Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neuroendocrinol ; 34(12): e13217, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36458331

RESUMO

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, obesity, developmental delay and intellectual disability. Studies suggest dysfunctional signaling of the neuropeptide oxytocin as one of the key mechanisms in PWS, and administration of oxytocin via intranasal or systemic routes yielded promising results in both humans and mouse models. However, a detailed assessment of the oxytocin system in mouse models of PWS such as the Magel2-deficient Magel2tm1.Stw mouse, is lacking. In the present study, we performed an automated counting of oxytocin cells in the entire paraventricular nucleus of the hypothalamus of Magel2tm1.Stw and wild-type control mice and found a significant reduction in the caudal part, which represents the parvocellular subdivision. In addition, based on the recent discovery that some astrocytes express the oxytocin receptor (OTR), we performed detailed analysis of astrocyte numbers and morphology in various brain regions, and assessed expression levels of the astrocyte marker glial fibrillary acidic protein, which was significantly decreased in the hypothalamus, but not other brain regions in Magel2tm1.Stw mice. Finally, we analyzed the number of OTR-expressing astrocytes in various brain regions and found a significant reduction in the nucleus accumbens of Magel2tm1.Stw mice, as well as a sex-specific difference in the lateral septum. This study suggests a role for caudal paraventricular nucleus oxytocin neurons as well as OTR-expressing astrocytes in a mouse model of PWS, provides novel information about sex-specific expression of astrocytic OTRs, and presents several new brain regions containing OTR-expressing astrocytes in the mouse brain.


Assuntos
Astrócitos , Hipotálamo , Neuropeptídeos , Ocitocina , Síndrome de Prader-Willi , Animais , Feminino , Masculino , Camundongos , Astrócitos/metabolismo , Modelos Animais de Doenças , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Ocitocina/metabolismo , Síndrome de Prader-Willi/metabolismo , Receptores de Ocitocina/metabolismo
2.
PLoS Genet ; 16(11): e1009106, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33151932

RESUMO

Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.


Assuntos
Doença de Hirschsprung/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Simulação por Computador , ATPases Transportadoras de Cobre/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Lactente , Masculino , Camundongos , Proteínas Inibidoras de STAT Ativados/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sequenciamento do Exoma
4.
Am J Hum Genet ; 100(6): 907-925, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575647

RESUMO

Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.


Assuntos
Cromatina/metabolismo , Haploinsuficiência/genética , Deficiência Intelectual/genética , Transcrição Gênica , Fator de Transcrição YY1/genética , Acetilação , Adolescente , Sequência de Bases , Pré-Escolar , Imunoprecipitação da Cromatina , Estudos de Coortes , Elementos Facilitadores Genéticos/genética , Feminino , Ontologia Genética , Haplótipos/genética , Hemizigoto , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Masculino , Metilação , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Ligação Proteica/genética , Domínios Proteicos , Fator de Transcrição YY1/química
6.
Mol Cell ; 59(6): 956-69, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26365382

RESUMO

Endosomal protein recycling is a fundamental cellular process important for cellular homeostasis, signaling, and fate determination that is implicated in several diseases. WASH is an actin-nucleating protein essential for this process, and its activity is controlled through K63-linked ubiquitination by the MAGE-L2-TRIM27 ubiquitin ligase. Here, we show that the USP7 deubiquitinating enzyme is an integral component of the MAGE-L2-TRIM27 ligase and is essential for WASH-mediated endosomal actin assembly and protein recycling. Mechanistically, USP7 acts as a molecular rheostat to precisely fine-tune endosomal F-actin levels by counteracting TRIM27 auto-ubiquitination/degradation and preventing overactivation of WASH through directly deubiquitinating it. Importantly, we identify de novo heterozygous loss-of-function mutations of USP7 in individuals with a neurodevelopmental disorder, featuring intellectual disability and autism spectrum disorder. These results provide unanticipated insights into endosomal trafficking, illuminate the cooperativity between an ubiquitin ligase and a deubiquitinating enzyme, and establish a role for USP7 in human neurodevelopmental disease.


Assuntos
Transtorno do Espectro Autista/enzimologia , Endossomos/metabolismo , Deficiência Intelectual/enzimologia , Proteínas dos Microfilamentos/metabolismo , Ubiquitina Tiolesterase/fisiologia , Adolescente , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Feminino , Células HCT116 , Haploinsuficiência , Humanos , Hipotálamo/metabolismo , Deficiência Intelectual/genética , Masculino , Neurônios/enzimologia , Proteínas Nucleares/metabolismo , Transporte Proteico , Proteólise , Deleção de Sequência , Peptidase 7 Específica de Ubiquitina , Ubiquitinação
7.
Am J Med Genet A ; 167A(9): 2162-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25943046

RESUMO

Disorders of carnitine biosynthesis have recently been associated with neurodevelopmental syndromes such as autism spectrum disorder (ASD). A 4-year-old male with autism and two episodes of neurodevelopmental regression was identified to have a mutation in the TMLHE gene, which encodes the first enzyme in the carnitine biosynthesis pathway, and concurrent carnitine deficiency. Following carnitine supplementation, the patient's regression ended, and the boy started gaining developmental milestones. This case report suggests that deficits in carnitine biosynthesis may be responsible for some cases of regression in individuals with ASD, and that testing for the respective biochemical pathway should be considered. Furthermore, this case suggests that carnitine supplementation may be useful in treating (and potentially preventing) regressive episodes in patients with carnitine deficiency. Further work to better define the role of disorders of carnitine biosynthesis in autism spectrum disorder is warranted.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Cardiomiopatias/genética , Carnitina/deficiência , Hiperamonemia/genética , Doenças Musculares/genética , Carnitina/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Pré-Escolar , Suplementos Nutricionais , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA