Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Chem Biol Interact ; 365: 110070, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35921950

RESUMO

Thymoquinone, predominant bioactive compound in Nigella sativa L. (N.sativa) oil, may inhibit the activity of cytochrome P450 2C9 (CYP2C9). However, it is not clear whether thymoquinone can affect the pharmacokinetic behavior of warfarin. Thus, we further to investigate the effect of thymoquinone on warfarin 7-hydroxylation activity and to quantitatively evaluate their food-drug interactions (FDIs) potential. Our data demonstrated that thymoquinone could inhibit warfarin 7-hydroxylase activity with IC50 value of 11.35 ± 0.25 µM. The kinetic analysis indicated that thymoquinone exhibited competitive inhibition on warfarin 7-hydroxylation with Ki value of 3.50 ± 0.44 µM. FDIs risk prediction suggested that coadministration of thymoquinone (>18 mg/day) or dietary supplements containing thymoquinone (N.sativa > 1 g/day or N. sativa oil >1 g/day) might influence pharmacokinetic behavior of warfarin. In conclusion, coadministration of thymoquinone or dietary supplements containing thymoquinone in warfarin-treated patients would likely trigger off unexpected potential drug interactions.


Assuntos
Interações Alimento-Droga , Varfarina , Benzoquinonas/farmacologia , Citocromo P-450 CYP2C9/metabolismo , Humanos , Cinética , Varfarina/farmacologia
2.
Front Pharmacol ; 13: 815235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264954

RESUMO

Human UDP-glucuronosyltransferase 1A1 (hUGT1A1) is one of the most essential phase II enzymes in humans. Dysfunction or strong inhibition of hUGT1A1 may result in hyperbilirubinaemia and clinically relevant drug/herb-drug interactions (DDIs/HDIs). Recently, a high-throughput fluorescence-based assay was constructed by us to find the compounds/herbal extracts with strong inhibition against intracellular hUGT1A1. Following screening of over one hundred of herbal products, the extract of Ginkgo biloba leaves (GBL) displayed the most potent hUGT1A1 inhibition in HeLa-UGT1A1 cells (Hela cells overexpressed hUGT1A1). Further investigations demonstrated that four biflavones including bilobetin, isoginkgetin, sciadopitysin and ginkgetin, are key constituents responsible for hUGT1A1 inhibition in living cells. These biflavones potently inhibit hUGT1A1 in both human liver microsomes (HLM) and living cells, with the IC50 values ranging from 0.075 to 0.41 µM in living cells. Inhibition kinetic analyses and docking simulations suggested that four tested biflavones potently inhibit hUGT1A1-catalyzed NHPN-O-glucuronidation in HLM via a mixed inhibition manner, showing the K i values ranging from 0.07 to 0.74 µM. Collectively, our findings uncover the key constituents in GBL responsible for hUGT1A1 inhibition and decipher their inhibitory mechanisms against hUGT1A1, which will be very helpful for guiding the rational use of GBL-related herbal products in clinical settings.

3.
Drug Metab Dispos ; 50(5): 685-693, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34903587

RESUMO

Withaferin A (WA) is a natural steroidal compound used in Ayurvedic medicine in India and elsewhere. Although WA was used as an anticancer reagent for decades, its role in the treatment of liver diseases has only recently been experimentally explored. Here, the effects of WA in the treatment of liver injury, systematic inflammation, and liver cancer are reviewed, and the toxicity and metabolism of WA as well as pharmacological potentials of other extracts from Withania somnifera (W. somnifera) discussed. The pharmacokinetic behaviors of WA are summarized and pharmacokinetic insights into current progress and future opportunities are highlighted. SIGNIFICANCE STATEMENT: This review outlines the current experimental progress of Withaferin A (WA) hepatoprotective activities and highlights gaps in the field. This work also discusses the pharmacokinetics of WA that can be used to guide future studies for the possible treatment of liver diseases with this compound.


Assuntos
Hepatopatias , Withania , Vitanolídeos , Humanos , Hepatopatias/tratamento farmacológico , Ayurveda , Vitanolídeos/farmacocinética , Vitanolídeos/uso terapêutico
4.
FASEB J ; 35(11): e21968, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644426

RESUMO

St. John's wort (SJW), from traditional herbs, activates the pregnane X receptor (PXR), a potential drug target for treating inflammatory bowel disease (IBD). However, how SJW alleviates dextran sodium sulfate (DSS)-induced experimental IBD by activating PXR is unknown. To test this, PXR-humanized, wild-type (WT) and Pxr-null mice, primary intestinal organoids cultures, and the luciferase reporter gene assays were employed. In vivo, a diet supplemented with SJW was found to activate intestinal PXR both in WT and PXR-humanized mice, but not in Pxr-null mice. SJW prevented DSS-induced IBD in PXR-humanized and WT mice, but not in Pxr-null mice. In vitro, hyperforin, a major component of SJW, activated PXR and suppressed tumor necrosis factor (TNF)α-induced nuclear factor (NF) κB translocation in primary intestinal organoids from PXR-humanized mice, but not Pxr-null mice. Luciferase reporter gene assays showed that hyperforin dose-dependently alleviated TNFα-induced NFκB transactivation by activating human PXR in Caco2 cells. Furthermore, SJW therapeutically attenuated DSS-induced IBD in PXR-humanized mice. These data indicate the therapeutic potential of SJW in alleviating DSS-induced IBD in vivo, and TNFα-induced NFκB activation in vitro, dependent on PXR activation, which may have clinical implications for using SJW as a herbal drug anti-IBD treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Hypericum/química , Doenças Inflamatórias Intestinais/tratamento farmacológico , Extratos Vegetais/farmacologia , Receptor de Pregnano X/fisiologia , Animais , Células CACO-2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo
5.
RSC Adv ; 11(17): 10385-10392, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423513

RESUMO

Human catechol-O-methyltransferase (hCOMT) is considered a therapeutic target due to its crucial roles in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs. There are nevertheless few safe and effective COMT inhibitors and there lacks a diversity in structure. To discover novel safe and effective hCOMT inhibitors from herbal products, in this study, 53 herbal products were collected and their inhibitory effects against hCOMT were investigated. Among them, Scutellariae radix (SR) displayed the most potent inhibitory effect on hCOMT with an IC50 value of 0.75 µg mL-1. To further determine specific chemicals as COMT inhibitors, an affinity ultrafiltration coupled with liquid chromatography-mass spectrometry method was developed and successfully applied to identify COMT inhibitors from SR extract. The results demonstrated that scutellarein 2, baicalein 9 and oroxylin A 12 were potent COMT inhibitors, showing a high binding index (>3) and very low IC50 values (32.9 ± 3.43 nM, 37.3 ± 4.32 nM and 18.3 ± 2.96 nM). The results of inhibition kinetics assays and docking simulations showed that compounds 2, 9 and 12 were potent competitive inhibitors against COMT-mediated 3-BTD methylation, and they could stably bind to the active site of COMT. These findings suggested that affinity ultrafiltration allows a rapid identification of natural COMT inhibitors from a complex plant extract matrix. Furthermore, scutellarein 2, baicalein 9 and oroxylin A 12 are potent inhibitors of hCOMT in SR, which could be used as promising lead compounds to develop more efficacious non-nitrocatechol COMT inhibitors for biomedical applications.

6.
Acta Pharm Sin B ; 10(1): 3-18, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993304

RESUMO

Few medications are available for meeting the increasing disease burden of nonalcoholic fatty liver disease (NAFLD) and its progressive stage, nonalcoholic steatohepatitis (NASH). Traditional herbal medicines (THM) have been used for centuries to treat indigenous people with various symptoms but without clarified modern-defined disease types and mechanisms. In modern times, NAFLD was defined as a common chronic disease leading to more studies to understand NAFLD/NASH pathology and progression. THM have garnered increased attention for providing therapeutic candidates for treating NAFLD. In this review, a new model called "multiple organs-multiple hits" is proposed to explain mechanisms of NASH progression. Against this proposed model, the effects and mechanisms of the frequently-studied THM-yielded single anti-NAFLD drug candidates and multiple herb medicines are reviewed, among which silymarin and berberine are already under U.S. FDA-sanctioned phase 4 clinical studies. Furthermore, experimental designs for anti-NAFLD drug discovery from THM in treating NAFLD are discussed. The opportunities and challenges of reverse pharmacology and reverse pharmacokinetic concepts-guided strategies for THM modernization and its global recognition to treat NAFLD are highlighted. Increasing mechanistic evidence is being generated to support the beneficial role of THM in treating NAFLD and anti-NAFLD drug discovery.

7.
Toxicol Lett ; 320: 46-51, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812603

RESUMO

Pterostilbene (PT) is a natural stilbene common in small berries and food supplements, possessing numerous pharmacological activities. However, whether PT can affect the activities of UDP-glucuronosyltransferases (UGT) enzymes remains unclear. The aim of the present study was to investigate the effect of PT on UGT activities and to quantitatively evaluate the food-drug interaction potential due to UGT inhibition. Our data indicated that PT exhibited potent inhibition against HLM, UGT1A6, UGT1A9, UGT2B7, and UGT2B15, moderate inhibition against UGT1A1, UGT1A3, UGT1A8, and UGT2B4, negligible inhibition against UGT1A4, UGT1A7, UGT1A10, and UGT2B17. Further kinetic investigation demonstrated that PT exerted potent noncompetitive inhibition 4-MU glucuronidation by UGT1A9, with IC50 and Ki values of 0.92 µM and 0.52 ± 0.04 µM, respectively. Quantitative prediction study suggested that coadministration of PT supplements at 100 mg/day or higher doses may result in at least a 50% increase in the AUC of drugs predominantly cleared by UGT1A9. Thus, the coadministration of PT supplements and drugs primarily cleared by UGT1A9 may result in potential drug interaction, and precautions should be taken when coadministration of PT supplements and drugs metabolized by UGT1A9.


Assuntos
Suplementos Nutricionais/efeitos adversos , Inibidores Enzimáticos/toxicidade , Interações Alimento-Droga , Glucuronosiltransferase/antagonistas & inibidores , Estilbenos/toxicidade , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Cinética , Taxa de Depuração Metabólica , Desintoxicação Metabólica Fase II , Modelos Biológicos , Medição de Risco , Estilbenos/farmacocinética , UDP-Glucuronosiltransferase 1A
8.
Acta Pharm Sin B ; 9(2): 258-278, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30972276

RESUMO

Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1) is an important conjugative enzyme in mammals that is responsible for the conjugation and detoxification of both endogenous and xenobiotic compounds. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in metabolic disorders of endobiotic metabolism. Therefore, both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have recommended assaying the inhibitory potential of drugs under development on the human UGT1A1 prior to approval. This review focuses on the significance, progress and challenges in discovery and characterization of UGT1A1 inhibitors. Recent advances in the development of UGT1A1 probes and their application for screening UGT1A1 inhibitors are summarized and discussed in this review for the first time. Furthermore, a long list of UGT1A1 inhibitors, including information on their inhibition potency, inhibition mode, and affinity, has been prepared and analyzed. Challenges and future directions in this field are highlighted in the final section. The information and knowledge that are presented in this review provide guidance for rational use of drugs/herbs in order to avoid the occurrence of adverse effects via UGT1A1 inhibition, as well as presenting methods for rapid screening and characterization of UGT1A1 inhibitors and for facilitating investigations on UGT1A1-ligand interactions.

9.
Drug Metab Pharmacokinet ; 30(5): 358-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26320626

RESUMO

Bavachinin (BCI), a major bioactive compound in Chinese herbal Psoralea corylifolia, possesses a wide range of biological activities. In this study, the glucuronidation pathway of BCI was characterized for the first time, by using pooled human liver microsomes (HLM), pooled human intestine microsomes (HIM) and recombinant human UDP-glucosyltransferases (UGTs). One mono-glucuronide was detected in HLM in the presence of uridine-diphosphate glucuronic acid (UDPGA), and it was biosynthesized and well-characterized as BCI-4'-O-glucuronide (BCIG). Reaction phenotyping assay showed that UGT1A1, UGT1A3 and UGT1A8 were involved in BCI-4'-O-glucuronidation, while UGT1A1 and UGT1A8 displayed the higher catalytic ability among all tested UGT isoforms. Kinetic analysis demonstrated that BCI-4'-O-glucuronidation in both HLM and UGT1A1 followed sigmoidal kinetic behaviors and displayed much close Km values (12.4 µM in HLM & 9.7 µM in UGT1A1). Both chemical inhibition assays and correlation analysis demonstrated that UGT1A1 displayed a predominant role in BCI-4'-O-glucuronidation in HLM. Both HIM and UGT1A8 exhibited substrate inhibition at high concentrations, and Km values of HIM and UGT1A8 were 3.6 and 2.3 µM, respectively. Similar catalytic efficiencies were observed for HIM (199.3 µL/min/mg) and UGT1A8 (216.2 µL/min/mg). These findings suggested that UGT1A1 and UGT1A8 were the primary isoforms involved in BCI-4'-O-glucuronidation in HLM, and HIM, respectively.


Assuntos
Flavonoides/farmacocinética , Glucuronosiltransferase/metabolismo , Animais , Estradiol/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Humanos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Isoenzimas/metabolismo , Cinética , Camundongos , Microssomos/metabolismo , Microssomos Hepáticos/metabolismo , Uridina Difosfato Ácido Glucurônico/metabolismo
10.
Drug Metab Pharmacokinet ; 29(2): 135-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24025985

RESUMO

Fraxetin, a major constituent of the traditional medicine plant Fraxinus rhynchophylla Hance (Oleaceae), has been found to possess multiple bioactivities. However, the metabolic pathway(s) of fraxetin in human tissues has not been reported yet. This study aimed to characterize the glucuronidation pathway(s) of fraxetin in human tissues. Fraxetin could be metabolized to two glucuronides in human liver microsomes (HLMs). These two glucuronides were biosynthesized and characterized as 7-O-glucuronide (7-O-G) and 8-O-glucuronide (8-O-G). UGT1A1, -1A6, -1A7, -1A8, -1A9 and -1A10 participated in the formation of 7-O-G, while the formation of 8-O-G was catalyzed selectively by UGT1A6 and UGT1A9. UGT1A9 showed the highest catalytic activities in the formation of 7-O-G and 8-O-G. Both kinetic characterization and inhibition assays demonstrated that UGT1A9 played important roles in fraxetin glucuronidations in HLMs, especially in the formation of the major metabolite 8-O-G. Furthermore, the intrinsic clearance of fraxetin in both human liver microsomes and UGT1A9 was greater than that of 7,8-dihydroxylcoumarin, revealing that the addition of a C-6 methoxy group led to the higher metabolic clearance. In summary, the glucuronidation pathways of fraxetin in human liver microsomes were well-characterized, and UGT1A9 was the major isoform responsible for the glucuronidations of fraxetin.


Assuntos
Cumarínicos/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Fígado/enzimologia , Biotransformação , Humanos , Isoenzimas , Cinética , Taxa de Depuração Metabólica , Microssomos Hepáticos/enzimologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , UDP-Glucuronosiltransferase 1A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA