Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutr Cancer ; 76(6): 529-542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567899

RESUMO

Astaxanthin (AST) is a natural marine carotenoid with a variety of biological activities. This study aimed to demonstrate the possible mechanisms by which AST improves skeletal muscle atrophy in cancer cachexia. In this study, the effects of different doses of AST (30 mg/kg b.w., 60 mg/kg b.w. and 120 mg/kg b.w.) on skeletal muscle functions were explored in mice with cancer cachexia. The results showed that AST (30, 60 and 120 mg/kg b.w.) could effectively protect cachexia mice from body weight and skeletal muscle loss. AST dose-dependently ameliorated the decrease in myofibres cross-sectional area and increased the expression of myosin heavy chain (MHC). AST treatment decreased both the serum and muscle level of IL-6 but not TNF-α in C26 tumor-bearing cachexia mice. Moreover, AST alleviated skeletal muscle atrophy by decreasing the expression of two muscle-specific E3 ligases MAFBx and MuRF-1. AST improved mitochondrial function by downregulating the levels of muscle Fis1, LC3B and Bax, upregulating the levels of muscle Mfn2 and Bcl-2. In conclusion, our study show that AST might be expected to be a nutritional supplement for cancer cachexia patients.


Assuntos
Caquexia , Músculo Esquelético , Atrofia Muscular , Xantofilas , Animais , Xantofilas/farmacologia , Caquexia/tratamento farmacológico , Caquexia/etiologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Masculino , Proteínas Musculares/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos BALB C , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Cadeias Pesadas de Miosina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral
2.
J Agric Food Chem ; 72(11): 6064-6076, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38465450

RESUMO

The process of producing cell-cultured meat involves utilizing a significant amount of culture medium, including fetal bovine serum (FBS), which represents a considerable portion of production expense while also raising environmental and safety concerns. This study demonstrated that supplementation with Auxenochlorella pyrenoidosa protein extract (APE) under low-serum conditions substantially increased Carassius auratus muscle (CAM) cell proliferation and heightened the expression of Myf5 compared to the absence of APE. An integrated intracellular metabolomics and proteomics analysis revealed a total of 13 and 67 differentially expressed metabolites and proteins, respectively, after supplementation with APE in the medium containing 5%FBS, modulating specific metabolism and signaling pathways, which explained the application of APE for passage cell culture under low-serum conditions. Further analysis revealed that the bioactive factors in the APE were protein components. Moreover, CAM cells cultured in reconstructed serum-free media containing APE, l-ascorbic acid, insulin, transferrin, selenium, and ethanolamine exhibited significantly accelerated growth in a scale-up culture. These findings suggest a promising alternative to FBS for fish muscle cell culture that can help reduce production costs and environmental impact in the production of cultured meat.


Assuntos
Hominidae , Soroalbumina Bovina , Animais , Células Cultivadas , Meios de Cultura , Técnicas de Cultura de Células , Músculos
3.
Int J Biol Macromol ; 265(Pt 1): 130805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490382

RESUMO

In order to overcome the problem that traditional W1/O/W2 double emulsions do not have targeted release performance, thereby better meeting the health needs of consumers, ovalbumin fibrils/pectin-based bilayer-stabilized double emulsion (OP-BDE) co-encapsulated with Lactobacillus plantarum and curcumin was constructed with pectin as the outer protective shell, which was expected to be used in the development of novel functional foods. The effects of pectin coating on the viability of Lactobacillus plantarum under conditions including storage, pasteurization, freeze-thaw cycles and in vitro simulated digestion were investigated. Results showed that pectin as protective shell could significantly enhance the tolerance of Lactobacillus plantarum to various environmental factors. Besides, the adsorption of pectin endowed OP-BDE with higher lipolysis and stronger protective effect on curcumin, remarkably improving the photostability and bioaccessibility of curcumin. In addition, in vitro simulated gastrointestinal release study indicated that OP-BDE possessed programmed sequential release property, allowing curcumin and Lactobacillus plantarum to be released in small intestine and colon, respectively. OP-BDE is the first reported co-delivery emulsion system with programmed release characteristic. This study provides new insights into OP-BDE in constructing co-delivery systems and programmed sequential release of active substances, and has potential reference and application value in actual food production.


Assuntos
Curcumina , Lactobacillus plantarum , Emulsões , Curcumina/farmacologia , Pectinas , Trato Gastrointestinal
4.
Int Immunopharmacol ; 128: 111553, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38281337

RESUMO

This study aimed to investigate the function of gut microbiota in astaxanthin's adjuvant anticancer effects. Our prior research demonstrated that astaxanthin enhanced the antitumor effects of sorafenib by enhancing the body's antitumor immune response; astaxanthin also regulated the intestinal flora composition of tumor-bearing mice. However, it is presently unknown whether this beneficial effect is dependent on the gut microbiota. We first used broad-spectrum antibiotics to eradicate gut microbiota of tumor-bearing mice, followed by the transplantation of fecal microbiota. The results of this study indicate that the beneficial effects of astaxanthin when combined with molecular targeting are dependent on the presence of intestinal microbiota. Astaxanthin facilitates the infiltration of CD8+ T lymphocytes into the tumor microenvironment and increases Granzyme B production by modulating the intestinal flora. Therefore, it strengthens the body's anti-tumor immune response and synergistically boosts the therapeutic efficacy of drugs. Astaxanthin stimulates the production of cuprocytes and mucus in the intestines by promoting the proliferation of Akkermansia. In addition, astaxanthin enhances the intestinal mucosal immunological function. Our research supports the unique ability of astaxanthin to sustain intestinal flora homeostasis and its function as a dietary immune booster for individuals with tumors.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Imunidade nas Mucosas , Intestinos/patologia , Mucosa Intestinal , Xantofilas
5.
J Food Sci ; 89(3): 1727-1738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258958

RESUMO

Sea cucumber intestines are considered a valuable resource in the sea cucumber processing industry due to their balanced amino acid composition. Studies have reported that peptides rich in glutamate and branched-chain amino acids have anti-fatigue properties. However, the function of the sea cucumber intestine in reducing exercise-induced fatigue remains unclear. In this study, we enzymatically hydrolyzed low molecular weight peptides from sea cucumber intestines (SCIP) and administered SCIP orally to mice to examine its effects on exercise-induced fatigue using swimming and pole-climbing exhaustion experiments. The results revealed that supplementation with SCIP significantly prolonged the exhaustion time of swimming in mice, decreased blood lactate and urea nitrogen levels, and increased liver and muscle glycogen levels following a weight-loaded swimming test. Immunofluorescence analysis indicated a notable increase the proportion of slow-twitch muscle fiber and a significant decrease the proportion of fast-twitch muscle fiber following SCIP supplementation. Furthermore, SCIP upregulated mRNA expression levels of Ca2+ /Calcineurin upstream and downstream regulators, thereby contributing to the promotion of skeletal muscle fiber type conversion. This study presents the initial evidence establishing SCIP as a potential enhancer of skeletal muscle fatigue resistance, consequently providing a theoretical foundation for the valuable utilization of sea cucumber intestines.


Assuntos
Calcineurina , Pepinos-do-Mar , Camundongos , Animais , Calcineurina/metabolismo , Calcineurina/farmacologia , Pepinos-do-Mar/metabolismo , Músculo Esquelético/metabolismo , Peptídeos/farmacologia , Natação/fisiologia , Transdução de Sinais , Intestinos , Peptídeo Hidrolases/metabolismo
6.
Mol Nutr Food Res ; 68(2): e2300414, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991232

RESUMO

SCOPE: Astaxanthin (AST) is ubiquitous in aquatic foods and microorganisms. The study previously finds that docosahexaenoic acid-acylated AST monoester (AST-DHA) improves cognitive function in Alzheimer's disease (AD), although the underlying mechanism remains unclear. Moreover, autophagy is reportedly involved in amyloid-ß (Aß) clearance and AD pathogenesis. Therefore, this study aims to evaluate the preventive effect of AST-DHA and elucidates the mechanism of autophagy modulation in Aß pathology. METHODS AND RESULTS: In the cellular AD model, AST-DHA significantly reduces toxic Aß1-42 levels and alleviated the accumulation of autophagic markers (LC3II/I and p62) in Aß25-35 -induced SH-SY5Y cells. Notably, AST-DHA restores the autophagic flux in SH-SY5YmRFP-GFP-LC3 cells. In APP/PS1 mice, a 3-month dietary supplementation of AST-DHA exceeded free-astaxanthin (F-AST) capacity to increase hippocampal and cortical autophagy. Mechanistically, AST-DHA restores autophagy by activating the ULK1 signaling pathway and restoring autophagy-lysosome fusion. Moreover, AST-DHA relieves ROS production and mitochondrial stress affecting autophagy in AD. As a favorable outcome of restored autophagy, AST-DHA mitigates cerebral Aß and p-Tau deposition, ultimately improving neuronal function. CONCLUSION: The findings demonstrate that AST-DHA can rectify autophagic impairment in AD, and confer neuroprotection in Aß-related pathology, which supports the future application of AST as an autophagic inducer for maintaining brain health.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Autofagia , Camundongos Transgênicos , Modelos Animais de Doenças , Xantofilas
7.
Mol Nutr Food Res ; 68(2): e2300569, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059808

RESUMO

SCOPE: The optimization of anti-cancer drug effectiveness through dietary modifications has garnered significant attention among researchers in recent times. Astaxanthin (AST) has been identified as a safe and biologically active dietary supplement. METHODS AND RESULTS: The tumor-bearing mice are treated with sorafenib, along with supplementation of 60 mg kg-1 AST during the treatment. The coadministration of AST and a subclinical dosage of 10 mg kg-1 sorafenib demonstrates a tumor inhibition rate of 76.5%, which is notably superior to the 45% inhibition rate observed with the clinical dosage of 30 mg kg-1 sorafenib (p < 0.05). The administration of AST leads to a tumor inhibition increase of around 25% when combined with the clinical dose of 30 mg kg-1 sorafenib (p <0.05). AST enhances the inhibitory effect of sorafenib on tumor angiogenesis through the JAK2/STAT3 signaling pathway. Furthermore, AST exhibits a reduction in hypoxia within the tumor microenvironment. CONCLUSION: The results suggest that AST supplement enhances the inhibitory effects of sorafenib on hepatocellular carcinoma. This study presents a new dietary management program for oncology patients.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Fator de Transcrição STAT3 , Humanos , Camundongos , Animais , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Microambiente Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Transdução de Sinais , Apoptose , Hipóxia/tratamento farmacológico , Niacinamida/farmacologia , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia , Xantofilas
8.
Food Funct ; 15(2): 543-558, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38116809

RESUMO

Astaxanthin is a carotenoid that is taken orally and has antitumor and anti-inflammatory properties. Our previous research demonstrated that astaxanthin alleviated skeletal muscle atrophy during sorafenib treatment in H22 tumor-bearing mice and altered the intestinal flora composition. However, the relationship between astaxanthin's amelioration of skeletal muscle atrophy in tumor-bearing mice and its ability to regulate intestinal flora is not clear. We used broad-spectrum antibiotics to create pseudo-sterile tumor-bearing mice, which we then used in fecal bacteria transplantation experiments. Our results indicate that the role of astaxanthin in ameliorating skeletal muscle atrophy during molecularly targeted therapy in mice with tumors is dependent on the intestinal flora. Astaxanthin substantially promoted the proliferation of Blautia, Parabacteroides, and Roseburia, altered the levels of metabolites in mouse serum, and primarily affected the amino acid metabolism of mice. Astaxanthin ameliorated skeletal muscle atrophy by promoting the activation of AKT/FOXO3a, which inhibited the expression of ubiquitination-degrading Fbx32 and MuRF1 and promoted myogenesis in skeletal muscle. Our study confirms that the intestinal flora is an important target for astaxanthin to combat skeletal muscle atrophy. Our research supports the use of astaxanthin as a nutritional supplement and intestinal microecological regulator for cancer patients.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Camundongos , Humanos , Animais , Sorafenibe , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Xantofilas
9.
Food Funct ; 14(18): 8309-8320, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37602817

RESUMO

Astaxanthin is a naturally occurring compound that possesses immunomodulatory properties. The results of our previous investigation indicated that astaxanthin has the potential to augment the anticancer effectiveness of the targeted medication sorafenib. However, the precise molecular mechanism underlying this phenomenon remains unclear. H22 tumor-bearing mice were treated with sorafenib at 30 mg kg-1 per day and their diet was supplemented with 60 mg kg-1 day-1 astaxanthin orally for a period of 18 days. The study revealed that the addition of astaxanthin to the diet facilitated the transition of tumor-associated macrophages from the M2 phenotype to the M1 phenotype. The application of astaxanthin resulted in an augmentation of CD8+ T cell infiltration within the tumor microenvironment through the activation of the CXCL9/CXCR3 signaling axis. Astaxanthin was found to enhance the production of cytokines that possess antitumor properties, including Granzyme B. Furthermore, the administration of astaxanthin resulted in alterations to the intestinal microbiota in H22-bearing mice, leading to the growth of bacteria that possess anti-tumor immune properties, such as Akkermansia. The findings of these studies indicate that astaxanthin has the potential to augment the immune response against tumors when used in conjunction with sorafenib. These studies offer a novel framework for the advancement of astaxanthin as an immunomodulatory agent and a dietary supplement for individuals with tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Sorafenibe/farmacologia , Terapia de Alvo Molecular , Neoplasias Hepáticas/tratamento farmacológico , Suplementos Nutricionais , Microambiente Tumoral
10.
Mol Nutr Food Res ; 67(18): e2200321, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439463

RESUMO

SCOPE: Dietary supplementation of docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) can alter the lipidome profiles of adipocytes, thereby counteract obesity. DHA/EPA in the form of phospholipids demonstrates higher bioavailability than triglyceride or ethyl ester (EE), but their effects on the lipidome and metabolic changes during obesity are still unknown. METHODS AND RESULTS: High-fat diet-induced obese mice are treated with different molecular forms of EPA, and EPA supplemented as phosphoethanolamine plasmalogens (PlsEtn) has a superior effect on reducing fat mass accumulation than phosphatidylcholine (PC) or EE. The lipidomics analysis indicates that EPA in form of PlsEtn but not PC or EE significantly decreases total PC and sphingomyelin content in white adipose tissue (WAT). Some specific polyunsaturated fatty acid -containing PCs and ether phospholipids are increased in EPA-PlsEtn-fed mice, which may attribute to the upregulation of unsaturated fatty acid biosynthesis and fatty acid elongation reactions in WAT. In addition, the expression of genes related to fatty acid catabolism is also promoted by EPA-PlsEtn supplementation, which may cause the decreased content of saturated and monounsaturated fatty acid-containing PCs. CONCLUSIONS: EPA-PlsEtn supplementation is demonstrated to remodel lipidome and regulate the fatty acid metabolic process in WAT, indicating it may serve as a new strategy for obesity treatment in the future.


Assuntos
Ácido Eicosapentaenoico , Plasmalogênios , Camundongos , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipidômica , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Tecido Adiposo Branco , Fosfatidiletanolaminas/metabolismo , Tecido Adiposo/metabolismo
11.
Mar Drugs ; 21(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37367679

RESUMO

The growth and development of the fetus and newborn throughout pregnancy and lactation are directly related to the nutritional status of the mother, which has a significant impact on the health of the offspring. The purpose of this experiment was to investigate the susceptibility of n-3 polyunsaturated fatty acid deficiency in early life to seizures in adulthood. The n-3 PUFAs-deficient mice's offspring were established and then fed with α-LNA diet, DHA-enriched ethyl ester, and DHA-enriched phospholipid-containing diets for 17 days at the age of eight weeks. During this period, animals received intraperitoneal injections of 35 mg/kg of pentylenetetrazol (PTZ) every other day for eight days. The results showed that dietary n-3 PUFA-deficiency in early life could aggravate PTZ-induced epileptic seizures and brain disorders. Notably, nutritional supplementation with n-3 PUFAs in adulthood for 17 days could significantly recover the brain n-3 fatty acid and alleviate the epilepsy susceptibility as well as raise seizure threshold to different levels by mediating the neurotransmitter disturbance and mitochondria-dependent apoptosis, demyelination, and neuroinflammation status of the hippocampus. DHA-enriched phospholipid possessed a superior effect on alleviating the seizure compared to α-LNA and DHA-enriched ethyl ester. Dietary n-3 PUFA deficiency in early life increases the susceptibility to PTZ-induced epilepsy in adult offspring, and nutritional supplementation with n-3 PUFAs enhances the tolerance to the epileptic seizure.


Assuntos
Epilepsia , Ácidos Graxos Ômega-3 , Feminino , Gravidez , Camundongos , Animais , Pentilenotetrazol/toxicidade , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3/farmacologia , Dieta , Fosfolipídeos , Suplementos Nutricionais , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle
12.
Food Res Int ; 170: 112971, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316013

RESUMO

Quercetin (Que) is a hydrophobic flavanol that has the potential to prevent colon diseases. This study aimed to design hordein/pectin nanoparticle as a colon-specific delivery system for quercetin. The encapsulation efficiency, physicochemical stability and release properties of the nanoparticles were estimated. The FTIR and secondary structure analysis indicated that hydrogen bonds, hydrophobic interactions and electrostatic attractions were formed in the quercetin-loaded hordein/pectin nanoparticles (Que-hordein/pectin NPs). In comparison to Que-hordein NPs, Que-hordein/pectin NPs exhibited better colloidal stability (physical, UV light, heating and salt). Furthermore, the release properties studies showed that pectin coating restrained the premature release of Que from hordein NPs in gastric fluid and intestinal fluid. In-vitro release, when the Que-hordein/pectin NPs were exposed to simulated colonic fluid (SCF) for 6 h, quercetin was greatly released from the hordein/pectin NPs (15.29 ± 1.17% - 80.60 ± 1.78%). In-vivo release, the concentration of Que (µg/g) in Que-hordein/pectin NPs was 2.18 times higher than Que-hordein NPs in colon tissue after 6 h of oral administration. This study suggests that Que-hordein/pectin NPs have promising applications in the specific delivery and release of quercetin to the colon.


Assuntos
Nanopartículas , Pectinas , Quercetina , Colo , Glutens
13.
Mol Nutr Food Res ; 67(16): e2300076, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177891

RESUMO

SCOPE: Cachexia, which is often marked by skeletal muscular atrophy, is one of the leading causes of death in cancer patients. Astaxanthin, a carotenoid obtained from marine organisms that can aid in the prevention and treatment of a variety of disorders. In this study, to assess whether astaxanthin ameliorates weight loss and skeletal muscle atrophy in sorafenib-treated hepatocellular carcinoma mice is aimed. METHODS AND RESULTS: H22 mice are treated with 30 mg kg-1  day-1 of sorafenib and 60 mg kg-1  day-1 of astaxanthin by gavage lasted for 18 days. Sorafenib does not delay skeletal muscle atrophy and weight loss, although it does not reduce tumor burden. Astaxanthin dramatically delays weight loss and skeletal muscle atrophy in sorafenib-treating mice, without affecting the food intake. Astaxanthin inhibits the tumor glycolysis, slows down gluconeogenesis, and improves insulin resistance in tumor-bearing mice. Astaxanthin increases glucose competition in skeletal muscle by targeting the PI3K/Akt/GLUT4 signaling pathway, and enhances glucose utilization efficiency in skeletal muscle, thereby slowing skeletal muscle atrophy. CONCLUSION: The findings show the significant potential of astaxanthin as nutritional supplements for cancer patients, as well as the notion that nutritional interventions should be implemented at the initiation of cancer treatment, as instead of waiting until cachexia sets in.


Assuntos
Caquexia , Glucose , Camundongos , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Sorafenibe/farmacologia , Sorafenibe/metabolismo , Glucose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Redução de Peso , Suplementos Nutricionais
14.
J Sci Food Agric ; 103(11): 5529-5538, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37069483

RESUMO

BACKGROUND: Phosphatidylcholine (PC) is considered to be the major dietary source for choline, which is associated with atherosclerosis progress. Thus, phosphatidylglucose (PG) was prepared by enzymatic modification of PC to investigate the effects on atherosclerosis in apolipoprotein E deficient (ApoE-/- ) mice, as well as to investigate its dose-response relationship. RESULTS: The results showed that dietary PG significantly decreased the atherosclerotic lesion area in a dose-dependent manner. Further studies found that intervention with a 0.8 g kg-1 and 2 g kg-1 PG diet for 4 months significantly decreased free cholesterol level and thus reduced total cholesterol levels in serum. The results of cholesterol distribution among lipoproteins showed that dietary PG significantly decreased low-density lipoprotein levels in ApoE-/- mice. In addition, only administration of high-dose PG significantly reduced total cholesterol levels in liver tissues by 31.2%. Furthermore, mice treated with high-dose PG had an expanded bile acid pool and increased the ratio of conjugated bile acids to unconjugated bile acids in the liver, serum and gallbladder by increasing hepatic gene expression of primary and conjugated bile acid synthesis. Additionally, low-dose and high-dose PG significantly increased total fecal sterols by 20.8% and 11.9%, respectively, by increasing sitosterol and ethylcoprostanol levels. CONCLUSION: These results indicate that PG alleviated atherosclerosis in a dose-dependent manner by increasing cholesterol alienation to bile acids and cholesterol efflux. © 2023 Society of Chemical Industry.


Assuntos
Aterosclerose , Ácidos e Sais Biliares , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Camundongos Knockout , Colesterol , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
15.
Mol Nutr Food Res ; 67(9): e2200451, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840344

RESUMO

SCOPE: Osteo-adipogenic differentiation imbalance of bone mesenchymal stem cells (BMSCs) has been linked to a variety of pathophysiological processes such as obesity and osteoporosis. Recent studies report that the phosphorylation of peroxisome proliferator-activated receptor gamma (PPARγ) Ser112 affects the fate decision of BMSCs. Novel peptides from the sea cucumber intestinal peptide (SCIP) have been proved to promote the growth of longitudinal bone. However, it is unclear the effect of SCIP on BMSCs differentiation fate. METHODS AND RESULTS: BMSCs in vitro and glucocorticoid induced mice are employed to investigate the effects of SCIP on osteo-adipogenic differentiation of BMSCs. In vitro results show that SCIP supplement significantly promotes the proliferation and osteogenic differentiation of BMSCs, upregulates the expression of osteogenic marker. In vivo results show that SCIP supplement ameliorates the osteo-adipogenic differentiation imbalance in glucocorticoid-treated mice, decreases bone marrow fat, and elevates bone mineral density. Mechanistically, SCIP supplement promotes and maintains the phosphorylation of PPARγ Ser112 through AMPK/ERK and TAZ signals, thereby inducing the osteogenic differentiation of BMSCs. CONCLUSION: Supplement with SCIP promotes BMSCs to differentiate into osteoblasts. These results suggest that SCIP has potential as a functional food to improve obesity and osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Camundongos , Animais , Osteogênese , PPAR gama/genética , PPAR gama/metabolismo , Glucocorticoides/farmacologia , Fosforilação , Diferenciação Celular , Osteoporose/metabolismo , Peptídeos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
16.
Carbohydr Polym ; 308: 120675, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813348

RESUMO

As a natural biopolymer, starch is ideally adapted as an encapsulant material for nutraceutical delivery systems due to its unique nature of extensive sources, versatility and high biocompatibility. This review offers an outline of recent advances in the development of starch-based delivery systems. The structure and functional properties of starch in encapsulating and delivering bioactive ingredients are first introduced. Structural modification of starch improves the functionalities and extends the applications of starch in novel delivery systems. Then, various nutraceutical delivery systems are systematically summarized, which include porous starch, starch particle, amylose inclusion complex, cyclodextrin, gel, edible film and emulsion. Next, the delivery process of nutraceuticals is discussed in two parts: digestion and release. Intestinal digestion plays an important role during the whole digestion process of starch-based delivery systems. Moreover, controlled release of bioactives can be achieved by porous starch, starch-bioactive complexation and core-shell structure. Finally, the challenges of the existing starch-based delivery systems are deliberated, and the directions for future research are pointed out. Composite delivery carriers, co-delivery, intelligent delivery, delivery in real food systems, and reuse of agricultural wastes may be the research trends for starch-based delivery systems in the future.


Assuntos
Suplementos Nutricionais , Amido , Amido/química , Amilose/química , Emulsões
17.
Mar Drugs ; 21(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36662212

RESUMO

It has been reported that dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential for the preservation of functional ß-cell mass. However, the effect of dietary n-3 PUFA deficiency on pancreatic injury and whether the supplementation of n-3 PUFA could prevent the development of pancreatic injury are still not clear. In the present study, an n-3 PUFA deficiency mouse model was established by feeding them with n-3 PUFA deficiency diets for 30 days. Results showed that n-3 PUFA deficiency aggravated streptozotocin (STZ)-induced pancreas injury by reducing the insulin level by 18.21% and the HOMA ß-cell indices by 31.13% and the area of islet by 52.58% compared with the STZ group. Moreover, pre-intervention with DHA and EPA for 15 days could alleviate STZ-induced pancreas damage by increasing the insulin level by 55.26% and 44.33%, the HOMA ß-cell indices by 118.81% and 157.26% and reversed the area of islet by 196.75% and 205.57% compared to the n-3 Def group, and the effects were significant compared to γ-linolenic acid (GLA) and alpha-linolenic acid (ALA) treatment. The possible underlying mechanisms indicated that EPA and DHA significantly reduced the ration of n-6 PUFA to n-3 PUFA and then inhibited oxidative stress, inflammation and islet ß-cell apoptosis levels in pancreas tissue. The results might provide insights into the prevention and alleviation of pancreas injury by dietary intervention with PUFAs and provide a theoretical basis for their application in functional foods.


Assuntos
Ácidos Graxos Ômega-3 , Insulinas , Camundongos , Animais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Estreptozocina/toxicidade , Ácidos Graxos Insaturados , Ácidos Graxos , Inflamação/tratamento farmacológico , Pâncreas , Suplementos Nutricionais , Apoptose , Estresse Oxidativo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia
18.
J Sci Food Agric ; 103(5): 2378-2388, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36606564

RESUMO

BACKGROUND: Dietary astaxanthin (AST) exhibits the ability to resist lipid accumulation and stimulate hepatic autophagy. Natural AST predominantly exists in stable esterified forms. More importantly, in our previous study, docosahexaenoic acid-acylated AST monoester (AST-DHA) possessed better stability, bioavailability, and neuroprotective ability than AST in free and diester form. However, the AST-DHA mechanisms of action in regulating the obese phenotype and autophagy of the central nervous system remain unclear. RESULTS: High-fat diet (HFD)-fed C57BL/6J mice were orally administered AST-DHA (50 mg/kg body weight/d) for 3 days or 8 weeks. AST-DHA supplementation alleviated HFD-induced abnormal body weight gain, significantly enhanced autophagy with an increased microtubule-associated protein light chain 3 II/I (LC3II/I) ratio, and reduced the accumulation of p62/sequestosome 1 (SQSTM1) in the hypothalamus rather than in the hippocampus. Mechanistically, AST-DHA effectively promoted autophagy and autophagosome formation, and most notably rescued the HFD-impaired autophagosome-lysosome fusion (indicated by the colocalization of LC3 and LAMP1) by regulating mTOR- and AMPK-induced phosphorylation of ULK1. Consequently, AST-DHA enhanced hypothalamic autophagy, leading to pro-opiomelanocortin (POMC) cleavage to produce alpha-melanocyte-stimulating hormone (α-MSH). CONCLUSIONS: This study identified AST-DHA as an enhancer of autophagy that plays a beneficial role in restoring hypothalamic autophagy, and as a new potential therapeutic agent against HFD-induced obesity. © 2023 Society of Chemical Industry.


Assuntos
Dieta Hiperlipídica , Ácidos Docosa-Hexaenoicos , Animais , Camundongos , Ácidos Docosa-Hexaenoicos/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Hipotálamo/metabolismo , Aumento de Peso , Autofagia
19.
J Biosci Bioeng ; 135(2): 160-166, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494249

RESUMO

The preparation of steady-state phospholipid liposomes requires cholesterol as a stabilizer, but excessive intake of cholesterol may increase the risk of cardiovascular disease. The sulfated sterols extracted from sea cucumber, mainly including sulfated 24-methylene cholesterol and cholesterol sulfate, have been reported to have a variety of physiological activities. Sulfated sterols are similar to cholesterol in structure and have the potential to replace cholesterol to prepare novel stable multifunctional liposomes, allowing the liposomes to act as carriers for the delivery of less bioavailable nutrients while allowing sulfated sterols in the lipid bilayer to exert physiologically active effects. This study aimed to prepare a novel multifunctional nanoliposome stabilized with sulfated sterols from sea cucumber instead of cholesterol by ultrasound-assisted thin-film dispersion method. The results showed that stable and uniformly dispersed nanoliposomes could be formed when the substitution ratio of sea cucumber-derived cholesterol sulfate was 100% and the ratio of lecithin to cholesterol sulfate was 3:1. Fucoxanthin encapsulated liposome with egg yolk lecithin/sea cucumber-derived cholesterol sulfate/fucoxanthin mass ratio of 6:2:3 was successfully prepared, with an average particle size of 214 ± 3 nm, polydispersity index (PDI) value of 0.297 ± 0.006, the zeta potential of -57.2 ± 1.10 mV, and the encapsulation efficiency of 85.5 ± 0.8%. The results of digestion and absorption in vitro and in vivo showed that liposomes could significantly improve the bioavailability of fucoxanthin and prolong its residence time in serum. As an efficient multifunctional carrier, this novel liposome has great potential for applications in functional foods and biomedicine.


Assuntos
Fitosteróis , Pepinos-do-Mar , Animais , Lipossomos/química , Lecitinas , Pepinos-do-Mar/química , Colesterol/química , Esteróis , Tamanho da Partícula
20.
Food Chem ; 399: 133991, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037681

RESUMO

Fish oil develops particular off-odors, mainly fishy odor, from the oxidation of its characteristic fatty acids, docosahexaenoic (DHA) and eicosapentaenoic (EPA). Anchovy oil (AO) was taken as representative of fish oils. This was compared to three vegetable oils with different fatty acid compositions, i.e. camellia, sunflower and linseed oil, and differential volatile compounds were identified by static-headspace gas-chromatography ion-mobility-spectrometry (SHS-GC-IMS) and orthogonal partial-least-squares discriminant analysis (OPLS-DA) during oxidation at 60 °C. Three groups of differential volatile compounds detected at higher concentrations in the AO were screened out and two compounds, identified as 5-methylfurfural and 2-acetylfuran, were characteristic to the AO and not found in the vegetable oils. They were formed from both EPA and DHA, only present in the AO, and their formation mechanisms were proposed. The contents of 5-methylfurfural and 2-acetylfuran increased linearly with the oxidation time and consequently they could be used as oxidative markers of fish oils.


Assuntos
Quimiometria , Óleos de Peixe , Ácidos Graxos/análise , Óleos de Peixe/química , Furaldeído/análogos & derivados , Furanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óleos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA