Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744837

RESUMO

The remarkable properties of garlic A. sativum L. have been described, but little is known about Snow mountain garlic. Understanding general aspects of this garlic composition, including the presence of phenolics, will establish its possible use for health or infer which compounds can contribute to improving it. This study aimed to determine the ash content, lipid profile, and characterization of phenolics in Snow mountain garlic. The organic content was obtained by common techniques (oven drying, calcination, Kjeldahl method, etc.). The quantitative analysis of the ashes was made by Inductively Coupled Plasma Emission Spectrometry. The fatty acid profile was determined by Gas Chromatography. The presence of phenolics was determined by foam, Libermann-Burchard, Dragendorff, Salkowski, ferric chloride, vanillin, catechin, Constantinescu, and Shinoda reactions. The total phenolic content was determined via the Folin-Ciocalteu method, and antioxidant activity was determined using the DPPH radical method. The bromatological analysis showed a 51.1% humidity, and the main organic compounds were carbohydrates (46.7%). Ash analysis showed 287.46 g/kg of potassium. The fatty acid profile showed 75.61% of polyunsaturated fatty acid. Phenolics like saponins, alkaloids, triterpenes, tannins, and flavonoids were present. Antioxidant activity was found by radical DPPH of 25.64 (±0.78) µmol TE/1 g dw. Snow mountain garlic shares a composition similar to those found in other garlic.


Assuntos
Alho , Fenóis , Antioxidantes/química , Ácidos Graxos , Alho/química , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/análise
2.
Mol Microbiol ; 57(1): 276-90, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15948966

RESUMO

The xanthine oxidases and dehydrogenases are among the most conserved enzymes in all living kingdoms. They contain the molybdopterin cofactor Moco. We show here that in the fungi, in addition to xanthine dehydrogenase, a completely different enzyme is able to catalyse the oxidation of xanthine to uric acid. In Aspergillus nidulans this enzyme is coded by the xanA gene. We have cloned the xanA gene and determined its sequence. A deletion of the gene has the same phenotype as the previously known xanA1 miss-sense mutation. Homologues of xanA exist only in the fungal kingdom. We have inactivated the cognate gene of Schizosaccharomyces pombe and this results in strongly impaired xanthine utilization as a nitrogen source. We have shown that the Neurospora crassa homologue is functionally equivalent to xanA. The enzyme coded by xanA is an alpha-ketoglutarate- and Fe(II)-dependent dioxygenase which shares a number of properties with other enzymes of this group. This work shows that only in the fungal kingdom, an alternative mechanism of xanthine oxidation, not involving Moco, has evolved using the dioxygenase scaffold.


Assuntos
Coenzimas/metabolismo , Dioxigenases/genética , Fungos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Xantina Oxidase/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Sequência de Bases , Clonagem Molecular , DNA Complementar , Dioxigenases/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Hidroxilação , Dados de Sequência Molecular , Cofatores de Molibdênio , Mutação , Neurospora crassa/genética , Schizosaccharomyces/genética , Homologia de Sequência de Aminoácidos , Xantina Oxidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA