Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 71(1): 83-92, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28508406

RESUMO

OBJECTIVES: This study was conducted to explore whether Hypericum perforatum L. (HPL) as a potent antioxidant protects against oxidative stress, cytokine production and caspase expression in muscle (soleus), brain and blood of sciatic nerve injury (SNI)-induced rats. METHODS: Thirty-five rats were equally divided into five groups. The first and second were used as untreated control and sham control groups, respectively. The third, fourth and fifth were sham + HPL, SNI and SNI + HPL groups, respectively. The third and fifth groups received 30 mg/kg HPL via gastric gavage for 28 days. KEY FINDINGS: High levels of muscle, brain and red blood cell (RBC) lipid peroxidation, plasma cytokine (TNF-α, IL-1ß and IL-2), muscle PARP, caspase 3 and 9 expression levels were decreased by HPL treatments. Plasma glutathione peroxidase (GPx) activity, α-tocopherol and melatonin, muscle, brain and RBC reduced glutathione (GSH) concentrations were decreased by SNI induction, whereas their values were increased by HPL treatments. ß-carotene and retinol concentrations did not change in the five groups. CONCLUSION: HPL may play a role in preventing SNI-induced inflammatory, oxidative and apoptotic blood, muscle and brain damages through upregulation of the GSH and GPx values but downregulation of PARP, caspase level and cytokine production in SNI-induced rats.


Assuntos
Antioxidantes/farmacologia , Hypericum/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/etiologia , Inflamação/prevenção & controle , Peroxidação de Lipídeos/efeitos dos fármacos , Ratos , Ratos Wistar , Nervo Isquiático/lesões
2.
Sci Rep ; 8(1): 10647, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006564

RESUMO

Myocardial infarction (MI) is a major cause of death in Western countries and finding new strategies for its prevention and treatment is thus of high priority. In a previous study, we have demonstrated a pathophysiologic relevance for the heterophilic interaction of CCL5 and CXCL4 in the progression of atherosclerosis. A specifically designed compound (MKEY) to block this CCL5-CXCR4 interaction is investigated as a potential therapeutic in a model of myocardial ischemia/reperfusion (I/R) damage. 8 week-old male C57BL/6 mice were intravenously treated with MKEY or scrambled control (sMKEY) from 1 day before, until up to 7 days after I/R. By using echocardiography and intraventricular pressure measurements, MKEY treatment resulted in a significant decrease in infarction size and preserved heart function as compared to sMKEY-treated animals. Moreover, MKEY treatment significantly reduced the inflammatory reaction following I/R, as revealed by specific staining for neutrophils and monocyte/macrophages. Interestingly, MKEY treatment led to a significant reduction of citrullinated histone 3 in the infarcted tissue, showing that MKEY can prevent neutrophil extracellular trap formation in vivo. Disrupting chemokine heterodimers during myocardial I/R might have clinical benefits, preserving the therapeutic benefit of blocking specific chemokines, and in addition, reducing the inflammatory side effects maintaining normal immune defence.


Assuntos
Cardiotônicos/uso terapêutico , Quimiocina CCL5/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Peptídeos Cíclicos/uso terapêutico , Fator Plaquetário 4/metabolismo , Multimerização Proteica/efeitos dos fármacos , Animais , Cardiotônicos/farmacologia , Quimiocina CCL5/imunologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/imunologia , Peptídeos Cíclicos/farmacologia , Fator Plaquetário 4/imunologia , Multimerização Proteica/imunologia , Resultado do Tratamento
3.
Cell Biochem Funct ; 29(4): 287-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21416480

RESUMO

Diabetes induces oxidative stress in aged human and rat, although daily supplementation of vitamins C and E (VCE) can be beneficial to aged diabetic rats by reducing free radical production. The aim of the present study was to evaluate whether dietary VCE supplementation relieves oxidative stress in streptozotocin (STZ)-induced diabetic in aged rats. Thirty aged rats were randomly divided into three groups. The first group was used as a control. The second group was made diabetic using a single dose of intraperitoneal STZ. VCE-supplemented feed was given to aged diabetic rats constituting the third group. On the 21st day of the experiment, blood, lens and kidney samples were taken from all animals. Glutathione peroxidase (GSH-Px) activity in lens and kidney, reduced glutathione (GSH), vitamin E and ß-carotene concentrations in kidney were lower in the diabetic group than in the control whereas plasma glucose, urea and creatinine, and kidney and lens peroxidation (LP) levels were higher in the diabetic group than in the control. However, kidney and lens LP levels, and plasma glucose, urea and creatinine values were decreased by VCE supplementation. Lens and kidney GSH-Px activity, kidney GSH, vitamin E and ß-carotene concentrations and erythrocyte counts were increased by VCE treatment. Kidney weights, vitamin A, haemoglobin, hematocrit, leukocyte and platelets values were not changed by diabetes and/or VCE supplementation. VCE ameliorated also diabetes-induced histopathological changes in kidney. In conclusion, we observed that VCE supplementation is beneficial towards kidney and lens of aged diabetic rats by modulating oxidative and antioxidant systems.


Assuntos
Ácido Ascórbico/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Rim/efeitos dos fármacos , Doenças do Cristalino/tratamento farmacológico , Estresse Oxidativo , Vitamina E/uso terapêutico , Envelhecimento , Animais , Glicemia/análise , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Suplementos Nutricionais , Homeostase , Hipoglicemiantes/uso terapêutico , Rim/patologia , Doenças do Cristalino/fisiopatologia , Cristalino/efeitos dos fármacos , Cristalino/fisiopatologia , Peroxidação de Lipídeos , Masculino , Ratos , Ratos Wistar , Estreptozocina/efeitos adversos
4.
Int J Vitam Nutr Res ; 81(6): 347-57, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22673918

RESUMO

While tissue dysfunction is a well-recognized consequence of diabetes mellitus in aged people, the underlying mechanisms are poorly understood. Daily (VCE) supplementation of vitamins C and E can be beneficial to diabetic aged animals in reducing free radical production. The aim of this study was to investigate whether dietary VCE supplementation modulates oxidative stress and antioxidant redox systems in streptozotocin (STZ)-induced aged diabetic rats. Thirty aged rats (18 - 20 months) were randomly divided into three groups. The first group acted as a control and the second group was diabetic. VCE-supplemented feed was given to aged, diabetic rats, constituting the third group. Diabetes was induced using a single dose of intraperitoneal STZ. On the 21(st) day after STZ dosage, blood and tissue samples were taken from all animals. Glutathione peroxidase activity in liver, erythrocytes, muscle, and testes; catalase activity in plasma and erythrocytes; reduced glutathione levels in plasma; vitamin E concentration in plasma, liver, and muscle; b-carotene concentration in brain; and high-density lipoprotein (HDL)-cholesterol levels in plasma were lower in the diabetic group than in the control group. Lipid peroxidation (LP) levels in plasma, liver, brain, and muscle, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), triacyglycerols, and total and low-density lipoprotein (LDL)-cholesterol values in plasma were higher in the diabetic group than in the control group. The LP, enzyme, vitamin, and lipid profile values levels were mostly restored by VCE treatment. Liver and testis weights did not change by diabetic status and VCE supplementation, although body weight was lower in the diabetic group than in the control group. In conclusion, brain, liver, and testes tissues seem most sensitive in aged diabetic rats to oxidative stress. We observed that VCE supplementation relieves oxidative stress in the blood and tissues of diabetic aged rats by modulating the antioxidant system and lipid profile.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/análise , Ácido Ascórbico/administração & dosagem , Diabetes Mellitus Experimental/metabolismo , Vitamina E/administração & dosagem , Animais , Ácido Ascórbico/metabolismo , Encéfalo/metabolismo , Eritrócitos/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Masculino , Músculos/metabolismo , Especificidade de Órgãos , Estresse Oxidativo , Ratos , Ratos Wistar , Estreptozocina , Testículo/metabolismo , Vitamina E/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA