriptome data previously obtained with a 15.5 K cDNA microarray, we identified 153 FLcDNA clones for genes that were differentially expressed in poplar leaves attacked by forest tent caterpillars. CONCLUSION: This study has generated a high-quality FLcDNA resource for poplar and the third largest FLcDNA collection published to date for any plant species. We successfully used the FLcDNA sequences to reassess gene prediction in the poplar genome sequence, perform comparative sequence annotation, and identify differentially expressed transcripts associated with defense against insects. The FLcDNA sequences will be essential to the ongoing curation and annotation of the poplar genome, in particular for targeting gaps in the current genome assembly and further improvement of gene predictions. The physical FLcDNA clones will serve as useful reagents for functional genomics research in areas such as analysis of gene functions in defense against insects and perennial growth. Sequences from this study have been deposited in NCBI GenBank under the accession numbers EF144175 to EF148838.


Assuntos
DNA Complementar/genética , Ingestão de Alimentos/fisiologia , Genes de Plantas/genética , Insetos/fisiologia , Populus/genética , Animais , Arabidopsis/química , Arabidopsis/genética , Sequência de Bases , Bases de Dados Genéticas , Biblioteca Gênica , Genoma de Planta/genética , Lepidópteros/fisiologia , Modelos Genéticos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Populus/química , Controle de Qualidade , Reprodutibilidade dos Testes , Especificidade da Espécie , Regiões não Traduzidas/genética
7.
Mol Ecol ; 15(5): 1275-97, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16626454

RESUMO

As part of a genomics strategy to characterize inducible defences against insect herbivory in poplar, we developed a comprehensive suite of functional genomics resources including cDNA libraries, expressed sequence tags (ESTs) and a cDNA microarray platform. These resources are designed to complement the existing poplar genome sequence and poplar (Populus spp.) ESTs by focusing on herbivore- and elicitor-treated tissues and incorporating normalization methods to capture rare transcripts. From a set of 15 standard, normalized or full-length cDNA libraries, we generated 139,007 3'- or 5'-end sequenced ESTs, representing more than one-third of the c. 385,000 publicly available Populus ESTs. Clustering and assembly of 107,519 3'-end ESTs resulted in 14,451 contigs and 20,560 singletons, altogether representing 35,011 putative unique transcripts, or potentially more than three-quarters of the predicted c. 45,000 genes in the poplar genome. Using this EST resource, we developed a cDNA microarray containing 15,496 unique genes, which was utilized to monitor gene expression in poplar leaves in response to herbivory by forest tent caterpillars (Malacosoma disstria). After 24 h of feeding, 1191 genes were classified as up-regulated, compared to only 537 down-regulated. Functional classification of this induced gene set revealed genes with roles in plant defence (e.g. endochitinases, Kunitz protease inhibitors), octadecanoid and ethylene signalling (e.g. lipoxygenase, allene oxide synthase, 1-aminocyclopropane-1-carboxylate oxidase), transport (e.g. ABC proteins, calreticulin), secondary metabolism [e.g. polyphenol oxidase, isoflavone reductase, (-)-germacrene D synthase] and transcriptional regulation [e.g. leucine-rich repeat transmembrane kinase, several transcription factor classes (zinc finger C3H type, AP2/EREBP, WRKY, bHLH)]. This study provides the first genome-scale approach to characterize insect-induced defences in a woody perennial providing a solid platform for functional investigation of plant-insect interactions in poplar.


Assuntos
Lepidópteros/genética , Populus/genética , Animais , DNA Complementar/genética , Enzimas/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genótipo , Proteínas de Insetos/genética , Lepidópteros/classificação , Lepidópteros/patogenicidade , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Populus/metabolismo , Populus/microbiologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA