Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Free Radic Res ; 40(5): 535-42, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-17390518

RESUMO

Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model. Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload.


Assuntos
Caseínas/administração & dosagem , Dieta , Ferro/administração & dosagem , Peroxidação de Lipídeos , Animais , Caseínas/metabolismo , Colo/metabolismo , Colo/patologia , Glutationa Peroxidase/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Condicionamento Físico Animal , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
2.
J Hepatol ; 41(5): 721-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15519643

RESUMO

BACKGROUND/AIMS: Polyunsaturated fatty acids (PUFA) deficiency is common in patients with alcoholic liver disease. The suitability of reversing such deficiency remains controversial. The aim was to investigate the role played by PUFA deficiency in the occurrence of alcohol-related mitochondrial dysfunction. METHODS: Wistar rats were fed either a control diet with or without alcohol (control and ethanol groups) or a PUFA deficient diet with or without alcohol (PUFA deficient and PUFA deficient+ethanol groups). After 6 weeks, liver mitochondria were isolated for energetic studies and fatty acid analysis. RESULTS: Mitochondria from ethanol fed rats showed a dramatic decrease in oxygen consumption rates and in cytochrome oxidase activity. PUFA deficiency showed an opposite picture. PUFA deficient+ethanol group roughly reach control values, regarding cytochrome oxidase activity and respiratory rates. The relationship between ATP synthesis and respiratory rate was shifted to the left in ethanol group and to the right in PUFA-deficient group. The plots of control and PUFA deficient+ethanol groups were overlapping. Phospholipid arachidonic over linoleic ratio closely correlated to cytochrome oxidase and oxygen uptake. CONCLUSIONS: PUFA deficiency reverses alcohol-related mitochondrial dysfunction via an increase in phospholipid arachidonic over linoleic ratio, which raises cytochrome oxidase activity. Such deficiency may be an adaptive mechanism.


Assuntos
Metabolismo Energético/fisiologia , Ácidos Graxos Insaturados/deficiência , Hepatopatias Alcoólicas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Ração Animal , Animais , Gorduras na Dieta/farmacologia , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Hepatopatias Alcoólicas/dietoterapia , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA