Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1368869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545395

RESUMO

Background: Thymus mandschuricus is an aromatic and medicinal plant with notable antibacterial and antioxidant properties. However, traditional breeding methods rely on phenotypic selection due to a lack of molecular resources. A high-quality reference genome is crucial for marker-assisted breeding, genome editing, and molecular genetics. Results: We utilized PacBio and Hi-C technologies to generate a high-quality chromosome-level reference genome for T. mandschuricus, with a size of 587.05 Mb and an N50 contig size of 8.41 Mb. The assembled genome contained 29,343 predicted protein-coding genes, and evidence of two distinct whole-genome duplications in T. mandschuricus was discovered. Comparative genomic analysis revealed rapid evolution of genes involved in phenylpropanoid biosynthesis and the CYP450 gene family in T. mandschuricus. Additionally, we reconstructed the gene families of terpenoid biosynthesis structural genes, such as TPS, BAHD, and CYP, and identified regulatory networks controlling the expression of aroma-synthesis genes by integrating transcriptome data from various organs and developmental stages. We discovered that hormones and transcription factors may collaborate in controlling aroma-synthesis gene expression. Conclusion: This study provides the first high-quality genome sequence and gene annotation for T. mandschuricus, an indigenous thyme species unique to China. The genome assembly and the comprehension of the genetic basis of fragrance synthesis acquired from this research could potentially serve as targets for future breeding programs and functional studies.

2.
Foods ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540906

RESUMO

Vicia kulingiana, an endemic species, serves as a wild and underutilized vegetable traditionally consumed in China. However, ethnobotanical and chemical studies of this species are not available. This study analyzed its associated ethnobotanical knowledge, nutritional composition and aroma profile. Ethnobotanical surveys revealed its diverse traditional uses, especially as a nutritious vegetable. Further analysis showed V. kulingiana leaves to be high in protein, minerals, vitamin E, and dietary fiber. In total, 165 volatile compounds, such as terpenoids, alcohols, and ketones, were identified. Among them, ß-ionone is the most abundant compound with a relative percentage of 8.24%, followed by 2,2,4,6,6-pentamethylheptane (3.2%), 3-(4-methyl-3-pentenyl)furan (2.37%), and linalool (1.68%). Results supported the traditional uses of V. kulingiana's and highlighted its potential as a valuable food source, encouraging further research on its food applications. The documentation of ethnobotanical knowledge contributes to the conservation of this heritage.

3.
Food Chem ; 443: 138616, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306907

RESUMO

Guangchenpi (GCP), which is the peel of Citrus reticulata 'Chachiensis', is widely used as an herbal medicine, tea and food ingredient in southeast Asia. Prolonging its aging process results in a more pleasant flavor and increases its profitability. Through the integration of sensory evaluation with flavoromic analysis approaches, we evaluated the correlation between the flavor attributes and the profiles of the volatiles and flavonoids of GCP with various aging years. Notably, d-limonene, γ-terpinene, dimethyl anthranilate and α-phellandrene were the characteristic aroma compounds of GCP. Besides, α-phellandrene and nonanal were decisive for consumers' perception of GCP aging time due to changes of their odor activity values (OAVs). The flavor attributes of GCP tea liquid enhanced with the extension of aging time, and limonene-1,2-diol was identified as an important flavor enhancer. Combined with machine learning models, key flavor-related metabolites could be developed as efficient biomarkers for aging years to prevent GCP adulteration.


Assuntos
Citrus , Monoterpenos Cicloexânicos , Limoneno , Chá
4.
Molecules ; 29(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338351

RESUMO

Sweet potato provides rich nutrients and bioactive substances for the human diet. In this study, the volatile organic compounds of five pigmented-fleshed sweet potato cultivars were determined, the characteristic aroma compounds were screened, and a correlation analysis was carried out with the aroma precursors. In total, 66 volatile organic compounds were identified. Terpenoids and aldehydes were the main volatile compounds, accounting for 59% and 17%, respectively. Fifteen compounds, including seven aldehydes, six terpenes, one furan, and phenol, were identified as key aromatic compounds for sweet potato using relative odor activity values (ROAVs) and contributed to flower, sweet, and fat flavors. The OR sample exhibited a significant presence of trans-ß-Ionone, while the Y sample showed high levels of benzaldehyde. Starch, soluble sugars, 20 amino acids, and 25 fatty acids were detected as volatile compounds precursors. Among them, total starch (57.2%), phenylalanine (126.82 ± 0.02 g/g), and fatty acids (6.45 µg/mg) were all most abundant in Y, and LY contained the most soluble sugar (14.65%). The results of the correlation analysis revealed the significant correlations were identified between seven carotenoids and trans-ß-Ionone, soluble sugar and nerol, two fatty acids and hexanal, phenylalanine and 10 fatty acids with benzaldehyde, respectively. In general, terpenoids and aldehydes were identified as the main key aromatic compounds in sweet potatoes, and carotenoids had more influence on the aroma of OR than other cultivars. Soluble sugars, amino acids, and fatty acids probably serve as important precursors for some key aroma compounds in sweet potatoes. These findings provide valuable insights for the formation of sweet potato aroma.


Assuntos
Ipomoea batatas , Norisoprenoides , Solanum tuberosum , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Benzaldeídos , Ipomoea batatas/química , Carotenoides , Odorantes/análise , Terpenos , Aldeídos/análise , Açúcares , Ácidos Graxos , Fenilalanina , Amido
5.
J Food Sci Technol ; 61(2): 366-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196717

RESUMO

The present study aims to evaluate the quality of chemical, sensory properties and antioxidant potential of mulberry wine using selenium-enriched yeasts employing eight different methods (MW1-MW8). The selenium-enriched yeast significantly (p < 0.05) increased phytochemical profiles, flavor, quality and antioxidant capacity. The most effective method for raising the selenium level of mulberry wine was using L-seMC (MW5). Mulberry wine color was attributed to the anthocyanins and phytochemical composition with selenium content. DPPH and ABTS radical scavenging activity varied with change in treatment methods suggesting their impact on antioxidant activity. Total selenium content on L-SeMC supplementation proved a significant correlation between selenium content with total anthocyanin content, total polyphenol content and flavonoid content. Sensory analysis by electronic nose exhibited MW2 with high response value in the W2S sensor showing high alcohol concentration. GC-MS analysis showed the presence of 57 volatile aromatic compounds comprehended by esters and alcohol (isoamyl alcohol, 2-methylbutanol, 2,3-butanediol, and phenethyl alcohol). Principal component analysis affirms the response values for four categorical score values with reliability and consistency for all the parameters, significantly. Thus, the workflow demonstrates a simpler, cost-effective traditional methodology for rationalized outcomes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05847-4.

6.
Food Res Int ; 177: 113854, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225127

RESUMO

Fu brick tea (FBT) has unique "fungal flower" aroma traits, but its source of crucial aroma compounds is still controversial. Aspergillus cristatus is the dominant fungus that participated in the fermentation of FBT. In this study, volatiles of Aspergillus cristatus and corresponding fermented FBT were examined using GC × GC-Q-TOFMS. A total of 59 volatiles were shared by three strains of Aspergillus cristatus isolated from representative FBT. Among them, 1-octen-3-ol and 3-octanone were the most abundant. A total of 133 volatiles were screened as typical FBT volatiles from three FBTs fermented by the corresponding fungi. Aspergillus cristatus and FBT had only 29 coexisting volatiles, indicating that the volatiles of Aspergillus cristatus could not directly contribute to the aroma of FBT. The results of no significant correlation between volatile content in FBT and volatile content in Aspergillus cristatus suggested that intracellular metabolism of Aspergillus cristatus was not a direct driver of FBT aroma formation. Metabolic pathway analysis and proteomic analysis showed that the aroma in FBT was mainly formed by the enzymatic reaction of extracellular enzymes from Aspergillus cristatus. This study enriched our understanding of Aspergillus cristatus in the aroma formation process of FBT.


Assuntos
Proteômica , Chá , Fermentação , Chá/metabolismo , Aspergillus/metabolismo
7.
Food Chem ; 439: 137810, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043275

RESUMO

Aroma is one of the most outstanding quality characteristics of Qingzhuan tea (QZT), but its formation is still unclear. Thus, the volatile organic compounds (VOCs) during the whole processing of QZT were investigated by headspace solid-phase microextraction/gas chromatography-mass spectrometry. Based on 144 identified VOCs, the results showed that de-enzyming, sun-drying, and piling fermentation were the key processes of QZT aroma formation. Furtherly, 42 differential VOCs (VIP > 1.0 and p < 0.05) and 16 key VOCs (rOAV > 1.0 and/or ROAV > 1.0) were screened. Especially, sulcatone and ß-ionone (rOAV > 100 and ROAV > 10) were considered the most important contributors to the aroma of QZT. The metabolisms of key VOCs were mainly involved in oxidative degradation of fatty acids, degradation of carotenoids, and methylation of gallic acid. This study could help to more comprehensively understand the aroma formation in QZT processing at an industrial scale.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Carotenoides/análise , Fermentação , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos
8.
Food Chem ; 439: 138176, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091790

RESUMO

Steamed green tea has a long history and unique aroma, but little is known about its key aroma components. In this study, 173 volatiles in steamed green tea were identified using solvent-assisted flavor evaporation and headspace-solid phase microextraction plus two chromatographic columns of different polarities. Aroma extract dilution analysis revealed 48 highly aroma-active compounds with flavor dilution factors 64-1024. Internal standards were used to calculate odorant active value (OAV), and 11 OAV > 1 key aroma compounds were determined. Omission test identified eight substances, including dimethyl sulfide, (E)-ß-ionone, cis-jasmone, linalool, nonanal, heptanal, isovaleraldehyde and (Z)-3-hexenol, as the key aroma active compounds of steamed green tea. With the increase of withering degree, the content of these substances increased first and then decreased except for heptanal and cis-jasmone. Moreover, the water content of 62 % was suggested to be an appropriate withering degree during the processing of steamed green tea.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Vapor , Compostos Orgânicos Voláteis/análise
9.
Food Chem ; 438: 138062, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38064793

RESUMO

This study used samples processed with an innovative manufacturing process to explore the dynamic changes of large-leaf yellow tea (LYT) in color, aroma, and taste substances, and the quality components were most significantly affected in the stages of first pile-yellowing (FP) and over-fired drying (TD). In this process, the moisture and temperature conditions caused chlorophyll degradation, Maillard reactions, caramelization reactions, and isomerization of phenolic substances, forming the quality of LYT. Specifically, chlorophyll degradation favored the formation of color quality; the taste quality was determined by the content of soluble sugars, amino acids, catechins, etc.; the aroma quality was dependent on the content changes of alcohols and aldehydes, as well as the increase of sweet and roasting aroma substances in the third drying stage. Additionally, twelve key aroma components, including linalool, (E)-ß-ionone, 2,3-diethyl-5-methyl-pyrazine, etc., were identified as contributors to revealing LYT rice crust-like and sweet aroma formation mechanism.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , Camellia sinensis/química , Paladar , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Folhas de Planta/química , Clorofila/análise
10.
Food Res Int ; 175: 113782, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129007

RESUMO

Aroma has an important influence on the aroma quality of chicken meat. This study aimed to identify the characteristic aroma substances in chicken meat and elucidate their metabolic mechanisms. Using gas chromatography-olfactometry and odor activity values, we identified nonanal, octanal, and dimethyl tetrasulfide as the basic characteristic aroma compounds in chicken meat, present in several breeds. Hexanal, 1-octen-3-ol, (E)-2-nonenal, heptanal, and (E,E)-2,4-decadienal were breed-specific aroma compounds found in native Chinese chickens but not in the meat of white-feathered broilers. Metabolomics analysis showed that L-glutamine was an important metabolic marker of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol. Exogenous supplementation experiments found that L-glutamine increased the content of D-glucosamine-6-P and induced the degradation of L-proline, L-arginine, and L-lysine to enhance the Maillard reaction and promote the formation of nonanal, hexanal, heptanal, octanal, and 1-octen-3-ol, thus improving the aroma profile of chicken meat.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Odorantes/análise , Olfatometria , Galinhas , Olfato , Glutamina , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa , Carne
11.
J Agric Food Chem ; 71(48): 18963-18972, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37962281

RESUMO

Fermented tea (FT) using a single Eurotium cristatum strain can produce a pleasant fungal-flowery aroma, which is similar to the composite aroma characteristic of minty, flowery, and woody aromas, but its molecular basis is not yet clear. In this study, solvent-assisted flavor evaporation and gas chromatography-mass spectrometry/olfactometry were applied to isolate and identify volatiles from the FT by E. cristatum. The application of an aroma extract dilution analysis screened out 43 aroma-active compounds. Quantification revealed that there were 11 odorants with high odor threshold concentrations. Recombination and omission tests revealed that nonanal, methyl salicylate, decanoic acid, 4-methoxybenzaldehyde, α-terpineol, phenylacetaldehyde, and coumarin were the major odorants in the FT. Addition tests further verified that methyl salicylate, 4-methoxybenzaldehyde, and coumarin were the key odorants for fungal-flowery aroma, each corresponding to minty, woody, and flowery aromas, respectively. 4-Methoxybenzaldehyde and coumarin were newly found odorants for fungal-flowery aroma in FT, and 4-methoxybenzaldehyde had not been reported as a tea volatile compound before. This finding may guide future industrial production optimization of FT with improved flavor.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Olfato , Aromatizantes/análise , Compostos Orgânicos Voláteis/análise , Olfatometria , Cumarínicos/análise , Chá
12.
BMC Complement Med Ther ; 23(1): 397, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932761

RESUMO

BACKGROUND: Anxiety disorder is the most prevalent psychiatric disorder. Benzodiazepines, which are often used for anxiety in patients with anxiety disorder, have various side effects. Lavender, one of the most commonly used essential oils in aromatherapy, has the potential to reduce benzodiazepine use for anxiety disorders. METHODS: This study is a multicenter, double-masked, randomized, placebo-controlled clinical trial. The study will recruit patients aged 20-59 years old with generalized anxiety disorder and panic disorder among anxiety disorders. The bottle containing the test solution (lavender aroma essential oil or distilled water) will be given to the patients. Patients will carry the bottles with them in their daily life and use the drops on tissue paper when anxious. The primary endpoint is the number of times anxiolytics used in 28 days. DISCUSSION: If the use of benzodiazepines could be reduced by sniffing lavender aroma, which is inexpensive and safe, it would contribute not only to the risks associated with benzodiazepine use but also to the health care economy and could even be added as a standard treatment. TRIAL REGISTRATION: University hospital Medical Information Network Clinical Trials Registry (UMIN-CTR), ID: UMIN000034422 Registered 17 January 2019.


Assuntos
Aromaterapia , Lavandula , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Odorantes , Aromaterapia/métodos , Transtornos de Ansiedade , Benzodiazepinas , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
13.
Food Res Int ; 174(Pt 1): 113643, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37986484

RESUMO

Aroma is one of the significant quality factors of dark tea (DT). However, for a single large-leaf tea variety, there are few studies analyzing the effect of pile-fermentation on the aroma quality of DT. The GC × GC-QTOFMS, electronic nose (E-nose) and GC-olfactometry (GC-O) techniques were employed to analysis the difference of tea products before and after pile-fermentation. A total of 149 volatile metabolites (VMs) were identified, with 92 VMs exhibiting differential characteristics. Among these, 31 VMs with OAV > 1.0 were found to be correlated with E-nose results (|r| > 0.8). Additionally, GC-O analysis validated seven major differential metabolites. Notably, naphthalene, 2-methylnaphthalene, and dibenzofuran were found to enhance the woody aroma, while (Z)-4-heptenal, 2-nonenal and 1-hexanol were associated with an increase in mushroom, fatty and sweet odors, respectively. Moreover, 1-octen-3-ol was linked to reducing pungent fishy smell. These findings could provide a certain theoretical basis for understanding the influence of pile-fermentation on the aroma quality of dark tea.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Nariz Eletrônico , Fermentação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Folhas de Planta/química , Chá
14.
Food Res Int ; 174(Pt 1): 113515, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986507

RESUMO

Shaking is a key process effecting the floral aroma of Hunan black tea (HBT). In this study, the aroma composition of HBTs shaken in the early withering stage (ES1, ES1 + LS1, and ES2), shaken in the late withering stage (LS1), and not shaken (NS), and the identification of main floral aroma compounds were analyzed using sensory evaluation combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and aroma recombination experiments. Sensory evaluation results showed that the floral aroma of HBT shaken in the early withering stage was with high intensity, whereas HBT shaken in the late withering stage had low-intensity floral aroma. GC-MS identified a total number of 81 differential volatile compounds in HBT, including 30 esters, 18 aldehydes, 15 alcohols, 12 terpenes, 4 ketones, and 2 nitrogen-containing compounds. Further screening of important floral aroma differential compounds was performed using sensory-guided, odor activity value (OAV), and GC-O analysis, which identified three critical floral aroma differential compounds. Eventually, absolute quantification analysis and aroma recombination experiments confirmed that indole and methyl jasmonate were the most critical compounds of HBT determining floral aroma intensity. The findings of this study provide valuable guidance for the production of HBT with rich floral aroma attributes.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Camellia sinensis/química
15.
Food Res Int ; 173(Pt 1): 113224, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803542

RESUMO

Over-fired drying, a crucial process in the production of Lu'an Guapian (LAGP) tea, greatly enriches the tea's aroma. In this study, the aroma compounds of LAGP tea processed through pulley charcoal drying (PCD), roller drying (RD), roller-conveyor drying (RCD), and hot air drying (HD) were analyzed using gas chromatography-mass spectrometry. A subsequent analysis of aroma extraction dilution analysis and odor activity values revealed that (E)-ß-ionone, dimethyl sulfide, (E,E)-2,4-heptadienal, geraniol, linalool, benzeneacetaldehyde, coumarin, 2-ethyl-3,5-dimethyl-pyrazine, indole, hexanal, (Z)-jasmone, and (Z)-3-hexen-1-ol were the key contributors to the samples' aroma variation. Moreover, a quantitative descriptive analysis and aroma recombination and omission experiments analysis revealed that (E)-ß-ionone is the most critical contributor to the formation of floral aroma in tea processed using PCD, whereas (E,E)-2,4-heptadienal is responsible for the more pronounced fresh aroma in tea processed using HD. In addition, 2-ethyl-3,5-dimethyl-pyrazine contributes to the formation of a roasted aroma in tea processed using RD and RCD. The study results provide a theoretical basis for choosing the processing method, especially for drying, to obtain high-quality LAGP tea.


Assuntos
Odorantes , Chá , Odorantes/análise , Chá/química , Pirazinas/análise
16.
Food Res Int ; 172: 113186, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689937

RESUMO

The elegant orchid-like fragrance of tea has always been tea processors and consumers' top priority. Controlling the production process is very important for tea aroma formation. This study aims to investigate the synthesis of (Z)-methyl epijasmonate (epi-MeJA), a key contributor to orchid-like aroma properties in tea, during tea processing. The changes in content of epi-MeJA were analysed during the processing of two tea varieties (Anxi Tieguanyin and Taiping Houkui) with typical orchid-like fragrance. It was found to be mainly synthesized and accumulated during tea processing, as fresh tea leaves contained little or even no epi-MeJA. Its content was positively correlated with the processing time in the enzyme active stages (before fixation). During the fixation stages, isomerization occurred due to high temperatures, with a degree of epimerization to the much less odor active isomer (Z)-methyl jasmonate. Isomerization could also occurred during the drying process, which is dominated by the drying temperature.


Assuntos
Acetatos , Odorantes , Isomerismo , Chá
17.
Complement Ther Med ; 77: 102976, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625623

RESUMO

OBJECTIVES: The COVID-19 pandemic increased psychological stress and decreased sleep quality, especially among young people. Aromatherapy alleviates psychological stress, and bergamot essential oil helps improve depression. This study aimed to verify whether bergamot essential oil use alleviates psychological stress due to the COVID-19 pandemic and improves sleep quality and morning wakefulness. DESIGN: A placebo-controlled, randomized, open-label, two-arm, two-period crossover trial. INTERVENTIONS: Each intervention period was 1 week, with a 1-week washout period between the two periods. Participants used a bergamot or placebo spray before bedtime and upon awakening in each period. MAIN OUTCOME MEASURES: The primary outcome measures were sleep quality and morning wakefulness, assessed using the Ogri-Shirakawa-Azumi sleep inventory MA version (OSA-MA). The secondary outcome measures were depression, anxiety, and stress, assessed using the Depression Anxiety Stress Scales-21 (DASS-21). RESULTS: A total of 48 university students participated in the study. A significant improvement was observed in "sleepiness on rising," "refreshing on rising," and "sleep length" in the bergamot group. Additionally, a significant improvement was observed in depression, anxiety, and stress. CONCLUSION: Using bergamot essential oil before bedtime helps relax the mind and body and provides sound sleep. It also improves mood and wakefulness when used upon awakening. Using aromatic essential oils is expected to relieve psychological stress and improve sleep quality and morning wakefulness.


Assuntos
COVID-19 , Óleos Voláteis , Humanos , Adolescente , Óleos Voláteis/uso terapêutico , Qualidade do Sono , Estudos Cross-Over , Pandemias , Estresse Psicológico/tratamento farmacológico
18.
J Food Sci ; 88(8): 3302-3322, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421354

RESUMO

Yashi Xiang (YSX) is a flavor of Fenghuang Dancong tea and famous for its name and floral aroma, which is a type of semi-fermented oolong tea. However, previous research into the aroma characteristics of YSX tea mostly focused on the aroma compounds, and little research on chiral compounds in YSX has been performed. Therefore, the current study was conducted to explore the aroma characteristics of YSX tea from the perspective of enantiomers of chiral compounds. A total of 12 enantiomers were determined in this study, among them, (R)-(-)-α-ionone, (S)-(+)-linalool, (1S,2S)-(+)-methyl jasmonate, (S)-z-nerolidol, (R)-(+)-limonene, and (S)-(-)-limonene have important effects on the aroma components of YSX tea. The ER ratios of the enantiomers were different in samples of different grades. Therefore, this parameter can be used to identify the grade and authenticity of YSX tea. PRACTICAL APPLICATION: The study illuminates the aroma characteristics of YSX tea from the perspective of enantiomers of chiral compounds, which have important effects on the aroma components of YSX tea. It established an ER ratio system to effectively distinguish the grade and authenticity of YSX tea by comparing the ER of YSX tea. Focusing on analyzing the chiral compounds in the aroma of YSX tea is helpful in providing a theoretical basis for the authenticity of the precious tea and improving of the quality of YSX tea products.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Chá , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Limoneno
19.
Food Chem ; 427: 136641, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37393635

RESUMO

To characterize the key odorants of floral aroma green tea (FAGT) and reveal its dynamic evolution during processing, the volatile metabolites in FAGT during the whole processing were analyzed by integrated volatolomics techniques, relative odor activity value (rOAV), aroma recombination, and multivariate statistical analysis. The volatile profiles undergone significant changes during processing, especially in the withering and fixation stages. A total of 184 volatile compounds were identified (∼53.26% by GC-MS). Among them, 7 volatiles with rOAV > 1 were identified as characteristic odorants of FAGT, and most of these compounds reached the highest in withering stage. According to the formation pathways, these key odorants could be divided into four categories: fatty acid-derived volatiles, glycoside-derived volatiles, amino acid-derived volatiles, and carotenoid-derived volatiles. Our study provides a comprehensive strategy to elucidate changes in volatile profiles during processing and lays a theoretical foundation for the targeted processing of high-quality green tea.


Assuntos
Chá , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nariz Eletrônico , Compostos Orgânicos Voláteis/análise
20.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446791

RESUMO

The aim of this paper was to compare the effects of two clarification methods, protease combined with heat treatment and bentonite, on the aroma quality of liqueur wines, and to identify and analyze the overall differences between the basic components and volatile aroma compounds of liqueur wines after the two treatments by chemical analysis, headspace-solid-phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS), and orthogonal partial least squares discriminant analysis (OPLS-DA). The results showed that total acidity, volatile acidity and pH in liqueur wines after protease combined with heat treatment were not significantly different from those of the blank control, and the ability to remove proteins was equal to that of the bentonite treatment. A total of 58 volatile aroma compounds were detected by HS-SPME-GC/MS. Compared with the blank control group (44 species, total 108.705 mg/L), 52 (83.233 mg/L) and 50 (120.655 mg/L) aroma compounds were detected in the bentonite and protease combined with heat treatments, respectively. Compared with the control and bentonite treatment, the protease combined with heat treatment significantly increased the total content of aromatic compounds in liqueur wines, and the types and contents of olefins, furans and phenols were higher. Among them, the compounds with major contributions in the protease combined with heat treatment were ionone, ß-damascenone, 3-methyl-1-butanol, alpha-terpineol and limonene, which helped increase the content of terpenoids and enhance the floral and fruit aroma of the wine. Meanwhile, linalool, diethyl succinate, 2-methyl-3-heptanone, butanal diethyl acetal, hexanal and n-octanol were six compounds with high content of aromatic compounds unique to liqueur wines after protease combined with heat treatment. The sensory evaluation results were consistent with the results of aromatic compound detection, and the overall quality was better. The results may provide a reference for further exploration of protease-based clarifiers suitable for liqueur wines.


Assuntos
Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Odorantes/análise , Peptídeo Hidrolases , Bentonita , Temperatura Alta , Cromatografia Gasosa-Espectrometria de Massas/métodos , Endopeptidases , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA