Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Oleo Sci ; 73(2): 239-251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311413

RESUMO

Frog oil has been recognized for its nutritional and medicinal value. However, there is limited research on the role of frog oil in preventing obesity. In this study, we aimed to investigate the lipid composition of Quasipaa spinosa oil (QSO) and Rana catesbeiana oil (RCO) using lipidomics analysis. We compared the lipid accumulation effects of these two kinds of frog oils and soybean oil (SO) in Caenorhabditis elegans (C. elegans). Additionally, we determined the gene expression related to lipid metabolism and used the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199) for validation experiments. The results showed that the lipid composition of QSO and RCO was significantly different (p < 0.05), and QSO was rich in more polyunsaturated fatty acids (PUFAs). After feeding C. elegans, the lipid accumulation of the QSO group was the lowest among the three dietary oil groups. In addition, compared with RCO and SO, QSO significantly inhibited the production of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). The effects of three kinds of dietary oils on the fatty acid composition of C. elegans were significantly different. Compared with SO and RCO, QSO significantly up-regulated (p < 0.05) the expression of sir-2.1 and ech-1 genes. The results showed that QSO might reduce lipid accumulation through the SIRT1 and nuclear hormone signaling pathways. Such a situation was verified experimentally by the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199). This study proposed a new functional oil, laying the groundwork for developing functional foods from Quasipaa spinosa.


Assuntos
Caenorhabditis elegans , Gorduras Insaturadas na Dieta , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Rana catesbeiana/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Óleo de Soja/metabolismo , Metabolismo dos Lipídeos/genética
2.
J Colloid Interface Sci ; 663: 1-8, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38387182

RESUMO

We developed a new method to synthesize polyethylene glycol modified ultra small iron embedded in mesoporous carbon nanoparticle (C/Fe-PEG NP) for hydrogen (H2) assisted photothermal synergistic therapy. Herein, we use a simple in-situ reduction method to obtain the C/Fe NP in one-step carbonizing process, which is further modified by the biocompatible polyethylene glycol (PEG) on the surface of C/Fe NP to acquire high stability in physiological solutions. Utilizing the excellent photothermal property from the mesoporous carbon and the controllable H2 release property in the weakly acidic tumor microenvironment by the ultra-small Fe, the obtained C/Fe-PEG NPs can effective kill the cancer cells, meanwhile, protect normal cells without drugs. This selective anti-cancer mechanism of C/Fe-PEG NPs may because the produced H2 selective change the mitochondrial energy metabolism. In vivo results prove that the C/Fe-PEG NPs achieve excellent tumor ablation therapeutic effect and normal tissue protecting ability benefit from the H2-assisted photothermal therapy, promising the use of novel nanomaterials with more safety method for future cancer therapy.


Assuntos
Nanopartículas , Terapia Fototérmica , Ferro/farmacologia , Fototerapia , Polietilenoglicóis , Carbono/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico
3.
Biomed Pharmacother ; 171: 116190, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278026

RESUMO

Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.


Assuntos
Doença de Alzheimer , Morfinanos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Neuroimunomodulação , Escopolamina/farmacologia , Inflamação/patologia , Homeostase , Encéfalo/metabolismo , Colinérgicos/farmacologia
4.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108405

RESUMO

Bisphenol A (BPA) is widely used to harden plastics and polycarbonates and causes serious toxic effects in multiple organs, including the intestines. Selenium, as an essential nutrient element for humans and animals, exhibits a predominant effect in various physiological processes. Selenium nanoparticles have attracted more and more attention due to their outstanding biological activity and biosafety. We prepared chitosan-coated selenium nanoparticles (SeNPs) and further compared the protective effects, and investigated the underlying mechanism of SeNPs and inorganic selenium (Na2SeO3) on BPA-induced toxicity in porcine intestinal epithelial cells (IPEC-J2). The particle size, zeta potential, and microstructure of SeNPs were detected by using a nano-selenium particle size meter and a transmission electron microscope. IPEC-J2 cells were exposed to BPA alone or simultaneously exposed to BPA and SeNPs or Na2SeO3. The CCK8 assay was performed to screen the optimal concentration of BPA exposure and the optimal concentration of SeNPs and Na2SeO3 treatment. The apoptosis rate was detected by flow cytometry. Real-time PCR and Western blot methods were used to analyze the mRNA and protein expression of factors related to tight junctions, apoptosis, inflammatory responses and endoplasmic reticulum stress. Increased death and morphological damage were observed after BPA exposure, and these increases were attenuated by SeNPs and Na2SeO3 treatment. BPA exposure disturbed the tight junction function involved with decreased expression of tight junction protein Zonula occludens 1 (ZO-1), occludin, and claudin-1 proteins. Proinflammatory response mediated by the transcription factor nuclear factor-k-gene binding (NF-κB), such as elevated levels of interleukin-1ß(IL-1ß), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) expression was induced at 6 and 24 h after BPA exposure. BPA exposure also disturbed the oxidant/antioxidant status and led to oxidative stress. IPEC-J2 cell apoptosis was induced by BPA exposure, as indicated by increased BCL-2-associated X protein (Bax), caspase 3, caspase 8, and caspase 9 expression and decreased B-cell lymphoma-2 (Bcl-2) and Bcl-xl expression. BPA exposure activated the endoplasmic reticulum stress (ERS) mediated by the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), Inositol requiring enzyme 1 (IRE1α), and activating transcription factor 6 (ATF6). We found that treatment with SeNPs and Na2SeO3 can alleviate the intestinal damage caused by BPA. SeNPs were superior to Na2SeO3 and counteracted BPA-induced tight junction function injury, proinflammatory response, oxidative stress, apoptosis, and ERS stress. Our findings suggest that SeNPs protect intestinal epithelial cells from BPA-induced damage, partly through inhibiting ER stress activation and subsequently attenuating proinflammatory responses and oxidative stress and suppressing apoptosis, thus enhancing the intestinal epithelial barrier function. Our data indicate that selenium nanoparticles may represent an effective and reliable tool for preventing BPA toxicity in animals and humans.


Assuntos
Nanopartículas , Selênio , Humanos , Animais , Suínos , Selênio/farmacologia , Selênio/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Intestinos , Células Epiteliais/metabolismo , Nanopartículas/química , Claudinas/metabolismo , Apoptose
5.
Antioxidants (Basel) ; 11(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35883883

RESUMO

The objective of this study was to determine the effect of dietary taurine on lipid metabolism and liver injury in mice fed a diet high in oxidized fish oil. The ICR mice (six weeks old) were randomly assigned to six groups and fed different diets for 10 weeks: control (CON), normal plus 15% fresh fish oil diet (FFO), normal plus 15% oxidized fish oil diet (OFO), or OFO plus 0.6% (TAU1), 0.9% (TAU2) or 1.2% (TAU3) taurine. Compared to the CON group, OFO mice showed increased liver index, aspartate aminotransferase (AST) and malondialdehyde (MDA) levels in serum (p < 0.05). In addition, OFO mice had increased cholesterol (CHOL)/high-density lipoprotein cholesterol (HDL-C) and decreased HDL-C/low-density lipoprotein cholesterol (LDL-C) and n-6/n-3 polyunsaturated fatty acid (PUFA) ratio in serum (p < 0.05) compared with CON mice. Notably, dietary taurine ameliorated the liver index and AST and MDA levels in serum and liver in a more dose-dependent manner than OFO mice. In addition, compared to OFO mice, decreased levels of CHOL and ratio of CHOL/HDL-C and n-6 PUFA/n-3 PUFA in serum were found in TAU3-fed mice. Supplementation with TAU2 and TAU3 increased the relative mRNA expression levels of peroxisome proliferator-activated receptor α, adipose triglyceride lipase, lipoprotein lipase, hormone-sensitive lipase and carnitine palmitoyl transferase 1 in liver compared with the OFO group (p < 0.05). Moreover, impaired autophagy flux was detected in mice fed with the OFO diet, and this was prevented by taurine. These findings suggested that dietary taurine might provide a potential therapeutic choice against oxidative stress and lipid metabolism disorder.

6.
Front Nutr ; 9: 857393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464034

RESUMO

This study aimed to investigate the effects of the supplementation of different sources of zinc on mouse myoblast growth in vitro and the growth performance and carcass traits in growing-finishing pigs. In the in vitro trial, 25 or 75 mM zinc sulfate (ZnSO4), methionine-chelated zinc (ZnMet), and glycine-chelated zinc (ZnGly) were co-cultured with the myoblast during proliferation and differentiation. The results showed that the amino acid-chelated zinc supplementation, especially ZnMet, enhances cell proliferation and differentiation in mouse myoblast, and regulates the distribution in S and G2/M phases (P < 0.05). Meanwhile, the protein expression levels of the mammalian target of rapamycin pathways were up-regulated after treatment with 25 µM ZnMet (P < 0.05), which is consistent with the results of the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway in the transcriptome analysis. In the in vivo trial, 27 Duroc × (Landrace × Large White) pigs with an initial average weight of 31.62 ± 0.36 kg were divided into three groups with nine replicates per treatment. The dietary treatment groups were as follows: (1) ZnSO4 group, basal diet +75 mg/kg ZnSO4; (2) ZnMet group, basal diet +75 mg/kg ZnMet; and (3) ZnGly group, basal diet +75 mg/kg ZnGly. The whole trial lasted for 75 days. Increased final body weight, average daily gain, and decreased F/G were noted in the ZnMet group (P < 0.05). Moreover, the ZnMet group had higher carcass weight and loin eye area (P = 0.05). The ZnMet and ZnGly group both had lower serum total protein (P < 0.05), while the ZnMet group had higher serum alkaline phosphatase (P < 0.05). Also, the addition of ZnMet showed higher concentrations of zinc and iron in muscle, kidney, and serum (P < 0.05), improving the deposition and availability of micronutrients. In conclusion, amino acid-chelated zinc, particularly ZnMet, had the best effect, which could improve growth in vitro and increase growth performance while boosting bioavailability in growing-finishing pigs, ultimately, enhancing muscle mass, providing a theoretical basis and guidance for the future use of amino acid-chelated zinc to effectively replenish energy in animal nutrition and production.

7.
Molecules ; 27(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408591

RESUMO

Various nanoparticles have been applied as chemical demulsifiers to separate the crude-oil-in-water emulsion in the petroleum industry, including graphene oxide (GO). In this study, the Janus amphiphilic graphene oxide (JGO) was prepared by asymmetrical chemical modification on one side of the GO surface with n-octylamine. The JGO structure was verified by Fourier-transform infrared spectra (FTIR), transmission electron microscopy (TEM), and contact angle measurements. Compared with GO, JGO showed a superior ability to break the heavy oil-in-water emulsion with a demulsification efficiency reaching up to 98.25% at the optimal concentration (40 mg/L). The effects of pH and temperature on the JGO's demulsification efficiency were also investigated. Based on the results of interfacial dilatational rheology measurement and molecular dynamic simulation, it was speculated that the intensive interaction between JGO and asphaltenes should be responsible for the excellent demulsification performance of JGO. This work not only provided a potential high-performance demulsifier for the separation of crude-oil-in-water emulsion, but also proposed novel insights to the mechanism of GO-based demulsifiers.


Assuntos
Grafite , Petróleo , Emulsões/química , Simulação de Dinâmica Molecular , Água
8.
Oxid Med Cell Longev ; 2022: 6316611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313639

RESUMO

Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of 71.89 ± 0.92 kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the dietary CGA levels and animal growth (P > 0.05). Furthermore, the carcass traits of pigs were improved by 0.04% dietary CGA (P < 0.01). In addition, dietary CGA significantly improved the serum free amino acid profiles of pigs (P < 0.01), while 0.04% dietary CGA promoted more amino acids to translocate to skeletal muscles (P < 0.05). The relative mRNA expression levels of SNAT2 in both longissimus dorsi (LD) and biceps femoris (BF) muscles were augmented in the 0.02% and 0.04% groups (P < 0.05), and the LAT1 mRNA expression in the BF muscle was elevated in the 0.02% group (P < 0.05). We also found that dietary CGA supplementation at the levels of 0.04% or 0.08% promoted the expression of p-Akt and activated the mTOR-S6K1-4EBP1 axis in the LD muscle (P < 0.05). Besides, the MAFbx mRNA abundance in the 0.02% and 0.04% groups was significantly lower (P < 0.05). Our results revealed that dietary supplementation with CGA of 0.04% improved the free amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.


Assuntos
Aminoácidos , Lonicera , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Ácido Clorogênico/farmacologia , Suplementos Nutricionais , Lonicera/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Suínos
9.
J Colloid Interface Sci ; 613: 671-680, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35065441

RESUMO

Designing photothermal transducing agents (PTAs) with enhanced photothermal conversion efficiency (PCE) holds essential importance for photothermal tumor eradication applications. Currently, it is an effective way to improve the photothermal efficiency by designing the energy level transition leading to the enhancement of UV absorption. To address the challenge, we develop novel Prussian blue@polyacrylic acid/copper sulfide Janus nanoparticles (PB@PAA/CuS JNPs) via selective coating of PAA nano-hemisphere on one of the surfaces of PB NPs followed by the further formation of CuS on the PAA template. The experiments show that the energy level transition occurs between Janus structure. Besides, it offers enhanced absorption over NIR-I and NIR-II dual windows. The muscle tissue penetration studies suggest that the PB@PAA/CuS JNPs have deeper tissue penetration in the 1064 nm laser irradiation group, indicating their potential for treating deep-tissue-seated tumors. In a word, the unique PB@PAA/CuS JNPs show an enhanced tumor inhibitory effect over the NIR-I and NIR-II dual windows, which will open up new opportunities for improving PTT efficiency by the rational nanostructural design of PTAs.


Assuntos
Hipertermia Induzida , Nanopartículas , Nanoestruturas , Neoplasias , Cobre , Ferrocianetos , Humanos , Neoplasias/tratamento farmacológico , Fototerapia
10.
J Nutr Biochem ; 99: 108843, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407449

RESUMO

Epigallocatechin-3-gallate (EGCG), the main active ingredient of green tea, exhibits low toxic side effect and versatile bioactivities, and its anti-cancer effect has been extensively studied. Most of the studies used cancer cell lines and xenograft models. However, whether EGCG can prevent tumor onset after cancer-associated mutations occur is still controversial. In the present study, Krt14-cre/ERT-Kras transgenic mice were developed and the expression of K-RasG12D was induced by tamoxifen. Two weeks after induction, the K-Ras mutant mice developed exophytic tumoral lesions on the lips and tongues, with significant activation of Notch signaling pathway. Administration of EGCG effectively delayed the time of appearance, decreased the size and weight of tumoral lesions, relieved heterotypic hyperplasia of tumoral lesions, and prolonged the life of the mice. The Notch signaling pathway was significantly inhibited by EGCG in the tumoral lesions. Furthermore, EGCG significantly induced cell apoptosis and inhibited the proliferation of tongue cancer cells by blocking the activation of Notch signaling pathway. Taken together, these results indicate EGCG as an effective chemotherapeutic agent for tongue cancer by targeting Notch pathway.


Assuntos
Antineoplásicos/administração & dosagem , Catequina/análogos & derivados , Neoplasias Labiais/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Receptores Notch/metabolismo , Neoplasias da Língua/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Camellia sinensis/química , Catequina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Labiais/genética , Neoplasias Labiais/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Sci Food Agric ; 102(9): 3796-3807, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34921408

RESUMO

BACKGROUND: Pork is an important food for humans and improving the quality of pork is closely related to human health. This study was designed to investigate the effects of balanced branched-chain amino acid (BCAA)-supplemented protein-restricted diets on meat quality, muscle fiber types, and intramuscular fat (IMF) in finishing pigs. RESULTS: The results showed that, compared with the normal protein diet (160 g kg-1 crude protein), the reduced-protein diet (120 g kg-1 crude protein) supplemented with BCAAs to the ratio of 2:1:2 not only had higher average daily gain (P < 0.05) and carcass weight (P < 0.05) but also improved meat tenderness and juiciness by decreasing shear force (P < 0.05) and increasing water-holding capacity (P < 0.05). In particular, this treatment showed higher (P < 0.05) levels of phospho-acetyl-CoA carboxylase (P-ACC) and peroxisome proliferation-activated receptor-γ (PPARγ), and lower (P < 0.05) levels of P-adenosine 5'-monophosphate (AMP)-activated protein kinase (P-AMPK), increasing the composition of IMF and MyHC I (P < 0.05) in the longissimus dorsi muscle (LDM). In terms of health, this group increased eicosapentaenoic acid (EPA) (P < 0.01) and desirable hypocholesterolemic fatty acids (DHFA) (P < 0.05), and decreased atherogenicity (AI) (P < 0.01) and hypercholesterolemic saturated fatty acids (HSFA) (P < 0.05). CONCLUSION: Our findings suggest a novel role for a balanced BCAA-supplemented restricted protein (RP) diet in the epigenetic regulation of more tender and healthier pork by increasing IMF deposition and fiber type conversion, providing a cross-regulatory molecular basis for revealing the nutritional regulation network of meat quality. © 2021 Society of Chemical Industry.


Assuntos
Aminoácidos de Cadeia Ramificada , Epigênese Genética , Aminoácidos de Cadeia Ramificada/metabolismo , Ração Animal/análise , Dieta com Restrição de Proteínas , Ácidos Graxos/química , Carne , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Suínos
12.
J Agric Food Chem ; 69(25): 7037-7048, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34110799

RESUMO

This study aimed to investigate the effect of the supplementation of branched-chain amino acids (BCAAs) at different ratios in protein restriction diets on lipid metabolism in a finishing pig model. The BCAA supplementation (leucine/isoleucine/valine = 2:1:1 and 2:1:2) ameliorated the poor growth performance and carcass characteristics, particularly high fat mass caused by a protein-restricted diet. Serum adiponectin increased while leptin decreased in BCAA diets in comparison to the 12% CP group. BCAA supplementation also increased the low-protein expression of AMPK and SIRT1 caused by protein restriction. The mRNA and protein levels of peroxisome proliferation-activated receptor-γ (PPARγ) and acetyl-CoA carboxylase (ACC) were highest in the protein-restricted group and lowered in the 2:1:1 or 2:1:2 group. In conclusion, BCAAs supplemented in an adequate ratio range of 2:1:1 to 2:1:2 (2:1:2 is recommended) in reduced protein diets could modulate lipid metabolism by accelerating the secretion of adipokines and fatty acid oxidation.


Assuntos
Aminoácidos de Cadeia Ramificada , Metabolismo dos Lipídeos , Aminoácidos de Cadeia Ramificada/metabolismo , Dieta com Restrição de Proteínas , Leptina , Oxirredução , Suínos
13.
Nanoscale ; 13(7): 3974-3982, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33595029

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common and deadly malignant tumors worldwide. With unsatisfactory effects of traditional systematic chemotherapy for HCC owing to its drug resistance, novel therapeutic strategies based on nanomaterials for HCC treatments are promising solutions. To solve the challenges of nanoparticles (NPs)-based drug delivery systems for potential clinical applications, we designed water soluble amphiphilic oleic acid-NaYF4:Yb,Er/polydopamine Au nanoflower Janus NPs (OA-UCNPs/PDA-AuF JNPs) with discrete multi compartment nanostructures as dual-drug delivery systems (DDDSs). This unique nanostructure meets the requirements for containing hydrophobic hydroxycamptothecin/hydrophilic doxorubicin in divided spaces and releasing each drug from non-interfering channels under pH/near-infrared (NIR) dual-stimuli. The amphiphilic DDDSs were utilized to eradicate the tumor burden on a high-fidelity HCC model of a patient-derived xenograft (PDX), and represented an efficient strategy for defeating HCC using multi-modal imaging-guided dual-drug chemo-photothermal therapy in the second NIR window. In addition, the potential mechanisms of action for the DDDSs were evaluated.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Nanopartículas Multifuncionais , Nanopartículas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Fototerapia
14.
J Nutr Biochem ; 89: 108578, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33388352

RESUMO

The maternal nutritional status during pregnancy and lactation was closely related to the growth and development of the fetus and infants, which had a profound impact on the health of the offspring. N-3 polyunsaturated fatty acid (PUFA) had been proved to have beneficial effects on glucolipid metabolism. However, the effects of dietary different n-3 PUFA levels for mother during pregnancy and lactation on susceptibility to high-fat-diet-induced metabolic syndrome for offspring in adulthood are still unclear. The maternal mice were fed with control, n-3 PUFA-deficient or fish oil-contained n-3 PUFA-rich diets during pregnancy and lactation, and the weaned offspring were fed with high-fat or low-fat diet for 13 weeks, then were subjected to oral glucose tolerance tests. The results showed that dietary n-3 PUFA-deficiency in early life could aggravate the high-fat-diet-induced glucolipid metabolism disorders, including glucose intolerance, insulin resistance, obesity, and dyslipidemia, thus increased the susceptibility to metabolic syndrome of adult mice. Notably, nutritional supplementation with n-3 PUFA in early life could significantly alleviate the glucose metabolism disorders by increasing insulin sensitivity, inhibiting gluconeogenesis and promoting glycogenesis. In addition, administration with n-3 PUFA in early life remarkably reduced serum and hepatic lipid profiles by mediating the expression of genes related to lipogenesis and ß-oxidation of fatty acids. Dietary n-3 PUFA-deficiency in early life increases the susceptibility to metabolic syndrome of adult offspring, and nutritional supplementation with n-3 PUFA enhances the tolerance to a high-fat diet of adult offspring.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/farmacologia , Fenômenos Fisiológicos da Nutrição Materna , Síndrome Metabólica/prevenção & controle , Animais , Dieta com Restrição de Gorduras , Suplementos Nutricionais , Dislipidemias/etiologia , Dislipidemias/prevenção & controle , Feminino , Óleos de Peixe/farmacologia , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Resistência à Insulina , Lactação/metabolismo , Metabolismo dos Lipídeos , Lipídeos/sangue , Lipogênese , Fígado/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Gravidez
15.
J Anim Sci Biotechnol ; 11: 56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32514342

RESUMO

BACKGROUND: Oxidative stress is a key factor that influences piglets' health. Taurine plays an imperative role in keeping the biological system from damage. This study was conducted to investigate the protective effect of taurine against muscle injury due to the secondary effect of diquat toxicity. RESULTS: Our study found that taurine effectively and dose-dependently alleviated the diquat toxicity induced rise of feed/gain, with a concurrent improvement of carcass lean percentage. The plasma content of taurine was considerably increased in a dose-dependent manner. Consequently, dietary taurine efficiently improved the activity of plasma antioxidant enzymes. Furthermore, taurine attenuated muscle damage by restoring mitochondrial micromorphology, suppressing protein degradation and reducing the percentage of apoptotic cells in the skeletal muscle. Taurine supplementation also suppressed the genes expression levels of the antioxidant-, mitochondrial biogenesis-, and muscle atrophy-related genes in the skeletal muscle of piglets with oxidative stress. CONCLUSIONS: These results showed that the dose of 0.60% taurine supplementation in the diet could attenuate skeletal muscle injury induced by diquat toxicity. It is suggested that taurine could be a potential nutritional intervention strategy to improve growth performance.

16.
Front Physiol ; 11: 449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547405

RESUMO

Background: Intestinal barrier contributes as an important role in maintaining intestinal homeostasis. Oxidative stress can cause critical damages in intestinal integrity of animals. Objectives: This study was conducted to investigate the alleviated effect of taurine against small intestine (duodenum, jejunum, ileum) injury induced by oxidative stress. Methods: The piglet model of diquat-induced oxidative stress was employed. In addition, analysis of intestinal morphology, reverse transcription PCR (RT-PCR), and Western blot were used in this study. Results: Compared with the control group (CON), diquat-induced oxidative stress triggers immune response; the content of immunoglobulin M (IgM) and immunoglobulin G (IgG) was significantly changed, but 0.60% taurine supplementation could restore the level of serum immunoglobulin. Oxidative stress induces serious damage in intestinal morphology structure and tight junction barrier. Compared with the CON, the villus height of intestine was significantly decreased, the crypt depth and villus height/crypt depth (V/C) were also decreased, and 0.60% taurine supplementation could restore impaired morphology and even improve crypt depth and V/C of the jejunum and ileum. Compared with the CON, oxidative stress markedly increased the messenger RNA (mRNA) expression level of claudin-1 and occludin in the duodenum, and the value of occludin was significantly decreased in the jejunum of the diquat group (DIQ). Relative to the DIQ, 0.60% taurine supplementation increased the mRNA expression level of claudin-1, occludin, and ZO-1 in the ileum. Compared with the CON, the expression of claudin-1 protein was significantly upregulated, and occludin and ZO-1 protein were both downregulated in the small intestine of DIQ. Conclusion: Taurine exerts protective effects by regulating immune response and restores the intestinal tight junction barrier when piglets suffer from oxidative stress.

17.
Nutrients ; 12(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370170

RESUMO

Lipid metabolism is an important and complex biochemical process involved in the storage of energy and maintenance of normal biological functions. Leucine, a branched amino acid, has anti-obesity effects on glucose tolerance, lipid metabolism, and insulin sensitivity. Leucine also modulates mitochondrial dysfunction, representing a new strategy to target aging, neurodegenerative disease, obesity, diabetes, and cardiovascular disease. Although various studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between leucine and lipid metabolism. This review offers an up-to-date report on leucine, as key roles in both lipid metabolism and energy homeostasis in vivo and in vitro by acceleration of fatty acid oxidation, lipolysis, activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-silent information regulator of transcription 1 (SIRT1)-proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, synthesis, and/or secretion of adipokines and stability of the gut microbiota.


Assuntos
Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Leucina/administração & dosagem , Leucina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fármacos Antiobesidade , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus/prevenção & controle , Ácidos Graxos/metabolismo , Intolerância à Glucose/prevenção & controle , Humanos , Resistência à Insulina , Leucina/metabolismo , Leucina/farmacologia , Lipólise/efeitos dos fármacos , Doenças Neurodegenerativas/prevenção & controle , Oxirredução/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo
18.
Lipids Health Dis ; 19(1): 104, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450867

RESUMO

BACKGROUND: Glycerophospholipids were the main components of cerebral cortex lipids, and there was a close association between lipid homeostasis and human health. It has been reported that dietary DHA-enriched phosphatidylcholine (DHA-PC) and phosphatidylserine (DHA-PS) could improve brain function. However, it was unclear that whether supplementation of DHA-PC and DHA-PS could change lipid profiles in the brain of dementia animals. METHODS: SAMP8 mice was fed with different diet patterns for 2 months, including high-fat diet and low-fat diet. After intervention with DHA-PC and DHA-PS for another 2 months, the lipid profile in cerebral cortex was determined by lipidomics in dementia mice. RESULTS: High-fat diet could significantly decrease the levels of DHA-containing PS/pPE, DPA-containing PS, and AA-containing PE, which might exhibit the potential of lipid biomarkers for the prevention and diagnosis of AD. Notably, DHA-PC and DHA-PS remarkably recovered the lipid homeostasis in dementia mice. These might provide a potential novel therapy strategy and direction of dietary intervention for patients with cognitive decline. CONCLUSIONS: DHA-PC and DHA-PS could recover the content of brain DHA-containing PS and pPE in SAMP8 mice fed with high-fat diet.


Assuntos
Córtex Cerebral/química , Dieta Hiperlipídica , Ácidos Docosa-Hexaenoicos/análise , Fosfatidilcolinas/química , Fosfatidilserinas/análise , Plasmalogênios/análise , Doença de Alzheimer , Animais , Córtex Cerebral/efeitos dos fármacos , Modelos Animais de Doenças , Lipidômica , Masculino , Camundongos , Fosfatidilcolinas/farmacologia , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia , Plasmalogênios/química , Plasmalogênios/metabolismo
19.
Sci China Life Sci ; 63(6): 866-874, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31705360

RESUMO

Free radical-induced oxidative stress contributes to the development of metabolic syndromes (Mets), including overweight, hyperglycemia, insulin resistance and pro-inflammatory state. Most free radicals are generated from the mitochondrial electron transport chain; under physiological conditions, their levels are maintained by efficient antioxidant systems. A variety of transcription factors have been identified and characterized that control gene expression in response to oxidative stress status. Natural antioxidant compounds have been largely studied for their strong antioxidant capacities. This review discusses the recent progress in oxidative stress and mitochondrial dysfunction in Mets and highlights the anti-Mets, anti-oxidative, and anti-inflammatory effect of polyphenols as potential nutritional therapy.


Assuntos
Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Síndrome Metabólica/terapia , Distúrbios Nutricionais/terapia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia Nutricional/métodos , Polifenóis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
20.
J Agric Food Chem ; 67(49): 13767-13774, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31722531

RESUMO

Recent studies indicated that neuroinflammation contributes to the exacerbation of Alzheimer's disease (AD) and plays an important role in AD. The NOD-like receptor protein 3 (NLRP3) inflammasome, which is an important component of innate immune system, is associated with a wide range of human central nervous system disorders, including AD. Most of the studies focus on the protective effects of docosahexaenoic acid (DHA) in AD, but eicosapentaenoic acid (EPA) has rarely been involved. Here, we investigate the effects of EPA in the forms of phosphatidylcholine (EPA-PC) and ethyl esters (EPA-EE) in improving Aß1-42-induced neurotoxicity. The spatial memory ability and the biochemical changes in the hippocampus were measured, including glial cell activation, tumor necrosis factor α production, NLRP3 inflammasome activation, and autophagic flux. The present results showed that the AD rats were significantly protected from spatial memory loss by the supplementation (EPA + DHA = 60 mg/kg, i.g., 20 days) of EPA-PC, while EPA-EE showed no significant benefit. Further mechanism studies suggested that EPA-PC could inhibit Aß-induced neurotoxicity by alleviating NLRP3 inflammasome activation and enhancing autophagy. These findings indicate that EPA could improve cognitive deficiency in Aß1-42-induced AD rats via autophagic inflammasomal pathway and the bioactivity differs in its molecular form.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Autofagia/efeitos dos fármacos , Ácido Eicosapentaenoico/administração & dosagem , Inflamassomos/efeitos dos fármacos , Fosfatidilcolinas/administração & dosagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA