Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phytomedicine ; 124: 155263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181532

RESUMO

BACKGROUND: Anomalous activation of NF-κB signaling is associated with many inflammatory disorders, such as ulcerative colitis (UC) and acute lung injury (ALI). NF-κB activation requires the ubiquitination of receptor-interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO). Therefore, inhibition of ubiquitation of RIP1 and NEMO may serve as a potential approach for inhibiting NF-κB activation and alleviating inflammatory disorders. PURPOSE: Here, we identified arteannuin B (ATB), a sesquiterpene lactone found in the traditional Chinese medicine Artemisia annua that is used to treat malaria and inflammatory diseases, as a potent anti-inflammatory compound, and then characterized the putative mechanisms of its anti-inflammatory action. METHODS: Detections of inflammatory mediators and cytokines in LPS- or TNF-α-stimulated murine macrophages using RT-qPCR, ELISA, and western blotting, respectively. Western blotting, CETSA, DARTS, MST, gene knockdown, LC-MS/MS, and molecular docking were used to determine the potential target and molecular mechanism of ATB. The pharmacological effects of ATB were further evaluated in DSS-induced colitis and LPS-induced ALI in vivo. RESULTS: ATB effectively diminished the generation of NO and PGE2 by down-regulating iNOS and COX2 expression, and decreased the mRNA expression and release of IL-1ß, IL-6, and TNF-α in LPS-exposed RAW264.7 macrophages. The anti-inflammatory effect of ATB was further demonstrated in LPS-treated BMDMs and TNF-α-activated RAW264.7 cells. We further found that ATB obviously inhibited NF-κB activation induced by LPS or TNF-α in vitro. Moreover, compared with ATB, dihydroarteannuin B (DATB) which lost the unsaturated double bond, completely failed to repress LPS-induced NO release and NF-κB activation in vitro. Furthermore, UBE2D3, a ubiquitin-conjugating enzyme, was identified as the functional target of ATB, but not DATB. UBE2D3 knockdown significantly abolished ATB-mediated inhibition on LPS-induced NO production. Mechanistically, ATB could covalently bind to the catalytic cysteine 85 of UBE2D3, thereby inhibiting the function of UBE2D3 and preventing ubiquitination of RIP1 and NEMO. In vivo, ATB treatment exhibited robust protective effects against DSS-induced UC and LPS-induced ALI. CONCLUSION: Our findings first demonstrated that ATB exerted anti-inflammatory functions by repression of NF-κB pathway via covalently binding to UBE2D3, and raised the possibility that ATB could be effective in the treatment of inflammatory diseases and other diseases associated with abnormal NF-κB activation.


Assuntos
Artemisia annua , Artemisininas , Colite Ulcerativa , Animais , Camundongos , NF-kappa B/metabolismo , Enzimas de Conjugação de Ubiquitina , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Lactonas , Inflamação/metabolismo
2.
Int Immunopharmacol ; 125(Pt A): 111079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149576

RESUMO

Sepsis is a life-threatening organ dysfunction associated with macrophage overactivation. Targeted therapy against macrophages is considered a promising strategy for sepsis treatment. Mollugin (MLG), a compound extracted from traditional Chinese medicine Rubia cordifolia L., possesses anti-tumor and anti-inflammatory activities. This study aimed to investigate the anti-inflammatory effects and mechanisms of MLG in macrophages and its therapeutic role in CLP-induced sepsis in mice. The results demonstrated that MLG downregulated the inflammatory response induced by LPS or tumor necrosis factor α (TNF-α) in macrophages. Mechanistically, MLG suppressed the phosphorylation of TAK1, the upstream modulator of IKKα/ß and MAPKs, thereby inhibiting the pro-inflammatory signaling transduction of NF-κB and MAPKs. Additionally, MLG also activated the Nrf2 antioxidant pathway, reducing intracellular reactive oxygen species. CETSA and molecular docking analyses revealed that MLG could effectively bind to TAK1 and Keap1, which may be involved in the inhibition of TAK1- NF-κB/MAPKs and activation of Nrf2 mediated by MLG. Animal study demonstrated that MLG ameliorated inflammatory injury of lung and liver in CLP-induced sepsis mice probably by reducing the levels of pro-inflammatory cytokines. Therefore, our study suggests that bi-directional roles of MLG in improving sepsis via blocking the TAK1-NF-κB/MAPKs and activating Nrf2 pathways, indicating its potential as a promising candidate drug for sepsis treatment.


Assuntos
NF-kappa B , Sepse , Camundongos , Animais , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento Molecular , Inflamação/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/efeitos adversos , Sepse/tratamento farmacológico , Sepse/metabolismo , Lipopolissacarídeos/farmacologia
3.
Int Immunopharmacol ; 124(Pt B): 110965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741124

RESUMO

Isolinderalactone is the main sesquiterpene lactone isolated from Lindera aggregata, a traditional Chinese medicine widely used to treat pain and inflammation. Although isolinderalactone has been demonstrated to possess anti-cancer effect, its anti-inflammatory activity and underlying mechanism has not been well characterized. Herein, isolinderalactone was able to significantly inhibit the production of NO and PGE2 by reducing the expressions of iNOS and COX2 in LPS-stimulated RAW264.7 macrophages and BMDMs, and decreased the mRNA levels of IL-1ß, IL-6, and TNF-α in LPS-induced RAW264.7 cells. In vivo, isolinderalactone effectively alleviated LPS-induced acute lung injury (ALI), which manifested as reduction in pulmonary inflammatory infiltration, myeloperoxidase activity, and production of PGE2, IL-1ß, IL-6, TNF-α, and malondialdehyde. Furthermore, isolinderalactone inhibited phosphorylation of IKKα/ß, phosphorylation and degradation of IκBα, and nuclear translocation of NF-κB p65, thereby blocking NF-κB pro-inflammatory pathway. Meanwhile, isolinderalactone reduced the intracellular ROS through promoting the activation of Nrf2-HMOX1 antioxidant axis. By using drug affinity responsive target stability assay and molecular docking, isolinderalactone was found to covalently interact with IKKα/ß and Keap1, which may contribute to its anti-inflammatory action. Additionally, a thiol donor ß-mercaptoethanol significantly abolished isolinderalactone-mediated anti-inflammatory action in vitro, indicating the crucial role of the unsaturated lactone of isolinderalactone on its anti-inflammatory effects. Taken together, isolinderalactone protected against LPS-induced ALI in mice, which may be associated with its inhibition of NF-κB pathway and activation of Nrf2 signaling in macrophages.


Assuntos
Lesão Pulmonar Aguda , Sesquiterpenos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/farmacologia , Quinase I-kappa B/metabolismo , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lactonas/farmacologia , Lactonas/uso terapêutico , Lactonas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
4.
Phytother Res ; 37(10): 4587-4606, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37353982

RESUMO

Ferroptosis, an iron-dependent cell death characterized by lethal lipid peroxidation, is involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, ferroptosis inhibition represents an attractive strategy for COPD therapy. Herein, we identified natural flavonoid scutellarein as a potent ferroptosis inhibitor for the first time, and characterized its underlying mechanisms for inhibition of ferroptosis and COPD. In vitro, the anti-ferroptotic activity of scutellarein was investigated through CCK8, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and transmission electron microscope (TEM). In vivo, COPD was induced by lipopolysaccharide (LPS)/cigarette smoke (CS) and assessed by changes in histopathological, inflammatory, and ferroptotic markers. The mechanisms were investigated by RNA-sequencing (RNA-seq), electrospray ionization mass spectra (ESI-MS), local surface plasmon resonance (LSPR), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and molecular dynamics. Our results showed that scutellarein significantly inhibited Ras-selective lethal small molecule (RSL)-3-induced ferroptosis and mitochondria injury in BEAS-2B cells, and ameliorated LPS/CS-induced COPD in mice. Furthermore, scutellarein also repressed RSL-3- or LPS/CS-induced lipid peroxidation, GPX4 down-regulation, and overactivation of Nrf2/HO-1 and JNK/p38 pathways. Mechanistically, scutellarein inhibited RSL-3- or LPS/CS-induced Fe2+ elevation through directly chelating Fe2+ . Moreover, scutellarein bound to the lipid peroxidizing enzyme arachidonate 15-lipoxygenase (ALOX15), which resulted in an unstable state of the catalysis-related Fe2+ chelating cluster. Additionally, ALOX15 overexpression partially abolished scutellarein-mediated anti-ferroptotic activity. Our findings revealed that scutellarein alleviated COPD by inhibiting ferroptosis via directly chelating Fe2+ and interacting with ALOX15, and also highlighted scutellarein as a candidate for the treatment of COPD and other ferroptosis-related diseases.


Assuntos
Apigenina , Ferroptose , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Lipopolissacarídeos , Doença Pulmonar Obstrutiva Crônica/patologia , Quelantes de Ferro , Ferro
5.
Environ Geochem Health ; 45(7): 5323-5341, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37131113

RESUMO

Dashan Village area is one of the representative areas in China with high selenium concentration in the natural environment. A total of 133 topsoil samples have been collected in the Dashan Village area to explore the potential toxic elements (PTEs) background concentrations in soils under different land-use types for a comprehensive PTEs risk assessment (arsenic, cadmium, chromium, copper, mercury, nickel, lead, selenium and zinc). The results show that the geometric mean concentrations of As, Cr, Cu, Hg, Ni, Pb, Se and Zn found in the soil of the Dashan Village area were lower than the control standard for soil contamination risk in agricultural land. However, the geometric mean concentrations of Cd exceeded their corresponding standard values. For different land-use types, geometric mean concentrations of As, Cd, Cu, Hg, Ni and Pb in the arable soils were higher than in woodland soils and tea garden soils. Based on the potential ecological risk assessment, the woodland, arable and tea garden were at low-risk levels. Cadmium posed the highest ecological risk, while the other PTEs were of low risk in soils. Multiple statistical analyses and geostatistical analysis indicated that the concentrations of Cr, Ni, Pb, Cu, Zn and Se originated mainly from natural sources, while the concentrations of Cd, As and Hg could be influenced by anthropogenic activities. These results provide scientific support for the safe utilization and ecological sustainability of selenium-rich land resources.


Assuntos
Mercúrio , Metais Pesados , Selênio , Poluentes do Solo , Solo , Metais Pesados/toxicidade , Metais Pesados/análise , Cádmio/análise , Selênio/análise , Cobre/análise , Chumbo/análise , Mercúrio/análise , Medição de Risco , China , Chá , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Monitoramento Ambiental/métodos
6.
Front Pharmacol ; 13: 969827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935864

RESUMO

Exercise-induced fatigue is a non-pathological fatigue and indicated by a reduction of muscle performance that is caused by excessive physical activity. It seriously affects the daily lives of people, in particular athletes, military personnel, and manual laborers. In recent years, increasing attention has been paid to improving the adverse effect of exercise-induced fatigue on people's daily activities. Thus, studies and applications of traditional Chinese medicines (TCMs) in relieving exercise-induced fatigue have become the focus because of their good curative effects with fewer side effects. This review aims to document and summarize the critical and comprehensive information about the biological processes of exercise-induced fatigue, and to know the types of TCMs, their active components, and possible molecular mechanisms in alleviating exercise-induced fatigue. The peripheral and central mechanisms that cause exercise-induced fatigue have been summarized. A total of 47 exercise-induced fatigue relief TCMs have been collected, mostly including the types of visceral function regulation and emotional adjustment TCMs. Polysaccharides, terpenes, flavonoids/polyphenols are demonstrated to be the major bioactive components. The underlying molecular mechanisms are mainly related to the improvement of energy metabolism, elimination of excess metabolites, inhibition of oxidative stress and inflammatory response, regulation of HPA axis and neurotransmitters. Although current results are obtained mostly from animal models, the clinic trials are still insufficient, and a very few TCMs have been reported to possess potential hepatotoxicity. These findings still offer great reference value, and the significant efficacy in relieving exercise-induced fatigue is impossible to ignore. This review is expected to give insights into the research and development of new TCMs-derived drugs and health care products in relieving exercise-induced fatigue.

7.
Front Pharmacol ; 13: 817596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321327

RESUMO

Dehydrocostus lactone (DCL) is a major sesquiterpene lactone isolated from Aucklandia lappa Decne, a traditional Chinese herbal medicine that used to treat gastrointestinal diseases. This study aimed to examine the therapeutic effects of DCL on dextran sulfate sodium (DSS)-induced colitis with a focus on identifying the molecular mechanisms involved in DCL-mediated anti-inflammatory activity in macrophages. First, oral administration of DCL (5-15 mg/kg) not only ameliorated symptoms of colitis and colonic barrier injury, but also inhibited the expression of proinflammatory cytokines and myeloperoxidase in colon tissues in DSS-challenged mice. Furthermore, DCL also exhibited significant anti-inflammatory activity in LPS/IFNγ-stimulated RAW264.7 macrophages. Importantly, DCL significantly suppressed the phosphorylation and degradation of IκBα and subsequent NF-κB nuclear translocation, and enhanced the nuclear accumulation of Nrf2 in LPS/IFNγ-treated RAW264.7 cells. Mechanistically, DCL could directly interact with IKKα/ß and Keap1, thereby leading to the inhibition of NF-κB signalling and the activation of Nrf2 pathway. Furthermore, DCL-mediated actions were abolished by dithiothreitol, suggesting a thiol-mediated covalent linkage between DCL and IKKα/ß or Keap1. These findings demonstrated that DCL ameliorates colitis by targeting NF-κB and Nrf2 signalling, suggesting that DCL may be a promising candidate in the clinical treatment of colitis.

8.
Front Pharmacol ; 12: 531325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967742

RESUMO

Endotoxemia is characterized by initial uncontrollable inflammation, terminal immune paralysis, significant cell apoptosis and tissue injury, which can aggravate or induce multiple diseases and become one of the complications of many diseases. Therefore, anti-inflammatory and anti-apoptotic therapy is a valuable strategy for the treatment of endotoxemia-induced tissue injury. Traditional Chinese medicine exhibits great advantages in the treatment of endotoxemia. In this review, we have analyzed and summarized the active ingredients and their metabolites of Sanhuang Xiexin Decoction, a famous formula in endotoxemia therapy. We then have summarized the mechanisms of Sanhuang Xiexin Decoction against endotoxemia and its mediated tissue injury. Furthermore, silico strategy was used to evaluate the anti-apoptotic mechanism of anisodamine, a well-known natural product that widely used to improve survival in patients with septic shock. Finally, we also have summarized other anti-apoptotic natural products as well as their therapeutic effects on endotoxemia and its mediated tissue injury.

9.
Int Immunopharmacol ; 84: 106567, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32413737

RESUMO

Costunolide (CTL) is the major sesquiterpene lactone from Radix Aucklandiae, which is widely used on the treatment of gastrointestinal diseases. However, the therapeutic effect of costunolide in ulcerative colitis (UC) is still unknown. Herein, we sought to evaluate the therapeutic effects and underlying mechanisms of costunolide on UC. ICR mice were intraperitoneally administered with costunolide (10 mg/kg) for 10 days. Beginning on the 4th day of drug administration, acute colitis was induced by feeding 4% dextran sulfate sodium (DSS) for additional 7 days. Costunolide markedly attenuated DSS-induced body weight loss, colonic shortening, elevation in disease activity index, and pathological damage of colon, and decreased the number of CD4+ T cells in colon tissues. Furthermore, costunolide significantly inhibited myeloperoxidase (MPO) activity and nitric oxide (NO) level in colon tissues in DSS-exposed mice. Meanwhile, costunolide also suppressed DSS-induced expression of induced nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in both mRNA and protein levels. Mechanistically, costunolide repressed the phosphorylation of nuclear factor kappa-B (NF-κB) p65 and degradation of inhibitor of NF-κB (IκB), as well as the excessive activation of signal transducers and activators of transcription 1/3 (STAT1/3) and serine/threonine protein kinase Akt (Akt) in colon tissues in DSS-challenged mice. These findings successfully demonstrated that costunolide ameliorated DSS-induced murine acute colitis by suppressing inflammation through inactivation of NF-κB, STAT1/3, and Akt pathways. These results also suggested that costunolide may be a potential therapeutic agent for the treatment of acute UC.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Doença Aguda , Animais , Anti-Inflamatórios/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Citocinas/genética , Citocinas/imunologia , Sulfato de Dextrana , Masculino , Camundongos Endogâmicos ICR , NF-kappa B/imunologia , Óxido Nítrico/imunologia , Peroxidase/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT3/imunologia , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
Sci Total Environ ; 708: 134596, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31780158

RESUMO

In this study, the effects of nitrogen and phosphorus supply on biodiesel production from Scenedesmus obliquus with glucose as the carbon source were investigated. It was found that sufficient phosphorus could further improve biodiesel production under nitrogen starvation. S. obliquus was cultivated in soybean processing wastewater. The removal efficiencies of carbon oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) after 8-day cultivation were 72%, 95%, and 54%, respectively. Moreover, the fatty acid productivity after eight-day cultivation reached as high as 99.3 mg·L-1·d-1, which was 1.15 times higher than the highest efficiency using a glucose culture. This result was due to two naturally-formed stages occurring with sufficient phosphorus: nitrogen sufficiency stage for biomass and nitrogen starvation stage for lipid accumulation. It verified the conclusion of the roles of nitrogen and phosphorus obtained in the glucose culture and provided an economic and environmentally friendly choice for biodiesel production with efficient soybean wastewater treatment.


Assuntos
Microalgas , Scenedesmus , Biocombustíveis , Biomassa , Glucose , Nitrogênio , Fósforo , Glycine max , Águas Residuárias
11.
Phytother Res ; 33(8): 2102-2117, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31209984

RESUMO

The total flavonoids from sea buckthorn (TFSB) exhibit a potent anti-inflammatory activity; however, the effect of TFSB on respiratory inflammatory disease is not fully known. The present study evaluated the potential of TFSB to prevent airway inflammation and the underlying mechanism. The results showed that TFSB remarkably inhibited lipopolysaccharide/cigarette smoke extract (LPS/CSE)-induced expression of IL-1ß, IL-6, CXCL1, and MUC5AC at both mRNA and protein levels in HBE16 bronchial epithelial cells. TFSB also decreased the production of PGE2 through inhibition the expression of COX2 in LPS/CSE-stimulated HBE16 cells. Furthermore, bronchoalveolar fluid and histological analyses revealed that LPS/cigarette smoke exposure-induced elevated cell numbers of neutrophils and macrophages in bronchoalveolar fluid, inflammatory cell infiltration, and airway remodeling were remarkably attenuated by TFSB in mice. Immunohistochemical results also confirmed that TFSB decreased the expression of IL-1ß, IL-6, COX2, CXCL1, and MUC5AC in LPS/CS-exposed mice. Mechanistically, TFSB blocked LPS/CSE-induced activation of ERK, Akt, and PKCα. Molecular docking further confirmed that the main components in TFSB including quercetin and isorhamnetin showed potent binding affinities to MAPK1 and PIK3CG, two upstream kinases of ERK and Akt, respectively. In summary, TFSB exerts a potent protective effect against LPS/CS-induced airway inflammation through inhibition of ERK, PI3K/Akt, and PKCα pathways, suggesting that TFSB may be a novel therapeutic agent for respiratory diseases.


Assuntos
Bronquite Crônica/tratamento farmacológico , Flavonoides/química , Hippophae/química , Inflamação/tratamento farmacológico , Fumaça/efeitos adversos , Fumar/tratamento farmacológico , Animais , Bronquite Crônica/patologia , Humanos , Lipopolissacarídeos/farmacologia , Camundongos
12.
Phytomedicine ; 59: 152759, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004883

RESUMO

BACKGROUND: Pseudolaric acid B (PAB), a diterpene acid isolated from the root bark of Pseudolarix kaempferi, exhibits a potent anti-cancer activity in a variety of tumor cells. PURPOSE: The present study was designed to evaluate the anti-cancer effects of PAB on hepatocellular carcinoma (HCC) cell lines in vitro, and to explore the underlying mechanism. METHODS: The anti-proliferative activity of PAB on HCC cells were assessed via sulforhodamine B staining, colony formation, cell cycle analysis, respectively. Apoptosis was detected using Annexin V/propidium iodide double staining and diamidino-phenyl-indole staining, respectively. Protein expression regulated by PAB treatment was tested by western blotting. RESULTS: The present results showed that PAB significantly inhibited the proliferation of HepG2, SK-Hep-1, and Huh-7 HCC cell lines in vitro with IC50 values of 1.58, 1.90, and 2.06 µM, respectively. Furthermore, PAB treatment repressed the colony formation in HepG2, SK-Hep-1, and Huh-7 HCC cell lines. Flow cytometry analysis revealed that PAB caused an obvious cell cycle arrest in G2/M phase and induced apoptosis with the induction of p21, Bax, cleaved-caspase-3, and cleaved-PARP in human HepG2 and SK-Hep-1 cells. Mechanistically, PAB treatment down-regulated the phosphorylation of STAT3, ERK1/2, and Akt. Moreover, abnormal GSK-3ß/ß-catenin signaling in HepG2 cells was remarkably suppressed by PAB treatment. Finally, proliferation markers including cyclin D1 and c-Myc, and anti-apoptosis proteins such as Bcl-2 and survivin were also down-regulated by PAB treatment in HepG2 cells. CONCLUSION: Taken together, our results suggest that PAB exerts anti-cancer activity in HCC cells through inhibition of STAT3, ERK1/2, Akt, and GSK-3ß/ß-catenin carcinogenic signaling pathways, and may be used as a phytomedicine in the treatment of HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Diterpenos/farmacologia , Neoplasias Hepáticas/metabolismo , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Hep G2 , Humanos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pinaceae/química , Transdução de Sinais/efeitos dos fármacos
13.
Nat Prod Res ; 33(19): 2856-2859, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30422013

RESUMO

A new abietane diterpenoid glycoside, ajugaside B (1), along with three known compounds (2-4), were isolated from the whole plants of Ajuga ovalifolia var. calantha. The structure of the new compound (1) was elucidated by means of spectroscopic analyses (HRESIMS, IR, NMR and ECD). All of the isolated compounds were evaluated for their antitumor activities against MGC803, MCF-7, A549, HT29 and HepG2 cell lines. Compounds 3-4 showed moderate cytotoxicity against all tested cell lines with IC50 values of 1.8-7.3 µM.


Assuntos
Abietanos/farmacologia , Ajuga/química , Antineoplásicos Fitogênicos/farmacologia , Abietanos/química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Glicosídeos/química , Glicosídeos/farmacologia , Humanos , Estrutura Molecular , Extratos Vegetais/química
14.
Mol Genet Genomics ; 294(2): 409-416, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30483896

RESUMO

Thiamine pyrophosphokinase (TPK) converts thiamine (vitamin B1) into thiamine pyrophosphate (TPP), an essential cofactor for many important enzymes. TPK1 mutations lead to a rare disorder: episodic encephalopathy type thiamine metabolism dysfunction. Yet, the molecular mechanism of the disease is not entirely clear. Here we report an individual case of episodic encephalopathy, with familial history carrying a novel homozygous TPK1 mutation (p.L28S). The L28S mutation leads to reduced enzymatic activity, both in vitro and in vivo, without impairing thiamine binding and protein stability. Thiamine supplementation averted encephalopathic episodes and restored the patient's developmental progression. Biochemical characterization of reported TPK1 missense mutations suggested reduced thiamine binding as a new disease mechanism. Importantly, many disease mutants are directly or indirectly involved in thiamine binding. Thus, our study provided a novel rationale for thiamine supplementation, so far the major therapeutic intervention in TPK deficiency.


Assuntos
Encefalopatias/genética , Tiamina Pirofosfoquinase/deficiência , Tiamina Pirofosfoquinase/genética , Tiamina/genética , Sequência de Aminoácidos/genética , Encefalopatias/fisiopatologia , Pré-Escolar , China , Feminino , Homozigoto , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Ligação Proteica , Estabilidade Proteica , Tiamina Pirofosfoquinase/química , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
15.
Drug Des Devel Ther ; 12: 2695-2706, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214157

RESUMO

BACKGROUND: Coptis chinensis Franch is extensively used in traditional Chinese medicine to treat diabetes and dementia. Alkaloids are the main active ingredients of C. chinensis. PURPOSE: This study was designed to probe the effects and possible mechanisms of the total alkaloids from C. chinensis (TAC) on cognitive deficits in type 2 diabetic rats. METHODS: Cognitive deficits were induced in rats by streptozotocin and high glucose/high fat diet. After treatment with TAC (80, 120, and 180 mg/kg) for 24 weeks, the behavioral parameters of each rat were assessed by Morris water maze and Y-maze tests. The indexes of glucose and lipid metabolism, pathological changes of brain tissue, and the phosphorylation levels of insulin signaling related proteins were also evaluated. RESULTS: The type 2 diabetic rats showed significantly elevated levels of fasting blood glucose, glycosylated hemoglobin and glycosylated serum protein, as well as apolipoprotein B, free fatty acid, triglyceride and total cholesterol but decreased the content of apolipoprotein A1, and TAC treatment dose-dependently reversed these abnormal changes. Furthermore, the behavioral results showed that TAC alleviated the cognitive deficits in type 2 diabetic rats. Moreover, immunohistochemical and histopathologic examinations indicated that the diabetic rats showed significant Aß deposition, and neuronal damage and loss, which can be reversed by TAC treatment. The western blot results showed that TAC treatment markedly increased the phosphorylation of IRS, PI3K, and Akt, and inhibited the overactivation of GSK3ß in the brain of type 2 diabetic rats. CONCLUSION: These findings conclude that TAC prevents diabetic cognitive deficits, most likely by ameliorating the disorder of glucose and lipid metabolism, attenuating Aß deposition, and enhancing insulin signaling.


Assuntos
Alcaloides/farmacologia , Alcaloides/uso terapêutico , Disfunção Cognitiva/complicações , Disfunção Cognitiva/prevenção & controle , Coptis/química , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Cognição/efeitos dos fármacos , Disfunção Cognitiva/patologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Masculino , Medicina Tradicional Chinesa , Ratos , Ratos Wistar
16.
Phytother Res ; 32(8): 1521-1529, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29672953

RESUMO

Astragalus polysaccharides (APS), one of the major active components in Astragalus membranaceus, is an effective immunomodulator used in the treatment of immunological diseases in China. However, the anti-infective action and mechanism of APS is not fully known. In the present study, we found that APS induced the expression of human cathelicidin antimicrobial peptide LL-37, a key host anti-infective molecule, in both mRNA and protein levels in respiratory epithelial cells HBE16 and A549. Furthermore, the lysate and supernatant from APS-treated HBE16 cells both exhibited an obvious antibacterial action, which was partially neutralizated by LL-37 monoclonal antibody. In addition, APS also significantly elevated the phosphorylation of p38 MAPK and JNK and caused the degradation of IκBα. Specific inhibitors of p38 MAPK, JNK, or NF-κB obviously abolished APS-induced LL-37 synthesis and antibacterial activity, respectively. Taken together, our results confirmed the enhancement of APS on LL-37 induction and antibacterial action in respiratory epithelial cells, which may be attributed to activation of p38 MAPK/JNK and NF-κB pathways. Furthermore, these results also supported the clinical application of APS in the treatment of infectious diseases.


Assuntos
Astragalus propinquus/química , Catelicidinas/biossíntese , Células Epiteliais/efeitos dos fármacos , Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Polissacarídeos/farmacologia , Fator de Transcrição RelA , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Appl Microbiol Biotechnol ; 102(13): 5763-5773, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29671003

RESUMO

This study systematically examined the effect of nitrogen and phosphorous stress on the formation of linoleic acid (LA), arachidonic acid (ARA), and eicosapentaenoic acid (EPA) in Porphyridium cruentum gy-h56. P. cruentum was cultivated in six different media conferring different conditions of nitrogen (N) sufficiency/deprivation and phosphorous (P) sufficiency/limitation/deprivation. Over a 16-day cultivation process, the dry-weight content, proportion of total fatty acids (TFAs), and the concentration in the medium of linoleic acid (LA) were greatly improved by a maximum of 2.5-, 1.6-, and 1.1-fold, respectively, under conditions of N or P deprivation compared with N and P sufficiency. In contrast, levels of EPA or ARA were not enhanced under N or P stress conditions. Additionally, the results showed that N deprivation weakened the impact of P deficiency on the content and proportions of LA and EPA, while P deprivation enhanced the impact of N starvation on the content and proportions of LA and EPA. The conditions of N sufficiency and P deprivation (N+P-) were the optimal conditions for the production of LA, while the optimal conditions for EPA, ARA, and TFAs production were N sufficiency and P limitation (N+P-lim). This study suggests the potential application of combining N removal from saline wastewater with the production of LA, ARA, EPA, and biodiesel.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Microbiologia Industrial , Nitrogênio/metabolismo , Fósforo/metabolismo , Porphyridium/fisiologia , Estresse Fisiológico , Águas Residuárias/química , Ácido Araquidônico/biossíntese , Biocombustíveis , Ácido Eicosapentaenoico/biossíntese , Ácido Linoleico/biossíntese , Nitrogênio/isolamento & purificação , Nitrogênio/farmacologia , Fósforo/farmacologia , Porphyridium/efeitos dos fármacos
18.
Phytochemistry ; 147: 125-131, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29306798

RESUMO

The investigation of the fruits of Solanum nigrum led to the isolation of four previously undescribed steroidal alkaloids, named solanine A, 7α-OH khasianine, 7α-OH solamargine and 7α-OH solasonine, together with six known ones. The structures of the isolated compounds were elucidated unambiguously by spectroscopic data analyses and chemical methods. Solanine A represents an unusual steroidal alkaloid with an unprecedented 6/5/6/5/5/6 hexacyclic ring system, and its structure was confirmed by X-ray single crystal diffraction analysis. Compounds 2-4 were rare naturally occurring steroidal alkaloid glycosides bearing a hydroxyl group at C-7 position. Solanine A showed the most potent inhibitory activity against the LPS-induced NO production in murine RAW264.7 macrophages with an IC50 value of 3.85 ± 0.71 µM and significant cytotoxicity against MGC803, HepG2 and SW480 cancer cell lines with IC50 values of 6.00 ± 0.52 µM, 9.25 ± 0.49 µM and 6.23 ± 0.26 µM, respectively.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/química , Frutas/química , Solanum nigrum/química , Esteroides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Medicina Tradicional Chinesa , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Células RAW 264.7 , Esteroides/química , Esteroides/isolamento & purificação , Relação Estrutura-Atividade
19.
Pharm Biol ; 56(1): 649-657, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31070535

RESUMO

CONTEXT: Ajuga ovalifolia Bur. et Franch. var. calantha (Diels) C. Y. Wu et C. Chen (Labiatae), a traditional Chinese medicine, has been used to treat several inflammatory diseases. OBJECTIVE: To assess the anti-inflammatory activity of ajudecumin A isolated from Ajuga ovalifolia var. calantha, and its possible mechanisms. MATERIALS AND METHODS: Lipopolysaccharide (LPS, 0.5 µg/mL)-stimulated RAW264.7 macrophages were used to assess the anti-inflammatory activity of ajudecumin A (1-40 µM) in vitro. Nitric oxide levels were evaluated by Griess reagent. The mRNA levels of iNOS, COX-2, TNF-α, IL-1ß and IL-6 were determined using qRT-PCR. Phosphorylation of ERK, JNK, p38 MAPK and IκBα were detected by western Blot. To further assess the anti-inflammatory of ajudecumin A in vivo, mice were oral treated with ajudecumin A (10 mg/kg) or dexamethasone (0.25 mg/kg, positive control) for 5 days before administration of carrageenan or xylene. Paw and ear edema were then measured, respectively. RESULTS: Ajudecumin A (10-40 µM) decreased LPS-induced nitric oxide production with an IC50 value of 16.19 µM. Ajudecumin A (20 and 40 µM) also attenuated cell spreading and formation of pseudopodia-like structures, and decreased the mRNA levels of iNOS (55.23-67.04%, p < 0.001), COX-2 (57.58-70.25%, p < 0.001), TNF-α (53.75-58.94%, p < 0.01-0.001), IL-1ß (79.41-87.85%, p < 0.001) and IL-6 (54.26-80.52%, p < 0.01-0.001) in LPS-activated RAW264.7 cells. Furthermore, ajudecumin A suppressed LPS-induced phosphorylation of ERK, p38 MAPK, and IκBα, as well as IκBα degradation (p < 0.05-0.001). Finally, ajudecumin A (10 mg/kg) attenuated carrageenan- and xylene-induced inflammation in mice by about 28 and 24%, respectively. DISCUSSION AND CONCLUSIONS: Ajudecumin A exhibited a potent anti-inflammatory activity in vitro and in vivo through inhibition on NF-κB and ERK/p38 MAPK pathways, suggesting that ajudecumin A may be potentially developed as a lead compound in anti-inflammatory drug discovery.


Assuntos
Ajuga , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Células RAW 264.7
20.
Pharm Biol ; 55(1): 560-570, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27937009

RESUMO

CONTEXT: Pterocephalus hookeri (C. B. Clarke) Hock., a traditional Tibetan herbal medicine rich in glycosides, has been used to treat several diseases including rheumatoid arthritis. OBJECTIVE: To evaluate the anti-arthritic activity of total glycosides from P. hookeri, and its possible mechanisms of action. MATERIALS AND METHODS: Anti-arthritic activity of total glycosides from P. hookeri (oral administration for 30 days at 14-56 mg/kg) was evaluated using paw swelling, arthritis scores and histopathological measurement in adjuvant-induced arthritis (AA) Sprague-Dawley rats. The NF-κB p65 expression in synovial tissues, and serum superoxide dismutase (SOD) activity, malondialdehyde (MDA) and nitric oxide (NO) levels was measured in AA rats, respectively. Further assessment of anti-inflammatory and analgesic activities of these glycosides were carried out using inflammation and hyperalgesia models induced by xylene, carrageenan, agar and acetic acid, respectively. RESULTS: Total glycosides (56 mg/kg) decreased the paw swelling (38.0%, p < 0.01), arthritis scores (25.3%, p < 0.01) and synovial inflammation in AA rats. The glycosides significantly (p < 0.05-0.01) attenuated the inflammation induced by xylene, carrageenan, acetic acid and agar, increased the pain threshold in acetic acid-induced writhing in mice and mechanical stimuli-induced hyperalgia in AA rats. The glycosides (14, 28, 56 mg/kg) also suppressed the NF-κB p65 expression (33.1-78.2%, p < 0.05-0.01), reduced MDA (21.3-35.9%, p < 0.01) and NO (20.3-32.4%, p < 0.05-0.01) levels, respectively, enhanced the SOD activity (7.8%, p < 0.05) at 56 mg/kg in AA rats. DISCUSSION AND CONCLUSION: Our findings confirmed the anti-arthritic property of the total glycosides from P. hookeri, which may be attributed to its inhibition on NF-κB signalling and oxidative stress.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Caprifoliaceae/química , Glicosídeos/farmacologia , Articulações/efeitos dos fármacos , Preparações de Plantas/farmacologia , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Comportamento Animal/efeitos dos fármacos , Biomarcadores/sangue , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/prevenção & controle , Feminino , Adjuvante de Freund , Glicosídeos/isolamento & purificação , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Mediadores da Inflamação/sangue , Articulações/metabolismo , Articulações/patologia , Masculino , Malondialdeído/sangue , Medicina Tradicional Tibetana , Camundongos , Óxido Nítrico/sangue , Limiar da Dor/efeitos dos fármacos , Fitoterapia , Preparações de Plantas/isolamento & purificação , Plantas Medicinais , Ratos Sprague-Dawley , Superóxido Dismutase/sangue , Fatores de Tempo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA