Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Appl Microbiol Biotechnol ; 108(1): 150, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240838

RESUMO

The evolution and rapid spread of multidrug-resistant (MDR) bacterial pathogens have become a major concern for human health and demand the development of alternative antimicrobial agents to combat this emergent threat. Conventional intracellular methods for producing metal nanoparticles (NPs) using whole-cell microorganisms have limitations, including binding of NPs to cellular components, potential product loss, and environmental contamination. In contrast, this study introduces a green, extracellular, and sustainable methodology for the bio-materialization of silver NPs (AgNPs) using renewable resource cell-free yeast extract. These extracts serve as a sustainable, biogenic route for both reducing the metal precursor and stabilizing the surface of AgNPs. This method offers several advantages such as cost-effectiveness, environment-friendliness, ease of synthesis, and scalability. HR-TEM imaging of the biosynthesized AgNPs revealed an isotropic growth route, resulting in an average size of about ~ 18 nm and shapes ranging from spherical to oval. Further characterization by FTIR and XPS results revealed various functional groups, including carboxyl, hydroxyl, and amide contribute to enhanced colloidal stability. AgNPs exhibited potent antibacterial activity against tested MDR strains, showing particularly high efficacy against Gram-negative bacteria. These findings suggest their potential role in developing alternative treatments to address the growing threat of antimicrobial resistance. Additionally, seed priming experiments demonstrated that pre-sowing treatment with AgNPs improves both the germination rate and survival of Sorghum jowar and Zea mays seedlings. KEY POINTS: •Yeast extract enables efficient, cost-effective, and eco-friendly AgNP synthesis. •Biosynthesized AgNPs showed strong antibacterial activity against MDR bacteria. •AgNPs boost seed germination and protect against seed-borne diseases.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sementes , Prata/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Microb Pathog ; 186: 106462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030019

RESUMO

To treat the systemic infections caused by Candida albicans (C. albicans), various drugs have been used, however, infections still persisted due to virulence factors and increasing antifungal resistance. As a solution to this problem, we synthesized selenium nanoparticles (SeNPs) by using Bacillus cereus bacteria. This is the first study to report a higher (70 %) reduction of selenite ions into SeNPs in under 6 h. The as-synthesized, biogenic SeNPs were used to deliver bioactive constituents of aqueous extract of ginger for inhibiting the growth and biofilm (virulence factors) in C. albicans. UV-visible spectroscopy revealed a characteristic absorption at 280 nm, and Raman spectroscopy showed a characteristic peak shift at 253 cm-1 for the biogenic SeNPs. The synthesized SeNPs are spherical with 240-250 nm in size as determined by electron microscopy. Fourier transform infrared spectroscopy confirmed the functionalization of antifungal constituents of ginger over the SeNPs (formation of Ginger@SeNPs nanoconjugates). In contrast to biogenic SeNPs, nanoconjugates were active against C. albicans for inhibiting growth and biofilm formation. In order to reveal antifungal mechanism of nanoconjugates', real-time polymerase chain reaction (RT-PCR) analysis was performed, according to RT-PCR analysis, the nanoconjugates target virulence genes involved in C. albicans hyphae and biofilm formation. Nanoconjugates inhibited 25 % growth of human embryonic kidney (HEK) 293 cell line, indicating moderate cytotoxicity of active nanoconjugates in an in-vitro cytotoxicity study. Therefore, biogenic SeNPs conjugated with ginger dietary extract may be a potential antifungal agent and drug carrier for inhibiting C. albicans growth and biofilm formation.


Assuntos
Bacillus , Nanopartículas , Selênio , Zingiber officinale , Humanos , Selênio/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candida albicans/metabolismo , Fatores de Virulência , Nanoconjugados , Células HEK293 , Nanopartículas/química , Bacillus/metabolismo , Biofilmes
4.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838823

RESUMO

In the present study, biogenic selenium nanoparticles (SeNPs) have been prepared using Paenibacillus terreus and functionalized with nystatin (SeNP@PVP_Nystatin nanoconjugates) for inhibiting growth, morphogenesis, and a biofilm in Candida albicans. Ultraviolet-visible spectroscopy analysis has shown a characteristic absorption at 289, 303, and 318 nm, and X-ray diffraction analysis has shown characteristic peaks at different 2θ values for SeNPs. Electron microscopy analysis has shown that biogenic SeNPs are spherical in shape with a size in the range of 220-240 nm. Fourier transform infrared spectroscopy has confirmed the functionalization of nystatin on SeNPs (formation of SeNP@PVP_Nystatin nanoconjugates), and the zeta potential has confirmed the negative charge on the nanoconjugates. Biogenic SeNPs are inactive; however, nanoconjugates have shown antifungal activities on C. albicans (inhibited growth, morphogenesis, and a biofilm). The molecular mechanism for the action of nanoconjugates via a real-time polymerase chain reaction has shown that genes involved in the RAS/cAMP/PKA signaling pathway play an important role in antifungal activity. In cytotoxic studies, nanoconjugates have inhibited only 12% growth of the human embryonic kidney cell line 293 cells, indicating that the nanocomposites are not cytotoxic. Thus, the biogenic SeNPs produced by P. terreus can be used as innovative and effective drug carriers to increase the antifungal activity of nystatin.


Assuntos
Nanopartículas , Selênio , Humanos , Antifúngicos/farmacologia , Nistatina/farmacologia , Selênio/química , Candida albicans , Nanoconjugados , Nanopartículas/química , Biofilmes
5.
Chem Biol Drug Des ; 101(3): 469-478, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34453485

RESUMO

Plant extracts and their bioactive compounds are considered as the promising options for green synthesis of nanoparticles instead expensive and hazardous materials. Here, Solanum xanthocarpum fruit was used for synthesis of silver nanoparticles (AgNP). The synthesized AgNPs were characterized by using chromatographic and spectroscopic analytical methods. AgNPs were confirmed by UV-visible absorbance at 420-470 nm. TEM analysis showed AgNP with 22.45 nm average size. X-ray diffraction studies revealed the crystalline and face central cubic nature of AgNPs. FTIR analysis revealed functional group present over AgNPs. The aminodiphenyl acetic acid, clomipramine, and fonisopril from fruit extracts were found to be major capping agents on AgNPs as a result of analysis by HRLC-MS. All clinical isolates showed resistance for ampicilline, amoxyclav, niladixic acid, and sulphafurazole, suggesting multidrug resistance. The results showed that all isolates were sensitive to AgNPs synthesized fruit extracts. On the contrary, all isolates were resistant to whole S. xanthocarpum fruit extracts alone. The antimicrobial activity of AgNP was explored against multidrug-resistant (MDR) Gram-negative clinical isolates including Escherichia coli, Shigella spp., Aeronomonas spp. and Pseudomonas spp. MIC values ranged between 1.25 mg/ml and 2.5 mg/ml at 8 McFarland's standards. Minimum bactericidal concentration was found to be in between 2.5 mg/ml to 5 mg/ml. Nanoparticles synthesized from fruit extract of S. xanthocarpum containing aminodiphenyl acetic acid, clomipramine, and fonisopril metabolites exhibit promising antimicrobial activity against MDR Gram-negative clinical isolates.


Assuntos
Nanopartículas Metálicas , Solanum , Antibacterianos/química , Solanum/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Clomipramina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Crit Rev Food Sci Nutr ; 63(18): 3130-3149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34606382

RESUMO

Tea manufactured from the cultivated shoots of Camellia sinensis (L.) O. Kuntze is the most commonly consumed nonalcoholic drink around the world. Tea is an agro-based, environmentally sustainable, labor-intensive, job-generating, and export-oriented industry in many countries. Tea includes phenolic compounds, flavonoids, alkaloids, vitamins, enzymes, crude fibers, protein, lipids, and carbohydrates, among other biochemical constituents. This review described the nature of tea metabolites, their biosynthesis and accumulation with response to various factors. The therapeutic application of various metabolites of tea against microbial diseases, cancer, neurological, and other metabolic disorders was also discussed in detail. The seasonal variation, cultivation practices and genetic variability influence tea metabolite synthesis. Tea biochemical constituents, especially polyphenols and its integral part catechin metabolites, are broadly focused on potential applicability for their action against various diseases. In addition to this, tea also contains bioactive flavonoids that possess health-beneficial effects. The catechin fractions, epigallocatechin 3-gallate and epicatechin 3-gallate, are the main components of tea that has strong antioxidant and medicinal properties. The synergistic function of natural tea metabolites with synthetic drugs provides effective protection against various diseases. Furthermore, the application of nanotechnologies enhanced bioavailability, enhancing the therapeutic potential of natural metabolites against numerous diseases and pathogens.


Assuntos
Camellia sinensis , Catequina , Catequina/farmacologia , Flavonoides/farmacologia , Flavonoides/metabolismo , Polifenóis/análise , Camellia sinensis/química , Chá/química
7.
Front Pharmacol ; 13: 937484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188553

RESUMO

Ethnopharmacological relevance: Pien-Tze-Huang (PZH)-a traditional Chinese medicine (TCM) compound-has been employed to treat various liver inflammation and tumors for over 10 decades. Interestingly, most of the pharmacological effects had been validated and explored toward liver ailment along with pro-inflammatory conditions and cancer at the cellular and molecular level to date. Aim of the study: The present study aimed to investigate the therapeutic effect of PZH on autophagy and TGF-ß1 signaling pathways in rats with liver fibrosis and hepatic stellate cell line (HSC). Materials and methods: Male SD rats with carbon tetrachloride (CCl4)-induced liver fibrosis were used as the animal model. Next, PZH treatment was given for 8 weeks. Afterward, the therapeutic effects of PZH were analyzed through a hepatic tissue structure by hematoxylin-eosin (H&E), Van Gieson (VG) staining, and transmission electron microscopy (TEM), activity of ALT and AST by enzyme-associated immunosorbent assay as well. Subsequently, mRNA and protein expression were examined by quantitative polymerase chain reaction (qPCR), Western blotting, and immunohistochemistry (IHC). Then, the cell vitality of PZH-treated HSC and the expression of key molecules prevailing to autophagy were studied in vitro. Meanwhile, SM16 (a novel small molecular inhibitor which inhibits TGFß-induced Smad2 phosphorylation) was employed to confirm PZH's effects on the proliferation and autophagy of HSC. Results: PZH pharmacologically exerted anti-hepatic fibrosis effects as demonstrated by protecting hepatocytes and improving hepatic function. The results revealed the reduced production of extracellular collagen by adjusting the balance of matrix metalloproteinase (MMP) 2, MMP9, and tissue inhibitor of matrix metalloproteinase 1 (TIMP1) in PZH-treated CCl4-induced liver fibrosis. Interestingly, PZH inhibited the activation of HSC by down-regulating TGF-ß1 and phosphorylating Smad2. Furthermore, PZH down-regulated yeast Atg6 (Beclin-1) and microtubule-associated protein light chain 3 (LC3) toward suppressing HSC autophagy, and PZH exhibited similar effects to that of SM16. Conclusion: To conclude, PZH alleviated CCl4-induced liver fibrosis to reduce the production of extracellular collagen and inhibiting the activation of HSC. In addition, their pharmacological mechanisms related to autophagy and TGF-ß1/Smad2 signaling pathways were revealed for the first time.

8.
Oxid Med Cell Longev ; 2022: 9671594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795854

RESUMO

In this study, we report the green synthesis of silver nanoparticles (AgNPs) using the aqueous leaf extract of Tridax procumbens (TNP), which acts as the source of the reducing and capping agent. The distinctive absorption at 370 nm suggested synthesis of TNPs, which was confirmed by TEM, with a size in the range of 11.1 nm to 45.4 nm and a spherical shape, having a face-centered cubic structure, analyzed by XRD, and a Zeta potential of -20.7 mV, which indicated a moderate stability of TNP. The FTIR analysis revealed the presence of amines and hydroxyl groups with fluoro compounds over the TNPs. The HRLC-MS analysis of TNPs suggested the presence of a major capping agent such as fosinopril and reducing agents such as peptides (Gln Gly Ala, Ser Pro Asn, and Leu Met), terpenoids (lupanyl acid, tiamulin), polyphenol (peucenin), and alkaloids (8',10'-dihydroxydihydroergotamine, carteolol). The synthesized silver nanoparticles exhibited antimicrobial activity against multidrug-resistant (MDR) clinical isolates (Escherichia coli, Shigella spp., Aeromonas spp., Pseudomonas aeruginosa, and Candida tropicalis) and had anticancer activity against A459 (IC50 42.70 µg/ml). The extraction of partially purified aqueous leaf extracts by silica gel column chromatography followed by HPLC to synthesize silver nanoparticles (TNP11) and analyzed by HRLC-MS suggested that dipeptides were involved in the reduction of Ag+ to Ag0. Overall, the results showed that the green silver nanoparticles of T. procumbens could be safe, as they are endowed with potential antimicrobial activity against MDR clinical isolates and human lung carcinoma cells.


Assuntos
Anti-Infecciosos , Asteraceae , Nanopartículas Metálicas , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Escherichia coli , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química
9.
J Agric Food Chem ; 70(23): 6849-6863, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34645264

RESUMO

Soybean processing waste (SPW) has potential as a sustainable source of phytochemicals and functional foods. A variety of phytochemicals, nutrients, and minerals have been characterized from SPW using various analytical methods. SPW utilization strategies may provide a new way to increase production of bioactive compounds, nutritional supplements, and cosmetic ingredients. SPW has the potential for value-added processing, to improve commercial use, and to lower environmental pollution through proper use. Okara, a byproduct generated during soybean processing of tofu and soy milk, is rich in dietary fiber, isoflavones, and saponins. Isoflavones, an important class of biologically active compounds owing to their multifunctional and therapeutic effects, are extracted from SPW. Further, studies have shown that okara has potential prebiotic and therapeutic value in lowering the risk of noncommunicable diseases. Therefore, in this review, we focus on several extraction methods and pharmacotherapeutic effects of different SPWs. Their effective uses in functional foods, nutraceuticals, and health applications, as biocatalysts, and as value-added resources have been discussed.


Assuntos
Isoflavonas , Alimentos de Soja , Leite de Soja , Alimento Funcional , Leite de Soja/química , Glycine max/química
10.
Food Chem Toxicol ; 156: 112483, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34375721

RESUMO

Metabolic variations, antioxidant potential and cytotoxic effects were investigated in the different plant parts like the leaf, stem, flower, pod, and root of C. majus L. using spectroscopic and chromatographic methods. Total phenolics and flavonoids were studied in the different parts of C. majus L., leaf showed higher flavonoid content (137.43 mg/g), while the pod showed the highest phenolic (23.67 mg/g) content, when compared with the stem, flower and root. In the ABTS antioxidant assay, the flower extract showed 57.94% effect, while the leaf, pod and root extract exhibited 39.10%, 36.08% and 28.88% activity, respectively. The pod and leaf extracts demonstrated the potential effect, exhibiting 45.46 and 41.61% activity, respectively, for the DPPH assay. Similar to the phosphomolybdenum assay, the flower revealed higher antioxidant activity (46.82%) than the other plant parts. The in vitro SRB assay facilitated evaluation of the cytotoxic effect against the HeLa and CaSki human cervical cancerous cells. The extract displayed dose-dependent inhibitory effect on both the cell lines. The highest cytotoxic effect was observed in the pod and flower extracts post 48 h of exposure at 1000 µg/mL. The results of C. majus L. offered new insights in the preliminary steps regarding the development of a high value product for phytomedicine applications though promising metabolic variations with antioxidant and anticancer potentials.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Chelidonium/metabolismo , Flavonoides/análise , Células HeLa , Humanos , Polifenóis/análise
11.
Food Chem Toxicol ; 154: 112327, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116102

RESUMO

Red onion skin waste (ROSW) was analyzed for extraction of naturally occurring 4'-O-glucoside of quercetin, spiraeoside (SPI) with promising biological activities. Reversed-phase high-performance liquid chromatography was used to determine the SPI content in three different solvent extracts of ROSW: water (12.2 mg/g), methanol (27.6 mg/g), and ethanol (32.5 mg/g). The ethanol extract and SPI showed significant radical-scavenging and anti-inflammatory activities. In addition, the anti-cancer effects of SPI on a HeLa cells was investigated. The results indicated that SPI treatment significantly inhibited cell growth, and the dose of 50 µg/mL exhibited the highest anti-cancer activity. SPI inhibited the expression of B-cell lymphoma 2 and BH3-interacting domain-death agonist and promoted apoptosis by activating caspase-9/-3 expression. Notably, SPI inhibited the expression of mu-2-related death-inducing gene, a molecule involved in death receptor-mediated apoptotic signaling. Cyclin-dependent kinase 2-cyclin-E expression was also inhibited after SPI treatment, particularly at the G2/M checkpoint. Our findings provide novel insights into the apoptotic potential with promising anticancer and enzyme inhibitory effects of ROSW SPI.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Cebolas/química , Quercetina/análogos & derivados , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/isolamento & purificação , Sequestradores de Radicais Livres/isolamento & purificação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Quercetina/isolamento & purificação , Quercetina/farmacologia
12.
Food Chem Toxicol ; 153: 112289, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34029669

RESUMO

Fritillaria thunbergii Miq. (Zhe beimu) ranked as oldest known homeopathic traditional folk medicine in China. The bulbs are medicinally important curing cough, inflammation, gastric ulcers, hypertension, diarrhea, and bronchitis. The aim of this review is to enlighten the deeper knowledge about F. thunbergii giving a comprehensive overview on its traditional uses, phytochemistry and pharmacology for future investigation of plant-based drugs and therapeutic applications. Total 48 medicinally important species of Fritillaria were described; total 122 compounds have been identified as results only 72 chemical constituents were described with proper chemical and biological details. F. thunbergii and its bulbs mainly constitute alkaloids, essential oils, diterpenoids, carbohydrates, sterols, amino acids, nucleosides, fatty acids, and lignans. The pharmacological studies demonstrate that F. thunbergii and its bulbs displays a wide range of bioactivities e.g., anti-inflammatory, anticancer, antitussive, expectorant, anti-ulcer, antimicrobial, antioxidant, anti-thyroid, regulation of blood rheology, anti-diarrhea, neuroprotection, and analgesic effects. Although promising reports on the various chemical bioactive constituents and biological properties of F. thunbergii have been published, very few reviews are related specifically to the traditional uses, phytochemistry and pharmacological applications. Further, various other studies on these plants should deserve our more attention for future investigation for drug development and its therapeutic applications.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fritillaria/química , Animais , Medicamentos de Ervas Chinesas/química , Etnofarmacologia , Humanos , Raízes de Plantas/química
13.
Indian J Microbiol ; 61(1): 10-15, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33390627

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing potentially fatal coronavirus disease-19 (COVID-19), with a significant health and economic burden around the globe. Currently many clinical studies are undergoing but still there is no any specific approved therapy or drug established for effective treatment of COVID-19. This review aimed to analyses various clinical studies which have been registered in www.clinicaltrials.gov and http://www.chictr.org.cn were registered with natural plant-based medicines and Traditional Chinese medicine (TCM) for discovering effective treatment and prevention of COVID-19. Total 46 and 64 natural drug and TCM interventions were identified which mainly determined the preventive strategies and possible treatments for COVID-19 infection. We identified that most of the clinical trial undergoing on natural compound like heparin and vitamin C as therapeutic agents and immune boosters for against COVID-19. Traditional Chinese medicines and herbal medicines can be effectively used as a preventive therapy against COVID-19 and after successful clinical trials and these potential therapies can be promoted by countries around the world. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s12088-020-00919-x).

14.
Phytomedicine ; 86: 153077, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31477352

RESUMO

BACKGROUND: Immune system plays a decisive role for defending various pathogenic microorganisms. Astragalus membranaceus (AM) and Panax ginseng (PG) are two tonic herbs used in traditional Chinese medicine (TCM) as immune booster and help to control diseases with their healthy synergistic effect on immune system. PURPOSE: This study was aimed to investigate the promote effect and molecular mechanisms of AM and PG on immune system as booster and to control the target diseases using animal and computational systematic study. METHODS: Computational models including absorption, distribution, metabolism, and elimination (ADME) with weighted ensemble similarity (WES) algorithm-based models and ClueGo network analysis were used to find the potential bioactive compounds targets and pathways, which were responsible for immune regulation. Viscera index analysis, proliferation activity of splenic lymphocytes and cytotoxic activity of NK cells assays were performed to validate the effect of AM and PG on immune system of long-term administrated mice. Metabonomic study of mice plasma was conducted to investigate effect of AM and PG on the endogenous metabolic perturbations, together with correlation analysis. RESULTS: AM and PG simultaneously showed the ability to strengthen the immune system function including enhancement of spleen and thymus index, proliferation of splenic lymphocytes and cytotoxic activity of NK cells. Besides, the different molecular mechanisms of AM and PG on immune regulation were also investigated by analyzing the potential bioactive compounds, enzymes actions and pathways. Quercetin, formononetin and kaempferol were the main immune-related compounds in AM, while ginsenoside Ra1, ginsenoside Rh1 and kaempferol in PG. About 10 target proteins were found close to immune regulation, including acetylcholinesterase (ACHE, common target in AM and PG), sphingosine kinase 1(SPHK1), cytidine deaminase (CDA), and Choline O-acetyltransferase (CHAT). Glycerophospholipid metabolism was regulated in both AM and PG groups. Pyrimidine metabolism and sphingolipid metabolism were considered as the special pathway in AM groups. Energy metabolism and glycerolipid metabolism were the special pathways in PG groups. CONCLUSION: A novel comprehensive molecular mechanism analysis method was established and applied to clarify the scientific connotation of AM and PG as immune regulation, with similar herbal tonic effect provided in clinical practice of TCM, which can provide a new line of research for drug development (immune booster) using AM and PG.


Assuntos
Astrágalo/química , Fatores Imunológicos/farmacologia , Panax/química , Animais , Medicina Tradicional Chinesa , Camundongos
15.
Trends Biotechnol ; 39(2): 137-149, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32690221

RESUMO

Medicinal plants produce valuable secondary metabolites with anticancer, analgesic, anticholinergic or other activities, but low metabolite levels and limited available tissue restrict metabolite yields. Transformed root cultures, also called hairy roots, provide a feasible approach for producing valuable secondary metabolites. Various strategies have been used to enhance secondary metabolite production in hairy roots, including increasing substrate availability, regulating key biosynthetic genes, multigene engineering, combining genetic engineering and elicitation, using transcription factors (TFs), and introducing new genes. In this review, we focus on recent developments in hairy roots from medicinal plants, techniques to boost production of desired secondary metabolites, and the development of new technologies to study these metabolites. We also discuss recent trends, emerging applications, and future perspectives.


Assuntos
Biotecnologia , Raízes de Plantas , Plantas Medicinais , Técnicas de Cultura de Células , Engenharia Genética , Raízes de Plantas/química , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Medicinais/química , Plantas Medicinais/citologia , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
16.
J Agric Food Chem ; 68(39): 10685-10696, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32924469

RESUMO

Saffron (Crocus sativus L.) byproducts are considered as a cheap source of bioactive polyphenolics endowed with potential antioxidant effects. The saffron biowaste is utilized for extraction of flavonoid glycosides and their potential biological properties. The total amount of polyphenolics and polysaccharides was found to be higher in the tepal than in the stamen. The bioactive compounds quercetin-3-O-sophoroside (Q-3-sop) and kaempferol-3-O-sophoroside (K-3-sop) were analyzed using high-performance liquid chromatography equipped with a photodiode array detector (HPLC-PDA) and identified by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). The antioxidant effects were studied using 2,2 diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), ferric ion reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC); Q-3-sop showed stronger antioxidant effects compared to K-3-sop, crocin-I, and crocin-II. Furthermore, Q-3-sop also inhibited cell apoptosis caused by H2O2 by reducing the levels of cellular reactive oxygen species (ROS). In terms of cytogenetic effects, Q-3-sop revealed no cytogenic effects on onion root meristem cells but chromosomal aberration was observed at the highest dose (200 ppm). Thus, saffron byproducts and its flavonoids could be utilized as natural antioxidant agents with no cytogenetic effects.


Assuntos
Crocus/química , Flavonoides/química , Glicosídeos/química , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Flavonoides/farmacologia , Flores/química , Glicosídeos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Cebolas/efeitos dos fármacos , Cebolas/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Resíduos/análise
17.
J Adv Res ; 23: 1-12, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32071787

RESUMO

Salvia miltiorrhiza Bunge is an herb rich in bioactive tanshinone and salvianolic acid compounds. It is primarily used as an effective medicine for treating cardiovascular and cerebrovascular diseases. Liposoluble tanshinones and water-soluble phenolic acids are a series of terpenoids and phenolic compounds, respectively. However, the regulation mechanism for the simultaneous promotion of tanshinone and salvianolic acid biosynthesis remains unclear. This study identified a R2R3-MYB subgroup 20 transcription factor (TF), SmMYB98, which was predominantly expressed in S. miltiorrhiza lateral roots. The accumulation of major bioactive metabolites, tanshinones, and salvianolic acids, was improved in SmMYB98 overexpression (OE) hairy root lines, but reduced in SmMYB98 knockout (KO) lines. The qRT-PCR analysis revealed that the transcriptional expression levels of tanshinone and salvianolic acid biosynthesis genes were upregulated by SmMYB98-OE and downregulated by SmMYB98-KO. Dual-Luciferase (Dual-LUC) assays demonstrated that SmMYB98 significantly activated the transcription of SmGGPPS1, SmPAL1, and SmRAS1. These results suggest that SmMYB98-OE can promote tanshinone and salvianolic acid production. The present findings illustrate the exploitation of R2R3-MYB in terpenoid and phenolic biosynthesis, as well as provide a feasible strategy for improving tanshinone and salvianolic acid contents by MYB proteins in S. miltiorrhiza.

18.
Front Pharmacol ; 10: 753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338034

RESUMO

Bioactive chemical constitutes from the root of Salvia miltiorrhiza classified in two major groups, viz., liposoluble tanshinones and water-soluble phenolics. Tanshinone IIA is a major lipid-soluble compound having promising health benefits. The in vivo and in vitro studies showed that the tanshinone IIA and salvianolate have a wide range of cardiovascular and other pharmacological effects, including antioxidative, anti-inflammatory, endothelial protective, myocardial protective, anticoagulation, vasodilation, and anti-atherosclerosis, as well as significantly help to reduce proliferation and migration of vascular smooth muscle cells. In addition, some of the clinical studies reported that the S. miltiorrhiza preparations in combination with Western medicine were more effective for treatment of various cardiovascular diseases including angina pectoris, myocardial infarction, hypertension, hyperlipidemia, and pulmonary heart diseases. In this review, we demonstrated the potential applications of S. miltiorrhiza, including pharmacological effects of salvianolate, tanshinone IIA, and its water-soluble derivative, like sodium tanshinone IIA sulfonate. Moreover, we also provided details about the clinical applications of S. miltiorrhiza preparations in controlling the cardiovascular diseases.

19.
Food Chem Toxicol ; 132: 110659, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31276745

RESUMO

Subcritical water extraction (SWE) applied to analyses the bioactives from ashwagandha (W. somnifera) at varying temperature (100-200 °C) and extraction time (10-30 min). The effect of temperature and time has been investigated in terms of extraction yield (EY), total phenolic content (TPC), cytotoxicity, antioxidant, and enzyme inhibitory activities. The withanosides and withanolides responsible for various biological effects were quantified using high performance liquid chromatography (HPLC). The HPLC analysis revealed Withanoside V, Withanoside IV, 12-Deoxywithastramonolide, Withanolide A, and Withaferin A as a principle bioactive compounds in SWE, with high in concentration compared to microwave-assisted extraction (MAE), Soxhlet extraction (SE) and maceration (MC). For SWE the highest EY (65.6%; 200 °C for 30 min), TPC (82.5 mg GAE/g DE), antioxidant activity (DPPH: 80.3%, FRAP: 60.5% and ABTS: 78.9), and potent enzyme inhibitory effects were observed. The SWE and Withaferin A showed significant reduction in cell viability of cervical cancer (HeLa) cells, with IC50 values 10 mg/ml and 8.5 µM/ml, respectively but no cytotoxic effect for normal cells (MDCK). Thus, SWE can provide effective extraction for ashwagandha withanosides and withanolides compared MAE, SE and MC to conventional methods, which could be used for extraction of pharmacologically active fractions with therapeutic applications.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Vitanolídeos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Cães , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Raízes de Plantas/química , Saponinas/química , Saponinas/isolamento & purificação , Extração em Fase Sólida/métodos , Água/química , Withania/química , Vitanolídeos/química , Vitanolídeos/isolamento & purificação
20.
Food Chem Toxicol ; 131: 110563, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31199992

RESUMO

Apple pomace (AP) utilised for analysis of triterpenic acids (TTAs) using HPLC-MS/MS. The methanol, ethanol and ethyl acetate extracts showed high phenolic content with significant antioxidant activity compared to chloroform and n-hexane. AP TTAs; ursolic acid, betulinic acid and maslinic acid showed potent antioxidant and enzyme inhibitory effects. The IC50 values were 13.2-30.8 µg/mL (tyrosinase), 19.6-42.5 µg/mL (xanthine oxidase) and 16.6-38.6 µg/mL (urease) for AP extracts and 8.4-25.8 µg/mL (tyrosinase), 12.6-30.2 µg/mL (xanthine oxidase) and 10.1-28.6 µg/mL (urease) for TTAs, compared to the positive controls; kojic acid (10.4 ±â€¯0.06 µg/mL), allopurinol (9.6 ±â€¯0.04 µg/mL) and thiourea (8.9 ±â€¯0.02 µg/mL) towards respective enzymes. UA showed a competitive type of inhibition for tyrosinase, while BA showed a noncompetitive type of inhibition towards xanthine oxidase. In addition, the AP extracts and TTAs exerted significant cytotoxic effects towards the proliferation of cancer cell lines. AP methanol extract (IC50 of 38.5 ±â€¯4.1, 47.1 ±â€¯3.5, 70.6 ±â€¯2.3, and 50.5 ±â€¯3.9 µg/mL) and ursolic acid (IC50 of 6.5 ±â€¯0.7, 15.5 ±â€¯1.4, 20.8 ±â€¯1.3, and 5.6 ±â€¯0.8 µg/mL) showed prominent anticancer activity on Hela, Skov-3, Caski, and NCL cancer cell lines, respectively. Thus, this study shows that the AP & TTAs could be utilized for functional food development and as a potent antioxidant, anticancer, skin whitening, and anti-urolithic agents.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Frutas/química , Malus/química , Triterpenos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Cães , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Humanos , Células Madin Darby de Rim Canino , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/análise , Extratos Vegetais/química , Extração em Fase Sólida , Triterpenos/química , Triterpenos/isolamento & purificação , Urease/antagonistas & inibidores , Xantina Oxidase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA