Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Trends Endocrinol Metab ; 30(3): 163-176, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30691778

RESUMO

Overweight and obesity pose significant health problems globally, and are causatively linked to metabolic dysregulation. The hypothalamus integrates neural, nutritional, and hormonal cues to regulate homeostasis, including circadian rhythm, body temperature, thirst, food intake, energy expenditure, and glucose metabolism. Hypothalamic neuropeptides play a fundamental role in these processes. Studies during the past two decades suggest a role of central endoplasmic reticulum (ER) stress in the pathophysiology of obesity. This review covers recent findings on the role of ER stress and neuropeptide processing in the central regulation of energy homeostasis, with special emphasis on proopiomelanocortin (POMC)-encoding neurons. In addition, the role of neuroinflammation in the context of obesity is briefly discussed.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Hipotálamo/metabolismo , Animais , Metabolismo Energético/fisiologia , Humanos , Resposta a Proteínas não Dobradas/fisiologia
2.
J Clin Invest ; 128(3): 1125-1140, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457782

RESUMO

Pro-opiomelanocortin (POMC) neurons function as key regulators of metabolism and physiology by releasing prohormone-derived neuropeptides with distinct biological activities. However, our understanding of early events in prohormone maturation in the ER remains incomplete. Highlighting the significance of this gap in knowledge, a single POMC cysteine-to-phenylalanine mutation at position 28 (POMC-C28F) is defective for ER processing and causes early onset obesity in a dominant-negative manner in humans through an unclear mechanism. Here, we report a pathologically important role of Sel1L-Hrd1, the protein complex of ER-associated degradation (ERAD), within POMC neurons. Mice with POMC neuron-specific Sel1L deficiency developed age-associated obesity due, at least in part, to the ER retention of POMC that led to hyperphagia. The Sel1L-Hrd1 complex targets a fraction of nascent POMC molecules for ubiquitination and proteasomal degradation, preventing accumulation of misfolded and aggregated POMC, thereby ensuring that another fraction of POMC can undergo normal posttranslational processing and trafficking for secretion. Moreover, we found that the disease-associated POMC-C28F mutant evades ERAD and becomes aggregated due to the presence of a highly reactive unpaired cysteine thiol at position 50. Thus, this study not only identifies ERAD as an important mechanism regulating POMC maturation within the ER, but also provides insights into the pathogenesis of monogenic obesity associated with defective prohormone folding.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/patologia , Hipotálamo/patologia , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Animais , Axônios , Cisteína/química , Comportamento Alimentar , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/metabolismo , Fenilalanina/química , Pró-Opiomelanocortina/genética , Proteínas/metabolismo , Compostos de Sulfidrila , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Mol Cell Endocrinol ; 438: 77-88, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27614022

RESUMO

The last decade had witnessed a tremendous progress in our understanding of the causes of metabolic diseases including obesity. Among the contributing factors regulating energy balance are nutrient sensors such as sirtuins. Sirtuin1 (Sirt1), a NAD + - dependent deacetylase is affected by diet, environmental stress, and also plays a critical role in metabolic health by deacetylating proteins in many tissues, including liver, muscle, adipose tissue, heart, endothelium, and in the complexity of the hypothalamus. Because of its dependence on NAD+, Sirt1 also functions as a nutrient/redox sensor, and new novel data show a function of this enzyme in the maturation of hypothalamic peptide hormones controlling energy balance either through regulation of specific nuclear transcription factors or by regulating specific pro-hormone convertases (PCs) involved in the post-translational processing of pro-hormones. The post-translational processing mechanism of pro-hormones is critical in the pathogenesis of obesity as recently shown that metabolic and physiological triggers affect the biosynthesis and processing of many peptides hormones. Specific regulation of pro-hormone processing is likely another key step where final amounts of bioactive peptides can be tightly regulated. Different factors stimulate or inhibit pro-hormones biosynthesis in concert with an increase in the PCs involved in the maturation of bioactive hormones. Adding more complexity to the system, the new studies describe here suggest that Sirt1 could also regulate the fate of peptide hormone biosynthesis. The present review summarizes the recent progress in hypothalamic SIRT1 research with a particular emphasis on the tissue-specific control of neuropeptide hormone maturation. The series of studies done in mouse and rat models strongly advocate for the first time that a deacetylating enzyme could be a regulator in the maturation of peptide hormones and their processing enzymes. These discoveries are the culmination of the first in-depth understanding of the metabolic role of Sirt1 in the brain. It suggests that Sirt1 behaves differently in the brain than in organs such as the liver and pancreas, where the enzyme has been more commonly studied.


Assuntos
Hipotálamo/metabolismo , Hormônios Peptídicos/metabolismo , Pró-Proteína Convertases/metabolismo , Sirtuína 1/metabolismo , Animais , Humanos , Modelos Biológicos
4.
Mol Endocrinol ; 28(9): 1423-34, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24947673

RESUMO

In developed nations, the prevalence of obesity and its associated comorbidities continue to prevail despite the availability of numerous treatment strategies. Accumulating evidence suggests that multiple inputs from the periphery and within the brain act in concert to maintain energy metabolism at a constant rate. At the central level, the hypothalamus is the primary component of the nervous system that interprets adiposity or nutrient-related inputs; it delivers hormonal and behavioral responses with the ultimate purpose of regulating energy intake and energy consumption. At the molecular level, enzymes called nutrient energy sensors mediate metabolic responses of those tissues involved in energy balance ( 1 ). Two key energy/nutrient sensors, mammalian target of rapamycin and AMP-activated kinase, are involved in the control of food intake in the hypothalamus as well as in peripheral tissues ( 2 , 3 ). The third more recently discovered nutrient sensor, Sirtuin1 (Sirt1), a nicotinamide adenine dinucleotide-dependent deacetylase, functions to maintain whole-body energy homeostasis. Several studies have highlighted a role for both peripheral and central Sirt1 in regulating body metabolism, but its central role is still heavily debated. Owing to the opaqueness of central Sirt1's role in energy balance are its cell-specific functions. Because of its robust central expression, targeting cell-specific downstream mediators of Sirt1 signaling may help to combat obesity. However, when placed in the context of a physiologically relevant model, there is compelling evidence that central Sirt1 inhibition in itself is sufficient to promote negative energy balance in both the lean and diet-induced obese state.


Assuntos
Receptor Tipo 1 de Melanocortina/metabolismo , Sirtuína 1/metabolismo , Animais , Peso Corporal , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Hipotálamo/metabolismo , Modelos Biológicos , Neurônios/metabolismo , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Transdução de Sinais
5.
Am J Physiol Endocrinol Metab ; 306(8): E904-15, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24518677

RESUMO

Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and ß-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Estado Nutricional/fisiologia , Pró-Opiomelanocortina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Leptina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pró-Opiomelanocortina/genética , Fatores de Tempo
6.
Mol Cell Endocrinol ; 365(1): 84-94, 2013 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-23000398

RESUMO

Thyrotropin-releasing hormone (TRH) in the paraventricular nucleus (PVN) of the hypothalamus is regulated by thyroid hormone (TH). cAMP response element binding protein (CREB) has also been postulated to regulate TRH expression but its interaction with TH signaling in vivo is not known. To evaluate the role of CREB in TRH regulation in vivo, we deleted CREB from PVN neurons to generate the CREB1(ΔSIM1) mouse. As previously shown, loss of CREB was compensated for by an up-regulation of CREM in euthyroid CREB1(ΔSIM1) mice but TSH, T4 and T3 levels were normal, even though TRH mRNA levels were elevated. Interestingly, TRH mRNA expression was also increased in the PVN of CREB1(ΔSIM1) mice in the hypothyroid state but became normal when made hyperthyroid. Importantly, CREM levels were similar in CREB1(ΔSIM1) mice regardless of thyroid status, demonstrating that the regulation of TRH by T3 in vivo likely occurs independently of the CREB/CREM family.


Assuntos
Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Hormônio Liberador de Tireotropina/genética , Tri-Iodotironina/metabolismo
7.
Neurosci Lett ; 518(2): 86-91, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22580206

RESUMO

The neuropeptide thyrotropin releasing hormone (TRH) is necessary for adequate cold-induced thermogenesis. TRH increases body temperature via both neuroendocrine and autonomic mechanisms. TRH neurons of the hypothalamic paraventricular nucleus (PVN) regulate thermogenesis through the activation of the hypothalamic-pituitary-thyroid axis during cold exposure. However, little is known about the role that TRH neurons play in mediating the sympathetic response to cold exposure. Here, we examined the response of TRH neurons of rats to cold exposure in hypothalamic regions including the PVN, the dorsomedial nucleus and the lateral hypothalamus along with areas of the ventral medulla including raphe obscurus, raphe pallidus (RPa) and parapyramidal regions. Our results using a double immunohistochemistry protocol to identify TRH and c-Fos (as a marker of cellular activity) followed by analysis of preproTRH gene expression demonstrate that only TRH neurons located in the PVN and the RPa are activated in animals exposed to short-term cold conditions.


Assuntos
Temperatura Baixa , Hipotálamo/fisiologia , Neurônios/metabolismo , Termogênese/fisiologia , Hormônio Liberador de Tireotropina/metabolismo , Animais , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Am J Physiol Endocrinol Metab ; 300(6): E1002-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21406615

RESUMO

The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.


Assuntos
Temperatura Baixa , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Homeostase/genética , Homeostase/fisiologia , Neurônios/metabolismo , Pró-Opiomelanocortina/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , Animais , Grelina/sangue , Hipotálamo/metabolismo , Luz , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Neurônios/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , RNA/biossíntese , RNA/genética , RNA/isolamento & purificação , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Grelina/biossíntese , Transdução de Sinais/fisiologia , Telemetria , Termogênese/fisiologia , Hormônios Tireóideos/sangue , Tireotropina/metabolismo
9.
Am J Physiol Endocrinol Metab ; 299(6): E976-89, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20858755

RESUMO

The hypothalamic-pituitary-thyroid (HPT) axis is a major contributor in maintaining energy expenditure and body weight, and the adipocyte hormone leptin regulates this axis by increasing TRH levels in the fed state. Leptin stimulates TRH directly in the hypothalamic paraventricular nucleus (PVN; direct pathway) and indirectly by regulating proopiomelnocortin neurons in the hypothalamic arcuate nucleus (ARC; indirect pathway). Whereas the indirect pathway is fully functional in lean animals, it is inactive during diet-induced obesity (DIO) because of the establishment of leptin resistance. Despite this, the HPT axis activity in obese humans and rodents remains within the normal levels or slightly higher. Therefore, in this study, we aimed to determine the mechanism(s) by which the HPT axis is still active despite leptin resistance. With a combination of using the Sprague-Dawley rat physiological model and the Zuker rat that bears a mutation in the leptin receptor, we were able to demonstrate that under DIO conditions the HPT axis is regulated at the central level, but only through the direct pathway of leptin action on TRH neurons. Deiodinase enzymes, which are present in many tissues and responsible for converting thyroid hormones, were not statistically different between lean and DIO animals. These data suggest that the increase in T(4/3) seen in obese animals is due mostly to central leptin action. We also found that T(3) feedback inhibition on the prepro-TRH gene is controlled partially by leptin-induced pSTAT3 signaling via the TRH promoter. This interactive relationship between T(3) and pSTAT3 signaling appears essential to maintain the HPT axis at normal levels in conditions such as obesity.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Glândula Tireoide/metabolismo , Glândula Tireoide/fisiopatologia , Análise de Variância , Animais , Western Blotting , Temperatura Corporal , Dieta , Metabolismo Energético , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipotálamo/fisiopatologia , Imuno-Histoquímica , Modelos Lineares , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Obesidade/etiologia , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptores para Leptina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Hormônio Liberador de Tireotropina/metabolismo , Tiroxina/sangue , Tri-Iodotironina/sangue
10.
Neurobiol Dis ; 37(1): 130-40, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19815072

RESUMO

Mammalian genomes encode only a small number of cuproenzymes. The many genes involved in coordinating copper uptake, distribution, storage and efflux make gene/nutrient interactions especially important for these cuproenzymes. Copper deficiency and copper excess both disrupt neural function. Using mice heterozygous for peptidylglycine alpha-amidating monooxygenase (PAM), a cuproenzyme essential for the synthesis of many neuropeptides, we identified alterations in anxiety-like behavior, thermoregulation and seizure sensitivity. Dietary copper supplementation reversed a subset of these deficits. Wildtype mice maintained on a marginally copper-deficient diet exhibited some of the same deficits observed in PAM(+/-) mice and displayed alterations in PAM metabolism. Altered copper homeostasis in PAM(+/-) mice suggested a role for PAM in the cell type specific regulation of copper metabolism. Physiological functions sensitive to genetic limitations of PAM that are reversed by supplemental copper and mimicked by copper deficiency may serve as indicators of marginal copper deficiency.


Assuntos
Transtornos de Ansiedade/metabolismo , Regulação da Temperatura Corporal/fisiologia , Cobre/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Peptídeos/metabolismo , Convulsões/metabolismo , Animais , Transtornos de Ansiedade/dietoterapia , Regulação da Temperatura Corporal/efeitos dos fármacos , Cobre/deficiência , Cobre/uso terapêutico , Dieta , Suplementos Nutricionais , Feminino , Heterozigoto , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Oxigenases de Função Mista/sangue , Oxigenases de Função Mista/genética , Complexos Multienzimáticos/sangue , Complexos Multienzimáticos/genética , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Vasoconstrição/fisiologia
11.
PLoS One ; 4(12): e8322, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20020036

RESUMO

Sirt1 is an evolutionarily conserved NAD(+) dependent deacetylase involved in a wide range of processes including cellular differentiation, apoptosis, as well as metabolism, and aging. In this study, we investigated the role of hypothalamic Sirt1 in energy balance. Pharmacological inhibition or siRNA mediated knock down of hypothalamic Sirt1 showed to decrease food intake and body weight gain. Central administration of a specific melanocortin antagonist, SHU9119, reversed the anorectic effect of hypothalamic Sirt1 inhibition, suggesting that Sirt1 regulates food intake through the central melanocortin signaling. We also showed that fasting increases hypothalamic Sirt1 expression and decreases FoxO1 (Forkhead transcription factor) acetylation suggesting that Sirt1 regulates the central melanocortin system in a FoxO1 dependent manner. In addition, hypothalamic Sirt1 showed to regulate S6K signaling such that inhibition of the fasting induced Sirt1 activity results in up-regulation of the S6K pathway. Thus, this is the first study providing a novel role for the hypothalamic Sirt1 in the regulation of food intake and body weight. Given the role of Sirt1 in several peripheral tissues and hypothalamus, potential therapies centered on Sirt1 regulation might provide promising therapies in the treatment of metabolic diseases including obesity.


Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/metabolismo , Sirtuína 1/metabolismo , Acetilação , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/fisiologia , Linhagem Celular Tumoral , Metabolismo Energético/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Hipotálamo/enzimologia , Melanocortinas/metabolismo , Camundongos , Modelos Animais , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Melanocortina/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais
12.
J Biol Chem ; 283(29): 19936-47, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18474603

RESUMO

Prothyrotropin-releasing hormone (pro-TRH) is initially cleaved by the prohormone convertase-1/3 (PC1/3) in the trans-Golgi network generating N- and C-terminal intermediate forms that are then packed into secretory vesicles. However, it is not known whether these peptides are differentially sorted within the secretory pathway. This is of key importance because the processing products of several prohormones fulfill different biological functions. Using AtT20 cells stably transfected with prepro-TRH cDNA, we found that two specific N- and C-terminal peptides were located in different vesicles. Furthermore, the C-terminal pro-TRH-derived peptides were more efficiently released in response to KCl and norepinephrine, a natural secretagogue of TRH. Similar sorting and secretion of N- and C-terminal peptides occurs in vivo. When we blocked the initial proteolytic processing by a mutagenic approach, the differential sorting and secretion of these peptides were prevented. In summary, our data show that pro-TRH-derived peptides are differentially sorted within the secretory pathway and that the initial cleavage in the trans-Golgi network is key to this process. This could be a common mechanism used by neuroendocrine cells to regulate independently the secretion of different bioactive peptides derived from the same gene product.


Assuntos
Precursores de Proteínas/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Hormônio Liberador de Tireotropina/metabolismo , Animais , Linhagem Celular , Hipotálamo/metabolismo , Masculino , Microscopia Imunoeletrônica , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Precursores de Proteínas/genética , Ácido Pirrolidonocarboxílico/metabolismo , Ratos , Ratos Sprague-Dawley , Hormônio Liberador de Tireotropina/genética
13.
Endocrinology ; 148(9): 4191-200, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17584972

RESUMO

Recent evidence demonstrated that posttranslational processing of neuropeptides is critical in the pathogenesis of obesity. Leptin or other physiological changes affects the biosynthesis and processing of many peptides hormones as well as the regulation of the family of prohormone convertases responsible for the maturation of these hormones. Regulation of energy balance by leptin involves regulation of several proneuropeptides such as proTRH and proopiomelanocortin. These proneuropeptide precursors require for their maturation proteolytic cleavage by the prohormone convertases 1 and 2 (PC1/3 and PC2). Because biosynthesis of mature peptides in response to leptin requires prohormone processing, it is hypothesized that leptin might regulate hypothalamic PC1/3 and PC2 expression, ultimately leading to coordinated processing of prohormones into mature peptides. Leptin has been shown to increase PC1/3 and PC2 promoter activities, and starvation of rats, leading to low serum leptin levels, resulted in a decrease in PC1/3 and PC2 gene and protein expression in the paraventricular and arcuate nucleus of the hypothalamus. Changes in nutritional status also changes proopiomelanocortin processing in the nucleus of the solitary tract, but this is not reversed by leptin. The PCs are also physiologically regulated by states of hyperthyroidism, hyperglycemia, inflammation, and suckling, and a recently discovered nescient helix-loop-helix-2 transcription factor is the first one to show an ability to regulate the transcription of PC1/3 and PC2. Therefore, the coupled regulation of proneuropeptide/processing enzymes may be a common process, by which cells generate more effective processing of prohormones into mature peptides.


Assuntos
Hipotálamo/enzimologia , Leptina/fisiologia , Neurônios/enzimologia , Obesidade/fisiopatologia , Pró-Opiomelanocortina/biossíntese , Pró-Proteína Convertases/metabolismo , Hormônio Liberador de Tireotropina/biossíntese , Animais , Sequências Hélice-Alça-Hélice , Sistema Hipotálamo-Hipofisário/fisiologia , Glândula Tireoide/fisiologia
14.
J Mol Neurosci ; 31(1): 69-82, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17416971

RESUMO

ProThyrotropin-releasing hormone (proTRH) is a prohormone widely distributed in many areas of the brain. After biosynthesis, proTRH is subjected to post-translational processing to generate TRH and seven non-TRH peptides. Among these non-TRH sequences, we found previously that preproTRH178-199 could regulate the secretion of prolactin in suckled rats by their pups. Dopamine (DA), the main regulator of prolactin secretion, is produced in dopaminergic tyrosine hydroxylase (TH)-positive neurons in the hypothalamic arcuate nucleus (ARC). In this study we investigated whether prolactin release during the estrous sexual cycle is regulated by preproTRH178-199 through its effect on DA neurons of the ARC. We observed that biotinylated preproTRH178-199 bound to neurons in the ARC; this was higher during proestrus than during diestrus. Binding of preproTRH178-199 to DA neurons was seen only during proestrus in the ARC. Using primary neuronal hypothalamic cultures we found that preproTRH178-199 peptide decreased TH levels in a dose-responsive manner, whereas intra-ARC administration of preproTRH178-199 induced a 20-fold increase in plasma prolactin levels. Together, these results suggest a potential role for preproTRH178-199 in regulating dopaminergic neurons involved in the inhibition of pituitary prolactin release.


Assuntos
Produtos do Gene env/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Células Cultivadas , Dopamina/metabolismo , Ciclo Estral/fisiologia , Feminino , Hipotálamo/metabolismo , Neurônios/química , Neurônios/citologia , Gravidez , Prolactina/sangue , Prolactina/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Cell Metab ; 5(3): 181-94, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17339026

RESUMO

Despite high leptin levels, most obese humans and rodents lack responsiveness to its appetite-suppressing effects. We demonstrate that leptin modulates NPY/AgRP and alpha-MSH secretion from the ARH of lean mice. High-fat diet-induced obese (DIO) mice have normal ObRb levels and increased SOCS-3 levels, but leptin fails to modulate peptide secretion and any element of the leptin signaling cascade. Despite this leptin resistance, the melanocortin system downstream of the ARH in DIO mice is over-responsive to melanocortin agonists, probably due to upregulation of MC4R. Lastly, we show that by decreasing the fat content of the mouse's diet, leptin responsiveness of NPY/AgRP and POMC neurons recovered simultaneously, with mice regaining normal leptin sensitivity and glycemic control. These results highlight the physiological importance of leptin sensing in the melanocortin circuits and show that their loss of leptin sensing likely contributes to the pathology of leptin resistance.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Leptina/farmacologia , Neurônios/metabolismo , Obesidade/metabolismo , Proteína Relacionada com Agouti , Animais , Núcleo Arqueado do Hipotálamo/citologia , Composição Corporal , Dieta , Gorduras na Dieta/administração & dosagem , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leptina/administração & dosagem , Masculino , Melanocortinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro , Transdução de Sinais , Redução de Peso , alfa-MSH/metabolismo
16.
J Clin Invest ; 114(3): 357-69, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15286802

RESUMO

Regulation of energy balance by leptin involves regulation of several neuropeptides, including thyrotropin-releasing hormone (TRH). Synthesized from a larger inactive precursor, its maturation requires proteolytic cleavage by prohormone convertases 1 and 2 (PC1 and PC2). Since this maturation in response to leptin requires prohormone processing, we hypothesized that leptin might regulate hypothalamic PC1 and PC2 expression, ultimately leading to coordinated processing of prohormones into mature peptides. Using hypothalamic neurons, we found that leptin stimulated PC1 and PC2 mRNA and protein expression and also increased PC1 and PC2 promoter activities in transfected 293T cells. Starvation of rats, leading to low serum leptin levels, decreased PC1 and PC2 gene and protein expression in the paraventricular nucleus (PVN) of the hypothalamus. Exogenous administration of leptin to fasted animals restored PC1 levels in the median eminence (ME) and the PVN to approximately the level found in fed control animals. Consistent with this regulation of PCs in the PVN, concentrations of TRH in the PVN and ME were substantially reduced in the fasted animals relative to the fed animals, and leptin reversed this decrease. Further analysis showed that proteolytic cleavage of pro-thyrotropin-releasing hormone (proTRH) at known PC cleavage sites was reduced by fasting and increased in animals given leptin. Combined, these findings suggest that leptin-dependent stimulation of hypothalamic TRH expression involves both activation of trh transcription and stimulation of PC1 and PC2 expression, which lead to enhanced processing of proTRH into mature TRH.


Assuntos
Regulação Enzimológica da Expressão Gênica , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 2/genética , Processamento de Proteína Pós-Traducional , Hormônio Liberador de Tireotropina/metabolismo , Animais , Células Cultivadas , Ingestão de Energia , Feminino , Hipotálamo/citologia , Hipotálamo/embriologia , Imuno-Histoquímica , Injeções Intraperitoneais , Leptina/administração & dosagem , Leptina/farmacologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Pró-Proteína Convertase 1/biossíntese , Pró-Proteína Convertase 1/efeitos dos fármacos , Pró-Proteína Convertase 2/biossíntese , Pró-Proteína Convertase 2/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Hormônio Liberador de Tireotropina/genética , Tiroxina/sangue , Tri-Iodotironina/sangue
17.
Proc Natl Acad Sci U S A ; 101(32): 11797-802, 2004 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-15280541

RESUMO

The central melanocortin system is critical in the regulation of appetite and body weight, and leptin exerts its anorexigenic actions partly by increasing hypothalamic proopiomelanocortin (POMC) expression. The POMC-derived peptide alpha-melanocyte-stimulating hormone (alphaMSH) is a melanocortin 4 receptor agonist, and its potency in reducing energy intake is strongly increased by N-acetylation. The reason for the higher biological activity of N-acetylated alphaMSH (Act-alphaMSH) compared with that of N-desacetylated alphaMSH (Des-alphaMSH) is unclear, and regulation of acetylation by leptin has not been investigated. We show here that total hypothalamic alphaMSH levels are decreased in leptin-deficient ob/ob mice and increased in leptin-treated ob/ob and C57BL/6J mice. The increase in total alphaMSH occurred as soon as 3 h after leptin injection and was entirely due to an increase in Act-alphaMSH. Consistent with this observation, leptin rapidly induced the enzymatic activity of a N-acetyltransferase in the hypothalamus of mice. In 293T cells expressing the melanocortin 4 receptor, Act-alphaMSH is far more potent than Des-alphaMSH in stimulating cAMP accumulation, an effect caused by a dramatically increased stability of Act-alphaMSH. Moreover, Des-alphaMSH is rapidly degraded in the hypothalamus after intracerebroventricular injection in rats and was less potent in inhibiting energy intake. The results suggest that leptin activates a N-acetyltransferase in POMC neurons, leading to increased hypothalamic levels of Act-alphaMSH. Due to its increased stability, this posttranslational modification of alphaMSH may play a critical role in leptin action via the central melanocortin pathway.


Assuntos
Hipotálamo/metabolismo , Leptina/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , alfa-MSH/metabolismo , Acetilação/efeitos dos fármacos , Animais , Arilamina N-Acetiltransferase/metabolismo , AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Leptina/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Ratos , Ratos Wistar , alfa-MSH/análise
18.
Endocrine ; 23(2-3): 199-213, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15146101

RESUMO

Through a posttranslational processing mechanism, pro-growth hormone releasing hormone (proGHRH) gives rise to an amidated GHRH molecule, which in turn stimulates the synthesis and release of growth hormone. We have previously proposed a model for the biochemical processing of proGHRH [Nillni et al. (1999), Endocrinology 140, 5817-5827]. We demonstrated that the proGHRH peptide (10.5 kDa, 104 aa) is first processed to an 8.8 kDa intermediate form that is later cleaved to yield two products: the 5.2 kDa GHRH and the 3.6 kDa GHRH-RP. However, the proteolytic enzymes involved in this process are unknown. Therefore, in this study we determined which proconverting enzymes are involved in this process. We transfected different constructs in cell lines carrying different PC enzymes followed by analysis of the peptide products after metabolic labeling or Western blots. We found that in the absence of furin (LoVo cells) or CHO cells treated with BFA, only one moiety was observed, and that corresponds to the same electrophorectic mobility to the GHRH precursor. This finding strongly supports an initial role for furin in the processing of proGHRH. The results from transfections with preproGHRH alone or double or triple transfections with PC1 and PC2 in AtT-20, GH3, and GH4C1 cells indicated that PC1 is the primary enzyme involved in the generation of GHRH peptide from the 8.8 kDa intermediate form. We found that AtT-20 cells (high PC1, very low PC2) were able to generate GHRH. However, GH3 cells (high PC2, but not PC1) were able to process the 8.8 kDa peptide to GHRH only after the cotransfection with the PC1 enzyme. Transfections with preproGHRH-GFP and preproGHRH-V5 provided similar results in all the cell lines analyzed. These data support the hypothesis that proGHRH is initially cleave by furin at preproGHRH29-30, followed by a second cleavage at preproGHRH74 primarily by PC1 to generate GHRH and GHRH-RP peptides, respectively.


Assuntos
Furina/metabolismo , Hormônio Liberador de Hormônio do Crescimento/genética , Pró-Proteína Convertase 1/metabolismo , Precursores de Proteínas/genética , Processamento de Proteína Pós-Traducional , Animais , Western Blotting , Células CHO , Células Cultivadas , Cricetinae , Feminino , Proteínas de Fluorescência Verde , Hormônio Liberador de Hormônio do Crescimento/biossíntese , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Proteínas Luminescentes/genética , Neurônios/metabolismo , Pró-Proteína Convertase 2/metabolismo , Precursores de Proteínas/biossíntese , Precursores de Proteínas/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Distribuição Tecidual
19.
Endocrinology ; 144(5): 2121-31, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12697721

RESUMO

Leptin acts on the brain to regulate body weight and neuroendocrine function. Proopiomelanocortin (POMC) neurons in the hypothalamus are important targets of leptin. These cells express the leptin receptor ObRb, and leptin can regulate POMC mRNA levels, but the cellular mechanisms by which this occurs is unknown. Here we show evidence that leptin stimulates pomc gene transcription via activation of intracellular signal transducer and activator of transcription 3 (STAT3) proteins. In pomc-promoter assays using transfected cells, leptin induces pomc promoter activity. Expression of dominant negative STAT3 strongly suppresses this effect. Furthermore, maximal activation requires the presence of the STAT3-binding site, tyrosine 1138, of ObRb. Mutational analysis identifies a 30-bp promoter element that is required for regulation by leptin. In rats, robust leptin-dependent induction of STAT3 phosphorylation is demonstrated in hypothalamic POMC neurons using double immunohistochemistry. In total, approximately 37% of POMC cells are positive for phospho-STAT3 after leptin treatment. Furthermore, leptin-responsive POMC neurons are concentrated in the rostral region of the hypothalamus. Combined, our data show that a subpopulation of POMC neurons is leptin-responsive and suggest that stimulation of hypothalamic pomc gene expression in these cells requires STAT3 activation. We speculate that STAT3 is critical for leptin-dependent effects on energy homeostasis that are mediated by the central melanocortin system.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Hipotálamo/fisiologia , Leptina/fisiologia , Pró-Opiomelanocortina/genética , Transativadores/fisiologia , Animais , Sítios de Ligação/fisiologia , Encéfalo/metabolismo , Humanos , Hipotálamo Médio/citologia , Hipotálamo Médio/fisiologia , Leptina/farmacologia , Masculino , Camundongos , Neurônios/fisiologia , Fragmentos de Peptídeos/fisiologia , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/fisiologia , Receptores para Leptina , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3 , Transcrição Gênica/fisiologia
20.
Neuron ; 37(4): 649-61, 2003 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-12597862

RESUMO

The gastrointestinal peptide hormone ghrelin stimulates appetite in rodents and humans via hypothalamic actions. We discovered expression of ghrelin in a previously uncharacterized group of neurons adjacent to the third ventricle between the dorsal, ventral, paraventricular, and arcuate hypothalamic nuclei. These neurons send efferents onto key hypothalamic circuits, including those producing neuropeptide Y (NPY), Agouti-related protein (AGRP), proopiomelanocortin (POMC) products, and corticotropin-releasing hormone (CRH). Within the hypothalamus, ghrelin bound mostly on presynaptic terminals of NPY neurons. Using electrophysiological recordings, we found that ghrelin stimulated the activity of arcuate NPY neurons and mimicked the effect of NPY in the paraventricular nucleus of the hypothalamus (PVH). We propose that at these sites, release of ghrelin may stimulate the release of orexigenic peptides and neurotransmitters, thus representing a novel regulatory circuit controlling energy homeostasis.


Assuntos
Sistema Nervoso Central/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotálamo/metabolismo , Rede Nervosa/metabolismo , Hormônios Peptídicos/metabolismo , Proteínas , Proteína Relacionada com Agouti , Animais , Sistema Nervoso Central/citologia , Hormônio Liberador da Corticotropina/biossíntese , Feminino , Grelina , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Luminescentes/biossíntese , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeo Y/biossíntese , Especificidade de Órgãos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Técnicas de Patch-Clamp , Hormônios Peptídicos/farmacologia , Terminações Pré-Sinápticas/metabolismo , Pró-Opiomelanocortina/biossíntese , Ligação Proteica/fisiologia , Biossíntese de Proteínas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA