Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 12(16)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37626921

RESUMO

MicroRNA (miRNA) 107 expression is downregulated but Wnt3a protein and ß-catenin are upregulated in degenerated intervertebral disc (IVD). We investigated mir-107/Wnt3a-ß-catenin signaling in vitro and in vivo following hyperbaric oxygen (HBO) intervention. Our results showed 96 miRNAs were upregulated and 66 downregulated in degenerated nucleus pulposus cells (NPCs) following HBO treatment. The 3' untranslated region (UTR) of the Wnt3a mRNA contained the "seed-matched-sequence" for miR-107. MiR-107 was upregulated and a marked suppression of Wnt3a was observed simultaneously in degenerated NPCs following HBO intervention. Knockdown of miR-107 upregulated Wnt3a expression in hyperoxic cells. HBO downregulated the protein expression of Wnt3a, phosphorylated LRP6, and cyclin D1. There was decreased TOP flash activity following HBO intervention, whereas the FOP flash activity was not affected. HBO decreased the nuclear translocation of ß-catenin and decreased the secretion of MMP-3 and -9 in degenerated NPCs. Moreover, rabbit serum KS levels and the stained area for Wnt3a and ß-catenin in repaired cartilage tended to be lower in the HBO group. We observed that HBO inhibits Wnt3a/ß-catenin signaling-related pathways by upregulating miR-107 expression in degenerated NPCs. HBO may play a protective role against IVD degeneration and could be used as a future therapeutic treatment.


Assuntos
Oxigenoterapia Hiperbárica , MicroRNAs , Núcleo Pulposo , Animais , Coelhos , beta Catenina , Oxigênio , Modelos Animais , Regiões 3' não Traduzidas , MicroRNAs/genética
2.
J Orthop Surg Res ; 16(1): 16, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413477

RESUMO

BACKGROUND: MicroRNA (miRNA) plays a vital role in the intervertebral disc (IVD) degeneration. The expression level of miR-573 was downregulated whereas Bax was upregulated notably in human degenerative nucleus pulposus cells. In this study, we aimed to investigate the role of miR-573 in human degenerative nucleus pulposus (NP) cells following hyperbaric oxygen (HBO) treatment. METHODS: NP cells were separated from human degenerated IVD tissues. The control cells were maintained in 5% CO2/95% air and the hyperoxic cells were exposed to 100% O2 at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The mRNA and protein levels of Bax were measured. The proliferation of NPCs was detected using MTT assay. The protein expression levels of Bax, cleaved caspase 9, cleaved caspase 3, pro-caspase 9, and pro-caspase 3 were examined. RESULTS: Bioinformatics analysis indicated that the 3' untranslated region (UTR) of the Bax mRNA contained the "seed-matched-sequence" for hsa-miR-573, which was validated via reporter assays. MiR-573 was induced by HBO and simultaneous suppression of Bax was observed in NP cells. Knockdown of miR-573 resulted in upregulation of Bax expression in HBO-treated cells. In addition, overexpression of miR-573 by HBO increased cell proliferation and coupled with inhibition of cell apoptosis. The cleavage of pro-caspase 9 and pro-caspase 3 was suppressed while the levels of cleaved caspase 9 and caspase 3 were decreased in HBO-treated cells. Transfection with anti-miR-573 partly suppressed the effects of HBO. CONCLUSION: Mir-573 regulates cell proliferation and apoptosis by targeting Bax in human degenerative NP cells following HBO treatment.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Oxigenoterapia Hiperbárica , MicroRNAs/fisiologia , Núcleo Pulposo/citologia , Proteína X Associada a bcl-2/metabolismo , Idoso , Células Cultivadas , Feminino , Expressão Gênica/genética , Humanos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo , Proteína X Associada a bcl-2/genética
3.
Arthritis Res Ther ; 21(1): 42, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704538

RESUMO

BACKGROUND: The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is modulated by microRNAs (miRNAs), with miR-107 expression downregulated during hypoxia. In this study, we investigated the regulation of the miR-107/HMGB1/RAGE pathway in degenerated nucleus pulposus cells (NPCs) after hyperbaric oxygen (HBO) treatment. METHODS: NPCs were separated from human degenerated intervertebral disc tissues. The control cells were maintained in 5% CO2/95% air, and the hyperoxic cells were exposed to 100% O2 at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The cellular protein and mRNA levels of HMGB1, RAGE, and inducible nitric oxide synthase (iNOS) were assessed, and the phosphorylation of MAPK (p38MAPK, ERK, and JNK) was evaluated. Additionally, cytosolic and nuclear fractions of the IκBα and NF-κB p65 proteins were analyzed, and secreted HMGB1 and metalloprotease (MMP) levels in the conditioned media were quantified. RESULTS: Using microarray analyses, 96 miRNAs were identified as upregulated and 66 downregulated following HBO treatment. Based on these results, miR-107 was selected for further investigation. Bioinformatics analyses indicated that the 3' untranslated region of the HMGB1 mRNA contained the "seed-matched-sequence" for hsa-miR-107, which was validated via dual-luciferase reporter assays. MiR-107 was markedly induced by HBO, and simultaneous suppression of HMGB1 was observed in NPCs. Knockdown of miR-107 resulted in upregulation of HMGB1 expression in HBO-treated cells, and HBO treatment downregulated the mRNA and protein levels of HMGB1, RAGE, and iNOS and the secretion of HMGB1. In addition, HBO treatment upregulated the protein levels of cytosolic IκBα and decreased the nuclear translocation of NF-κB in NPCs. Moreover, HBO treatment downregulated the phosphorylation of p38MAPK, ERK, and JNK and significantly decreased the secretion of MMP-3, MMP-9, and MMP-13. CONCLUSIONS: HBO inhibits pathways related to HMGB1/RAGE signaling via upregulation of miR-107 expression in degenerated human NPCs.


Assuntos
Proteína HMGB1/genética , Oxigenoterapia Hiperbárica/métodos , Degeneração do Disco Intervertebral/terapia , MicroRNAs/genética , Receptor para Produtos Finais de Glicação Avançada/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Perfilação da Expressão Gênica/métodos , Proteína HMGB1/metabolismo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Oxigênio/farmacologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/genética , Regulação para Cima
4.
J Orthop Surg Res ; 11(1): 52, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27121956

RESUMO

BACKGROUND: Clinical experience and animal studies have suggested that positron emission tomography (PET) using fluorine-18-labeled fluorodeoxyglucose ((18)F-FDG) may be promising for imaging of bone infections. In this study, we aimed to establish the accuracy of (18)F-FDG PET scanning for monitoring the response to poly(lactide-co-glycolide) (PLGA) vancomycin beads for treatment of bone infection. METHODS: PLGA was mixed with vancomycin and hot-compress molded to form antibiotic beads. In vitro, elution assays and bacterial inhibition tests were employed to characterize the released antibiotics. In vivo, cylindrical cavities were made in six adult male New Zealand white rabbits, and Staphylococcus aureus or saline was injected into the cavity to create a bone infection. After 2 weeks, the infection was confirmed by bacterial cultures, and the defect was filled with PLGA vancomycin beads. The treatment response was monitored by (18)F-FDG PET. RESULTS: The biodegradable beads released high concentrations of vancomycin (well above the breakpoint sensitivity concentration) for treatment of bone infection. In bacterial inhibition tests, the diameter of the sample inhibition zone ranged from 6.5 to 10 mm, which was equivalent to 12.5-100 % relative activity. (18)F-FDG PET results showed that uncomplicated bone healing was associated with a temporary increase in (18)F-FDG uptake at 2 weeks, with return to near baseline at 6 weeks. In the infected animals, localized infection resulted in intense continuous uptake of (18)F-FDG, which was higher than that in uncomplicated healing bones. Bone infection was confirmed with positive bacterial cultures. In vancomycin-treated animals, data showed rapidly decreasing amounts of (18)F-FDG uptake after treatment. CONCLUSIONS: In vitro and in vivo analyses showed that the use of biodegradable PLGA vancomycin beads successfully eradicated S. aureus infection in damaged bone.


Assuntos
Antibacterianos/administração & dosagem , Osteomielite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/administração & dosagem , Implantes Absorvíveis , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Implantes de Medicamento , Fluordesoxiglucose F18 , Masculino , Testes de Sensibilidade Microbiana , Osteomielite/diagnóstico por imagem , Osteomielite/microbiologia , Poliglactina 910 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Coelhos , Infecções Estafilocócicas/diagnóstico por imagem , Vancomicina/farmacologia
5.
J Orthop Surg Res ; 9: 5, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24499626

RESUMO

BACKGROUND: Although the individual effects of hyperbaric oxygen (HBO) and low-intensity pulsed ultrasound (LIPUS) on osteoarthritic (OA) chondrocytes have been reported, the effects of HBO combined with LIPUS treatment are unknown. METHODS: OA chondrocytes were obtained from patients undergoing knee replacement surgery. RNA was isolated for real-time polymerase chain reaction (PCR) analysis of inducible nitric oxide synthase (iNOS), type-II collagen, and aggrecan gene expression. The protein levels of MMP-3 and TIMP-1 were quantified by enzyme-linked immunosorbent assay (ELISA) after LIPUS or HBO treatment. The data are given as mean ± standard deviation (SD) of the results from three independent experiments. A p value less than 0.05 was defined as statistically significant. RESULTS: Our data suggested that ultrasound and HBO treatment increased cell bioactivity of OA chondrocytes. Real-time PCR analysis showed that HBO treatment increased the mRNA of type-II collagen, aggrecan, and TIMP-1 but suppressed the iNOS expression of OA chondrocytes. LIPUS treatment increased the type-II collagen and iNOS expression of OA chondrocytes. ELISA data showed that HBO or LIPUS treatment increased TIMP-1 production of OA chondrocyte. MMP-3 production was suppressed by HBO treatment. HBO combined with LIPUS treatments resulted in additive effect in TIMP-1 production and compensatory effect in iNOS expression. CONCLUSION: HBO combined with LIPUS treatment-induced increase of the anabolic factor (TIMP-1)/catabolic factor (MMP-3) ratio may provide an additive therapeutic approach to slow the course of OA degeneration.


Assuntos
Condrócitos/metabolismo , Oxigenoterapia Hiperbárica/métodos , Osteoartrite do Joelho/metabolismo , Ultrassonografia Doppler de Pulso/métodos , Células Cultivadas , Condrócitos/patologia , Humanos , Osteoartrite do Joelho/patologia
6.
BMC Musculoskelet Disord ; 15: 56, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24568330

RESUMO

BACKGROUND: Hyperbaric oxygenation was shown to increase bone healing in a rabbit model. However, little is known about the regulatory factors and molecular mechanism involved.We hypothesized that the effect of hyperbaric oxygen (HBO) on bone formation is mediated via increases in the osteogenic differentiation of mesenchymal stem cells (MSCs) which are regulated by Wnt signaling. METHODS: The phenotypic characterization of the MSCs was analyzed by flow cytometric analysis. To investigate the effects of HBO on Wnt signaling and osteogenic differentiation of MSCs, mRNA and protein levels of Wnt3a, beta-catenin, GSK-3beta, Runx 2, as well as alkaline phosphatase activity, calcium deposition, and the intensity of von Kossa staining were analyzed after HBO treatment. To investigate the effects of HBO on Wnt processing and secretion, the expression of Wntless and vacuolar ATPases were quantified after HBO treatment. RESULTS: Cells expressed MSC markers such as CD105, CD146, and STRO-1. The mRNA and protein levels of Wnt3a, ß-catenin, and Runx 2 were up-regulated, while GSK-3ß was down-regulated after HBO treatment. Western blot analysis showed an increased ß-catenin translocation with a subsequent stimulation of the expression of target genes after HBO treatment. The above observation was confirmed by small interfering (si)RNA treatment. HBO significantly increased alkaline phosphatase activity, calcium deposition, and the intensity of von Kossa staining of osteogenically differentiated MSCs. We further showed that HBO treatment increased the expression of Wntless, a retromer trafficking protein, and vacuolar ATPases to stimulate Wnt processing and secretion, and the effect was confirmed by siRNA treatment. CONCLUSIONS: HBO treatment increased osteogenic differentiation of MSCs via regulating Wnt processing, secretion, and signaling.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Oxigênio/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Adulto , Idoso , Biomarcadores , Células da Medula Óssea/metabolismo , Células Cultivadas , Feminino , Humanos , Oxigenoterapia Hiperbárica , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Regulação para Cima , ATPases Vacuolares Próton-Translocadoras/biossíntese , ATPases Vacuolares Próton-Translocadoras/genética , Via de Sinalização Wnt/fisiologia
7.
Stem Cell Res ; 12(1): 260-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24291646

RESUMO

We hypothesized that the effect of hyperbaric oxygen (HBO) on bone formation is increased via osteogenic differentiation of bone marrow stromal cells (BMSCs), which is regulated by Wnt3a/ß-catenin signaling. Our in vitro data showed that HBO increased cell proliferation, Wnt3a production, LRP6 phosphorylation, and cyclin D1 expression in osteogenically differentiated BMSCs. The mRNA and protein levels of Wnt3a, ß-catenin, and Runx2 were upregulated while those of GSK-3ß were downregulated after HBO treatment. The relative density ratio (phospho-protein/protein) of Akt and GSK-3ß was both up-regulated while that of ß-catenin was down-regulated after HBO treatment. We next investigated whether HBO affects the accumulation of ß-catenin. Our Western blot analysis showed increased levels of translocated ß-catenin that stimulated the expression of target genes after HBO treatment. HBO increased TCF-dependent transcription, Runx2 promoter/Luc gene activity, and the expression of osteogenic markers of BMSCs, such as alkaline phosphatase activity, type I collagen, osteocalcin, calcium, and the intensity of Alizarin Red staining. HBO dose dependently increased the bone morphogenetic protein (BMP2) and osterix production. We further demonstrated that HBO increased the expression of vacuolar-ATPases, which stimulated Wnt3a secretion from BMSCs. Finally, we showed that the beneficial effects of HBO on bone formation were related to Wnt3a/ß-catenin signaling in a rabbit model by histology, mechanical testing, and immunohistochemical assays. Accordingly, we concluded that HBO increased the osteogenic differentiation of BMSCs by regulating Wnt3a secretion and signaling.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Oxigênio/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Oxigenoterapia Hiperbárica , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/metabolismo , Interferência de RNA , Coelhos , Fator de Transcrição Sp7 , Fatores de Transcrição/metabolismo , Proteína Wnt3A/genética , beta Catenina/antagonistas & inibidores , beta Catenina/genética
8.
J Orthop Res ; 31(3): 376-84, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22991091

RESUMO

Heat shock proteins (HSPs), inflammatory cytokines, nitric oxide (NO), and localized hypoxia-induced apoptosis are thought to be correlated to the degree of cartilage injury. We investigated the effect of hyperbaric oxygen (HBO) on (1) interleukin-1ß (IL-1ß)-induced NO production and apoptosis of rabbit chondrocytes and (2) healing of articular cartilage defects. For the in vitro study, RT-PCR and Western blotting were performed to detect mRNA and protein expressions of HSP70, inducible NO synthase (iNOS), and caspase 3 in IL-1ß-treated chondrocytes. To clarify that the HSP70 was necessary for anti-iNOS and anti-apoptotic activity by HBO, we treated the cells with an HSP70 inhibitor, KNK437. For the in vivo study, cartilage defects were created in rabbits. The HBO group was exposed to 100% oxygen at 2.5 ATA for 1.5 h a day for 10 weeks. The control group was exposed to normal air. After sacrifice, specimen sections were sent for examination using a scoring system. Immunohistochemical analyses were performed to detect the expressions of iNOS, HSP70, and caspase 3. Our results suggested that HBO upregulated the mRNA and protein expressions of HSP70 and suppressed those of iNOS and caspase 3 in chondrocytes. KNK437 inhibited the HBO-induced downregulation of iNOS and casapase 3 activities. The histological scores showed that HBO markedly enhanced cartilage repair. Immunohistostaining showed that HBO enhanced HSP70 expression and suppressed iNOS and caspase 3 expressions in chondrocytes. Accordingly, HBO treatment prevents NO-induced apoptosis in articular cartilage injury via enhancement of the expression of heat shock protein 70.


Assuntos
Apoptose/fisiologia , Cartilagem Articular/lesões , Condrócitos/citologia , Condrócitos/fisiologia , Proteínas de Choque Térmico HSP70/genética , Oxigenoterapia Hiperbárica/métodos , Óxido Nítrico/fisiologia , Animais , Cartilagem Articular/citologia , Cartilagem Articular/fisiologia , Caspase 3/genética , Caspase 3/metabolismo , Células Cultivadas , Proteínas de Choque Térmico HSP70/metabolismo , Interleucina-1beta/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Coelhos
9.
J Orthop Res ; 27(11): 1439-46, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19402136

RESUMO

The present study investigated the effects of hyperbaric oxygen (HBO) and platelet-derived growth factor-BB (PDGF-BB) in chondrocyte transplantation. In vitro, chondrocytes were treated with HBO, PDGF-BB, and HBO combined with PDGF-BB (H+P). Cell growth was analyzed using cell counting, MTT assay, and FACS analysis. mRNA expression of the PDGF-alpha receptor (PDGFR-alpha) and beta receptor (PDGFR-beta) was detected by RT-PCR. Protein expression of PDGFR-beta was detected by Western blotting. In vivo, chondrocytes and PDGF-BB were suspended in alginate as a transplantation system. Cartilage defects were grafted with this system and with or without HBO treatment. Released PDGF-BB concentration was quantified by ELISA. After 8 weeks, animals were sacrificed and the repaired tissues were examined. In vitro data suggested that each treatment increased cell growth via the up-regulated mRNA expression of PDGFR-alpha and increased cell accumulation in the S-phase. The H+P treatment was more additive in cell growth and in mRNA and protein expression of PDGFR-beta than HBO or PDGF-BB. In vivo results suggested that PDGF-BB delivery lasted for more than 5 weeks. Scoring results showed that each treatment significantly increased the cartilage repair. Safranin-O and type II collagen staining confirmed the hyaline-like cartilage regeneration in the repaired tissues. In situ up-regulation of PDGFR-beta expression partially explains the additive effect of H+P treatment in cartilage repair. Accordingly, H+P offers a potential treatment method for cartilage repair.


Assuntos
Condrócitos/transplante , Oxigenoterapia Hiperbárica , Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Animais , Becaplermina , Cartilagem/lesões , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condrócitos/metabolismo , Colágeno Tipo II/biossíntese , Proteínas Proto-Oncogênicas c-sis , RNA Mensageiro/metabolismo , Coelhos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Regulação para Cima
10.
J Orthop Res ; 22(5): 1126-34, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15304289

RESUMO

Proinflammatory cytokine, nitric oxide (NO) and localized hypoxia-induced apoptosis and proteoglycan (PG) degradation are thought to be correlated to the degree of cartilage injury. This study evaluated hyperbaric oxygen (HBO)-induced changes in joint cavity oxygen tension, antigenickeratan sulfate (KS) content, inducible nitric oxide synthase (iNOS) expression, PG synthesis, and cell apoptosis in full-thickness defects of rabbit cartilage. The HBO group was exposed to 100% oxygen at 2.5 atm for 2 h daily, 5 days per week. Meanwhile, the control group was kept in housing cages with normal air. The joint cavity oxygen tension was determined with an oxygen sensor. Blood serum KS was quantified by competitive indirect enzyme-linked immunosorbent assay (ELISA). After sacrifice, specimen sections were sent for histological and histochemical examination with a standardized scoring system. In situ analysis of iNOs expression and apoptosis detection were performed using immunostaining and TUNEL staining, respectively and quantified by a computerized imagine analysis system. This study demonstrated that HBO treatment increased joint cavity oxygen tension but decreased blood KS content. Histological and histochemical score results showed that HBO treatment significantly increased the cartilage repair. Moreover, immunostaining and TUNEL staining showed that HBO treatment suppressed the iNOs expression and apoptosis of chondrocytes, respectively. Accordingly, HBO offers a potential treatment method for cartilage injury.


Assuntos
Apoptose , Cartilagem Articular/metabolismo , Condrócitos/citologia , Oxigenoterapia Hiperbárica , Óxido Nítrico/biossíntese , Proteoglicanas/biossíntese , Animais , Óxido Nítrico Sintase/análise , Óxido Nítrico Sintase Tipo II , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA