Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Biol Macromol ; 259(Pt 1): 129101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163503

RESUMO

In this study, an amorphous silica reinforced, phosphoric-crosslinked chitosan foam (P-CTS@SixOy) was prepared. The introduction of amorphous silica not only increased the affinity of the adsorbent for uranium, but also improved the stability of the material. The number of active sites of P-CTS@SixOy was increased by the introduction of phosphate groups. The material exhibited excellent uranium adsorption performance with the removal capacity and efficiency of 850.5 mg g-1 and 98.1 %, respectively. After regenerations, the morphology of P-CTS@SixOy still maintained, and the uranium adsorption efficiency remained above 90 %, manifesting the excellent cycle performance of P-CTS@SixOy. In the dynamic adsorption experiment, P-CTS@SixOy successfully concentrated the volume of uranium-containing solution, and exhibited excellent uranium adsorption performance. The analysis of kinetics, isotherms, and thermodynamics manifested that the uranium adsorption behavior of P-CTS@SixOy was a spontaneous, endothermic, monolayer chemical adsorption process. X-ray photoelectron spectroscopy, Scanning Electron Microscope, and Fourier Transform Infrared Spectrometer were used to characterized the P-CTS@SixOy before and after adsorption, which demonstrated that the main interaction mechanism between uranium and P-CTS@SixOy was the complexation. These studies indicated the huge application prospect of P-CTS@SixOy in the treatment of large-scale uranium-containing wastewater.


Assuntos
Quitosana , Urânio , Urânio/química , Quitosana/química , Adsorção , Dióxido de Silício/química , Águas Residuárias , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
2.
Environ Sci Pollut Res Int ; 30(2): 5267-5279, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35982388

RESUMO

Geopolymer bricks from lead glass sludge (LGS) and alumina flakes filling (AFF) waste were synthesized in the present work. AFF waste was chemically treated to prepare sodium aluminate (NaAlO2) powder. Silicate source (untreated LGS and thermally treated one at 600 °C (LGS600)) and sodium oxide (Na2O) concentration (as NaAlO2) were the compositional parameters, which affected the physical and mechanical properties (compressive strength, water absorption, and bulk density) of the prepared bricks. High organic matter content inside LGS caused a retardation effect on the geopolymerization process, resulting in the formation of hardened bricks with modest 90-day compressive strengths (2.13 to 4.4 MPa). Using LGS600 enhanced the mechanical properties of the fabricated bricks, achieving a maximum 90-day compressive strength of 22.35 MPa at 3 wt.% Na2O. Sodium aluminosilicate hydrate was the main activation product inside all samples, as confirmed by X-ray diffraction and thermal analyses. Acetic acid leaching test also proved that all LGS600-NaAlO2 mixtures represented Pb concentrations in leachates lower than the permissible level of characteristic leaching procedures, indicating the mitigation of environmental problems caused by these wastes.


Assuntos
Resíduos Industriais , Esgotos , Resíduos Industriais/análise , Chumbo/análise , Óxido de Alumínio , Vidro , Hidróxido de Sódio/química , Força Compressiva
3.
Front Public Health ; 10: 907078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719607

RESUMO

The aim of the present study was to understand the mechanism of lethality associated with high dose inhalation of a low-density hydrophobic surface-treated SAS observed in some acute inhalation studies. It was demonstrated that physical obstruction of the upper respiratory tract (nasal cavities) caused the effects observed. Hydrophobic surface-treated SAS was inhaled (flow-past, nose-only) by six Wistar rats (three males and three females) in an acute toxicity study at a concentration of ~500 mg/m3 for an intended 4-hr exposure. Under the conditions of the test set-up, the concentration applied was found to be the highest that can be delivered to the test animal port without significant alteration of the aerosol size distribution over time. None of the test- material-exposed animals survived the planned observation time of 4 h; three animals died between 2 34 h after starting exposure and cessation of exposure at 3 14 h, two died after transfer to their cages and the remaining animal was sacrificed due to its poor condition and welfare considerations. Histology accomplished by energy dispersive X-ray (EDX) analysis demonstrated that test material particles agglomerated and formed a gel-like substrate that ultimately blocked the upper respiratory airways, which proved fatal for the rat as an obligatory nose breather. This observation is in line with the findings reported by Hofmann et al. showing a correlation between lethality and hydrophobicity determined by contact angle measurement. The aerosol characterizations associated with this study are provided in detail by Wessely et al.


Assuntos
Exposição por Inalação , Dióxido de Silício , Aerossóis , Animais , Asfixia , Feminino , Interações Hidrofóbicas e Hidrofílicas , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Masculino , Cavidade Nasal/química , Ratos , Ratos Wistar , Dióxido de Silício/análise , Dióxido de Silício/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-35483783

RESUMO

The genotoxicity of nano-structured synthetic amorphous silica (SAS), a common food additive, was investigated in vivo in rats. A 90-day oral toxicity study was performed according to OECD test guideline 408 and the genotoxicity of pyrogenic SAS nanomaterial NM-203 was assessed in several organs, using complementary tests. Adult Sprague-Dawley rats of both sexes were treated orally for 90 days with 0, 2, 5, 10, 20, or 50 mg SAS/kg bw per day. Dose levels were selected to approximate expected human dietary exposures to SAS. DNA strand breaks were evaluated by the comet assay in blood, bone marrow, liver, and spleen according to OECD test guideline 489; mutations induced in bone marrow precursors of erythrocytes were assessed by the Pig-a assay and chromosome/ genome damage by the micronucleus assay in blood (OECD test guideline 474) and colon. No treatment-related increases of gene (Pig-a) or chromosome/genome (micronucleus) mutations were detected in the blood. The percentage of micronucleated cells was not increased in the colon of treated rats. Among the organs analyzed by the comet assay, the spleen was the only target showing a weak but biologically relevant genotoxic effect.


Assuntos
Dano ao DNA , Dióxido de Silício , Animais , Ensaio Cometa , Feminino , Masculino , Testes para Micronúcleos , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/toxicidade
5.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35409381

RESUMO

(1) Background: Synthetic amorphous silica (SAS) is widely used as a food additive and contains nano-sized particles. SAS can be produced by fumed and precipitated methods, which may possess different physiochemical properties, toxicokinetics, and oral toxicity. (2) Methods: The toxicokinetics of fumed SAS and precipitated SAS were evaluated following a single-dose oral administration in rats. The tissue distribution and fate of both SAS particles were assessed after repeated oral administration in rats for 28 d, followed by recovery period for 90 d. Their 28-d repeated oral toxicity was also evaluated. (3) Results: Precipitated SAS showed higher oral absorption than fumed SAS, but the oral absorption of both SAS particles was low (<4%), even at 2000 mg/kg. Our tissue-distribution study revealed that both SAS particles, at a high dose (2000 mg/kg), were accumulated in the liver after repeated administration for 28 d, but the increased concentrations returned to normal levels at 29 d, the first day of the recovery period. A higher distribution level of precipitated SAS than fumed SAS and decomposed particle fates of both SAS particles were found in the liver at 28 d. No significant toxicological findings were observed after 28-d oral administration, suggesting their low oral toxicity. (4) Conclusions: Different manufacturing methods of SAS can, therefore, affect its oral toxicokinetics and tissue distribution, but not oral toxicity.


Assuntos
Aditivos Alimentares , Dióxido de Silício , Animais , Aditivos Alimentares/química , Tamanho da Partícula , Ratos , Dióxido de Silício/química , Distribuição Tecidual , Toxicocinética
6.
ACS Nano ; 15(5): 8225-8243, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33938728

RESUMO

The intensive application of nanomaterials in the food industry has raised concerns about their potential risks to human health. However, limited data are available on the biological safety of nanomaterials in food, especially at the epigenetic level. This study examined the implications of two types of synthetic amorphous silica (SAS), food-grade precipitated silica (S200) and fumed silica Aerosil 200F (A200F), which are nanorange food additives. After 28-day continuous and intermittent subacute exposure to these SAS via diet, whole-genome methylation levels in mouse peripheral leukocytes and liver were significantly altered in a dose- and SAS type-dependent manner, with minimal toxicity detected by conventional toxicological assessments, especially at a human-relevant dose (HRD). The 84-day continuous subchronic exposure to all doses of S200 and A200F induced liver steatosis where S200 accumulated in the liver even at HRD. Genome-wide DNA methylation sequencing revealed that the differentially methylated regions induced by both SAS were mainly located in the intron, intergenic, and promoter regions after 84-day high-dose continuous exposure. Bioinformatics analysis of differentially methylated genes indicated that exposure to S200 or A200F may lead to lipid metabolism disorders and cancer development. Pathway validation experiments indicated both SAS types as potentially carcinogenic. While S200 inhibited the p53-mediated apoptotic pathway in mouse liver, A200F activated the HRAS-mediated MAPK signaling pathway, which is a key driver of hepatocarcinogenesis. Thus, caution must be paid to the risk of long-term exposure to food-grade SAS, and epigenetic parameters should be included as end points during the risk assessment of food-grade nanomaterials.


Assuntos
Metilação de DNA , Nanoestruturas , Animais , Aditivos Alimentares/toxicidade , Camundongos , Processamento de Proteína Pós-Traducional , Dióxido de Silício/toxicidade
7.
Nanomaterials (Basel) ; 10(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384606

RESUMO

Synthetic amorphous silica (SAS), manufactured in pyrogenic or precipitated form, is a nanomaterial with a widespread use as food additive (E 551). Oral exposure to SAS results from its use in food and dietary supplements, pharmaceuticals and toothpaste. Recent evidence suggests that oral exposure to SAS may pose health risks and highlights the need to address the toxic potential of SAS as affected by the physicochemical characteristics of the different forms of SAS. For this aim, investigating SAS toxicokinetics is of crucial importance and an analytical strategy for such an undertaking is presented. The minimization of silicon background in tissues, control of contamination (including silicon release from equipment), high-throughput sample treatment, elimination of spectral interferences affecting inductively coupled plasma mass spectrometry (ICP-MS) silicon detection, and development of analytical quality control tools are the cornerstones of this strategy. A validated method combining sample digestion with silicon determination by reaction cell ICP-MS is presented. Silica particles are converted to soluble silicon by microwave dissolution with mixtures of HNO3, H2O2 and hydrofluoric acid (HF), whereas interference-free ICP-MS detection of total silicon is achieved by ion-molecule chemistry with limits of detection (LoDs) in the range 0.2-0.5 µg Si g-1 for most tissues. Deposition of particulate SiO2 in tissues is assessed by single particle ICP-MS.

8.
Anim Sci J ; 88(10): 1636-1643, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28402014

RESUMO

The efficacy of advanced treatment of swine wastewater using thermally polymerized, modified amorphous silica and hydrated lime (M-CSH-lime) for color and phosphorus removal and sulfur for nitrogen removal was examined with a demonstration-scale treatment plant. The color removal rate was approximately 78% at M-CSH-lime addition rates of > 0.055 wt/v%. The PO43--P removal rate exceeded 99.9% with > 0.023 wt/v%. pH of the effluent from the M-CSH-lime reactor increased with the addition rate till a maximum value of 12.7, which was effective in disinfection. The recovered M-CSH-lime would be suitable as a phosphorus fertilizer because the total P2 O5 content was approximately 10%. The nitrogen oxide (NOx-N) removal rate by sulfur denitrification increased to approximately 80% when the NOx-N loading rate was around 0.1 kg-N/ton-S/day. It was suggested that the combination of the two processes would be effective in the advanced treatment of swine wastewater.


Assuntos
Reatores Biológicos , Compostos de Cálcio , Cor , Nitrogênio/isolamento & purificação , Óxidos , Fósforo/isolamento & purificação , Dióxido de Silício , Enxofre/isolamento & purificação , Águas Residuárias/química , Purificação da Água/métodos , Animais , Desnitrificação , Desinfecção , Fertilizantes , Óxidos de Nitrogênio/isolamento & purificação , Polimerização , Suínos , Poluição da Água/prevenção & controle
9.
Int J Immunopathol Pharmacol ; 29(3): 408-20, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27343242

RESUMO

Nanomaterials present in cosmetics and food additives are used for industrial applications. However, their safety profile is unclear. Amorphous silica nanoparticles (nSPs) are a widely used nanomaterial and have been shown to induce inflammatory cytokines following intratracheal administration in mice. The current study investigated the adjuvant effect of nSP30 (nSP with a diameter of 33 nm) on T helper (Th)1, Th2, and Th17 immune responses as well as immunoglobulin (Ig) levels in mice. BALB/c mice were intraperitoneally administered ovalbumin (OVA) with or without varying doses and varying sizes of nSPs. The adjuvant effect of nSPs was investigated by measuring OVA-specific IgG antibodies in sera, OVA-specific proliferative responses of splenocytes, and the production of Th1, Th2, and Th17 cytokines. Aluminum hydroxide was used as a positive adjuvant control. Anti-OVA IgG production, splenocyte proliferative responses, and secretion of IFN-γ, IL-2, IL-4, IL-5, and IL-17 were increased significantly in mice receiving a combined injection of nSP30 (30 or 300 µg) with OVA compared with OVA alone or a combined injection with nSP30 (3 µg). The responses were nSP30 dose-dependent. When different sized nSPs were used (with 30, 100, and 1000 nm diameters), the responses to OVA were enhanced and were size-dependent. The smaller sized nSP particles had a greater adjuvant effect. nSPs appear to exert a size-dependent adjuvant effect for Th1, Th2, and Th17 immune responses. Understanding the mechanisms of nSP adjuvanticity might lead to the development of novel vaccine adjuvants and therapies for allergic diseases caused by environmental factors.


Assuntos
Nanopartículas/administração & dosagem , Ovalbumina/imunologia , Dióxido de Silício/administração & dosagem , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos/imunologia , Imunoglobulina G/imunologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Tamanho da Partícula , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th2/efeitos dos fármacos
10.
Toxicol Appl Pharmacol ; 288(1): 63-73, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26210349

RESUMO

Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis.


Assuntos
Anti-Inflamatórios/farmacologia , Cério/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pneumonia/induzido quimicamente , Fibrose Pulmonar/induzido quimicamente , Dióxido de Silício/farmacologia , Animais , Anti-Inflamatórios/química , Líquido da Lavagem Broncoalveolar/química , Cério/química , Colágeno/metabolismo , Citocinas/metabolismo , Citoproteção , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Nanopartículas Metálicas/química , Fosfolipídeos/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/prevenção & controle , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/prevenção & controle , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Ratos Sprague-Dawley , Dióxido de Silício/química , Espectrometria por Raios X , Propriedades de Superfície , Fatores de Tempo , Inibidores Teciduais de Metaloproteinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA