Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(3): 47, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632206

RESUMO

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.


Assuntos
Canabinoides , Cannabis , RNA Antissenso/análise , RNA Antissenso/genética , RNA Antissenso/metabolismo , Cannabis/genética , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Genoma de Planta
2.
Fitoterapia ; 175: 105883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458497

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. As one of the major degradation pathways, autophagy plays a pivotal role in maintaining the effective turnover of proteins and damaged organelles in cells. Lewy bodies composed of α-synuclein (α-syn) abnormally aggregated in the substantia nigra are important pathological features of PD, and autophagy dysfunction is considered to be an important factor leading to abnormal aggregation of α-syn. Phenylpropionamides (PHS) in the seed of Cannabis sativa L. have a protective effect on neuroinflammation and antioxidant activity. However, the therapeutic role of PHS in PD is unclear. In this study, the seeds of Cannabis sativa L. were extracted under reflux with 60% EtOH-H2O, and the 60% EtOH-H2O elution fraction was identified as PHS with the UPLC-QTOF-MS. The 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice was used for behavioral and pharmacodynamic experiments. Behavioral symptoms were improved, Nissl-stained and TH-positive neurons in the substantia nigra were significantly increased in PHS-treated MPTP-induced PD model mice. Compared with the model group, PHS treatment reduced the expression level of α-syn, and the expression of TH increased significantly by western blotting, compared with the model group, the PHS group suppressed Caspase 3 and Bax expression and promoted Bcl-2 expression and levels of p62 decreased significantly, the ratio of LC3-II/I and p-mTOR/mTOR in the PHS group had a downward trend, suggesting that the therapeutic effect of PHS on MPTP-induced PD model mice may be triggered by the regulation of autophagy.


Assuntos
Autofagia , Cannabis , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Sementes , Animais , Autofagia/efeitos dos fármacos , Camundongos , Sementes/química , Cannabis/química , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Doença de Parkinson/tratamento farmacológico , Substância Negra/efeitos dos fármacos , Modelos Animais de Doenças , Serina-Treonina Quinases TOR/metabolismo
3.
Phytochem Anal ; 35(1): 163-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709551

RESUMO

INTRODUCTION: Cannabis sativa L. is attracting worldwide attention due to various health-promoting effects. Extraction solvent type is critical for the recovery of bioactive compounds from the plant, especially cannabinoids. However, the choice of solvent is varied and not adequately warranted elsewhere, causing confusion in involved fields. OBJECTIVE: The present work aimed to investigate the effect of extraction solvent on C. sativa (hemp) with regard to cannabinoid recovery and phytochemical profile of the extracts, considering most of the related solvents. METHODOLOGY: The majority of solvents reported for C. sativa (n = 14) were compared using a representative hemp pool. Quantitative results for major and minor cannabinoids were rapidly and reliably obtained using ultrahigh-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). In parallel, high-performance thin-layer chromatographic (HPTLC) fingerprinting was employed, involving less toxic mobile phase than in relevant reports. Various derivatisation schemes were applied for more comprehensive comparison of extracts. RESULTS: Differential selectivity towards cannabinoids was observed among solvents. MeOH was found particularly efficient for most cannabinoids, in addition to solvent systems such as n-Hex/EtOH 70:30 and ACN/EtOH 80:20, while EtOH was generally inferior. For tetrahydrocannabinol (THC)-type compounds, EtOAc and n-Hex/EtOAc 60:40 outperformed n-Hex, despite its use in the official EU method. Solvents that tend to extract more lipids or more polar compounds were revealed based on HPTLC results. CONCLUSION: Combining the observations from UPLC quantitation and HPTLC fingerprinting, this work allowed comprehensive evaluation of extraction solvents, in view of robust quality assessment and maximised utilisation of C. sativa.


Assuntos
Canabinoides , Cannabis , Canabinoides/análise , Cannabis/química , Solventes , Cromatografia Líquida de Alta Pressão/métodos , Compostos Fitoquímicos/análise , Extratos Vegetais/química
4.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003214

RESUMO

This study investigated the antibiofilm activity of water-soluble extracts obtained under different pH conditions from Cannabis sativa seeds and from previously defatted seeds. The chemical composition of the extracts, determined through GC-MS and NMR, revealed complex mixtures of fatty acids, monosaccharides, amino acids and glycerol in ratios depending on extraction pH. In particular, the extract obtained at pH 7 from defatted seeds (Ex7d) contained a larger variety of sugars compared to the others. Saturated and unsaturated fatty acids were found in all of the analysed extracts, but linoleic acid (C18:2) was detected only in the extracts obtained at pH 7 and pH 10. The extracts did not show cytotoxicity to HaCaT cells and significantly inhibited the formation of Staphylococcus epidermidis biofilms. The exception was the extract obtained at pH 10, which appeared to be less active. Ex7d showed the highest antibiofilm activity, i.e., around 90%. Ex7d was further fractionated by HPLC, and the antibiofilm activity of all fractions was evaluated. The 2D-NMR analysis highlighted that the most active fraction was largely composed of glycerolipids. This evidence suggested that these molecules are probably responsible for the observed antibiofilm effect but does not exclude a possible synergistic contribution by the other components.


Assuntos
Cannabis , Staphylococcus epidermidis , Cannabis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Biofilmes , Sementes/química
5.
J Tradit Complement Med ; 13(6): 575-587, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020546

RESUMO

Scientific evidence exists about the association between neurological diseases (i.e., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis, depression, and memory loss) and oxidative damage. The increasing worldwide incidence of such diseases is attracting the attention of researchers to find palliative medications to reduce the symptoms and promote quality of life, in particular, in developing countries, e.g., South America and Africa. Among potential alternatives, extracts of Cannabis Sativa L. are suitable for people who have neurological disorders, spasticity, and pain, nausea, resulting from diseases such as cancer and arthritis. In this review, we discuss the latest developments in the use of Cannabis, its subtypes and constituents, extraction methods, and relevant pharmacological effects. Biomedical applications, marketed products, and prospects for the worldwide use of Cannabis Sativa L. extracts are also discussed, providing the bibliometric maps of scientific literature published in representative countries from South America (i.e., Brazil) and Africa (i.e., South Africa). A lack of evidence on the effectiveness and safety of Cannabis, besides the concerns about addiction and other adverse events, has led many countries to act with caution before changing Cannabis-related regulations. Recent findings are expected to increase the social acceptance of Cannabis, while new technologies seem to boost the global cannabis market because the benefits of (-)-trans-delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) use have been proven in several studies in addition to the potential to general new employment.

6.
Curr Pharm Des ; 29(24): 1918-1928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559239

RESUMO

INTRODUCTION: Cannabis sativa L. is a well-recognized medicinal plant. Cannabis regulations in Argentina are insufficient to solve the problem of patient access to full-spectrum cannabis-based products. So, the market of artisanal products with unknown quality and dosage of cannabinoids is increasing, and so is the local demand and need for analyzing these products. However, much of the latest validated methodologies for cannabinoid quantification include expensive instrumentation that is not always available in laboratories of health institutions in Argentina. METHODS: The aim of this work was to develop and validate a simple and rapid HPLC-UV method for the identification and quantification of principal cannabinoids in cannabis resins, inflorescences, and medicinal oils using standard HPLC equipment. The cannabinoids selected for validation were cannabidiol acid (CBDA), cannabigerol (CBG), cannabidiol (CBD), cannabinol (CBN), delta-9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC), and tetrahydrocannabinol acid (THCA). A method for the simultaneous identification and quantification of these 7 main cannabinoids was developed and then validated. Some data parameters were comparable to other reports with more sophisticated analytical instruments for the analysis of cannabis. The assessed limits of detection and the limits of quantitation ranged from 0.9 to 3.66 µg/mL and 2.78 to 11.09 µg/mL, respectively. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area with R2 values of > 0.99 for all 7 cannabinoids. RESULTS: The relative standard deviation (RSD%) varied from 2.34 to 4.82 for intraday repeatability and from 1.16 to 3.15 for interday repeatability. The percentage of recovery values was between 94 to 115% (resins) and 80 to 103% (inflorescence extract). The cannabis industry is growing rapidly, and there is a need for reliable testing methods to ensure the safety and efficacy of cannabis products. In addition, current methods for cannabinoid analysis are often time-consuming and expensive, while the HPLC-UV method herein reported is a simple, rapid, accurate, and cost-effective alternative for the analysis of cannabinoids in cannabis resins, inflorescences, and medicinal oils. CONCLUSION: This method will be proposed to be included in the Cannabis sativa L. monograph of the Argentine Pharmacopoeia.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Dronabinol/análise , Cromatografia Líquida de Alta Pressão/métodos , Canabinoides/análise , Canabinol/análise , Óleos , Extratos Vegetais/análise
7.
Molecules ; 28(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446590

RESUMO

The phytochemistry of fibre hemp (Cannabis sativa L., cv. Futura 75 and Felina 32) cultivated in Lithuania was investigated. The soil characteristics (conductivity, pH and major elements) of the cultivation field were determined. The chemical composition of hemp extracts and essential oils (EOs) from different plant parts was determined by the HPLC/DAD/TOF and GC/MS techniques. Among the major constituents, ß-caryophyllene (≤46.64%) and its oxide (≤14.53%), α-pinene (≤20.25%) or α-humulene (≤11.48) were determined in EOs. Cannabidiol (CBD) was a predominant compound (≤64.56%) among the volatile constituents of the methanolic extracts of hemp leaves and inflorescences. Appreciable quantities of 2-monolinolein (11.31%), methyl eicosatetraenoate (9.70%) and γ-sitosterol (8.99%) were detected in hemp seed extracts. The octadecenyl ester of hexadecenoic acid (≤31.27%), friedelan-3-one (≤21.49%), dihydrobenzofuran (≤17.07%) and γ-sitosterol (14.03%) were major constituents of the methanolic extracts of hemp roots, collected during various growth stages. The CBD quantity was the highest in hemp flower extracts in pentane (32.73%). The amounts of cannabidiolic acid (CBDA) were up to 24.21% in hemp leaf extracts. The total content of tetrahydrocannabinol (THC) isomers was the highest in hemp flower pentane extracts (≤22.43%). The total phenolic content (TPC) varied from 187.9 to 924.7 (average means, mg/L of gallic acid equivalent (GAE)) in aqueous unshelled hemp seed and flower extracts, respectively. The TPC was determined to be up to 321.0 (mg/L GAE) in root extracts. The antioxidant activity (AA) of hemp extracts and Eos was tested by the spectrophotometric DPPH● scavenging activity method. The highest AA was recorded for hemp leaf EOs (from 15.034 to 35.036 mmol/L, TROLOX equivalent). In the case of roots, the highest AA (1.556 mmol/L, TROLOX) was found in the extracts of roots collected at the seed maturation stage. The electrochemical (cyclic and square wave voltammetry) assays correlated with the TPC. The hydrogen-peroxide-scavenging activity of extracts was independent of the TPC.


Assuntos
Canabidiol , Cannabis , Cannabis/química , Antioxidantes/farmacologia , Pentanos , Lituânia , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Heliyon ; 9(4): e15545, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128337

RESUMO

This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.

9.
Chem Biodivers ; 20(5): e202201047, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37072341

RESUMO

Phenylpropionamides in the seed of Cannabis sativa L. (PHS) have a protective effect on neuroinflammation and antioxidant activity. In this study, the UHPLC-Orbitrap-fusion-TMS-based metabolomics approach was used to analyze the serum samples and identify potential biomarkers in Streptozotocin (STZ) induced Alzheimer's disease (AD) rats. The results revealed that primary bile acid biosynthesis and taurine and hypotaurine metabolism were significantly correlated with STZ-induced AD rats. In addition, the key enzymes in these two pathways were verified at the protein level. The levels of cysteine dioxygenase type I (CDO1), cysteine sulfinic acid decarboxylase (CSAD), cysteamine (2-aminoethanethiol) dioxygenase (ADO), 7α-hydroxylase (CYP7A1), and sterol 12α-hydroxylase (CYP8B1) were the key enzymes affecting the two pathways in AD rats compared with the control group (CON). Furthermore, after a high-dose group of phenylpropionamides in the seed of Cannabis sativa L. (PHS-H) was administrated, the levels of CDO1, CSAD, CYP7A1, and CYP8B1 were all callback. These findings demonstrate for the first time that the anti-AD effect of PHS is associated with the regulation of primary bile acid biosynthesis and taurine and hypotaurine metabolism in STZ-induced AD rats.


Assuntos
Doença de Alzheimer , Cannabis , Ratos , Animais , Esteroide 12-alfa-Hidroxilase , Cromatografia Líquida de Alta Pressão , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Taurina/metabolismo , Taurina/farmacologia , Ácidos e Sais Biliares , Metabolômica
10.
Plants (Basel) ; 12(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986932

RESUMO

For more than a century, Cannabis was considered a narcotic and has been banned by lawmakers all over the world. In recent years, interest in this plant has increased due to its therapeutic potential, in addition to a very interesting chemical composition, characterized by the presence of an atypical family of molecules known as phytocannabinoids. With this emerging interest, it is very important to take stock of what research has been conducted so far on the chemistry and biology of Cannabis sativa. The aim of this review is to describe the traditional uses, chemical composition and biological activities of different parts of this plant, as well as the molecular docking studies. Information was collected from electronic databases, namely SciFinder, ScienceDirect, PubMed and Web of Science. Cannabis is mainly popular for its recreational use, but it is also traditionally used as remedy for the treatment of several diseases, including diabetes, digestive, circulatory, genital, nervous, urinary, skin and respiratory diseases. These biological proprieties are mainly due to the presence of bioactive metabolites represented by more than 550 different molecules. Molecular docking simulations proved the presence of affinities between Cannabis compounds and several enzymes responsible for anti-inflammatory, antidiabetic, antiepileptic and anticancer activities. Several biological activities have been evaluated on the metabolites of Cannabis sativa, and these works have shown the presence of antioxidant, antibacterial, anticoagulant, antifungal, anti-aflatoxigenic, insecticidal, anti-inflammatory, anticancer, neuroprotective and dermocosmetic activities. This paper presents the up-to-date reported investigations and opens many reflections and further research perspectives.

11.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677827

RESUMO

Many refined oils from soybean, rapeseed, and sunflower, among others, are available on the food market, except olive oil. Refining, on the small production scale of niche oils, is not used due to the high cost of the refining process. Unrefined oils are characterized by intense taste, odor, color, and undesirable nutrients. The problem to be solved is determining the effects of incomplete refining of niche oils on their composition. One process, which does not require the use of complex apparatus, is the bleaching process. The results presented in this article relate to the research stage, in which the aim is to evaluate the changes occurring in the oil due to the low-temperature bleaching process with different process parameters. The presented research results provide evidence of the absence of adverse changes in the fatty acid profile of hemp oil of the varieties 'Finola', 'Earlina 8FC', and 'Secuieni Jubileu'. Seven different types of bleaching earth were used to bleach the oil in amounts of 2.5 and 5 g/100 g of vegetable oil. The fatty acid profile was obtained by gas chromatography (GC-FID). The obtained chromatograms were subjected to statistical analysis and principal component analysis (PCA). The results show that there was no effect of the type of bleaching earth and its amount on the change in the fatty acid profile of bleached oils. Only real differences between the types of hemp oils were observed. However, an overall positive effect of the bleaching process on hemp oil was found. The amount of saturated fatty acid (SFA) was reduced by 17.1% compared with the initial value, resulting in an increase in the proportion of polyunsaturated fatty acids (PUFA) by 4.4%, resulting in an unsaturated fatty acid (UFA) proportion of 90%. There was a significant improvement in the SFA/PUFA ratio by 26% over the baseline, and the omega-6/omega-3 ratio by 8.9% to a value of 3.1:1. The new knowledge from this study is evidence of the positive effect of the low-temperature bleaching process on the fatty acid profile. In contrast, the parameters of the bleaching process itself are not significant.


Assuntos
Cannabis , Ácidos Graxos Ômega-3 , Ácidos Graxos/análise , Cannabis/química , Extratos Vegetais , Óleos de Plantas/química , Ácidos Graxos Insaturados , Ácidos Graxos Ômega-3/análise
12.
Nat Prod Res ; 37(15): 2591-2595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35289674

RESUMO

In this work, the chemical composition and the antioxidant evaluation of the inflorescences from 12 Cannabis sativa L. monoecious cultivars (Carmagnola Lemon CL, Ferimon F, Gran Sasso Kush GSK, Antal A, Carmagnola C, Kompolti K, Futura 75 F75, Villanova V, Tiborzallasi T, Finola FL, Kc Virtus KV and Pineapple P) cultivated at the same condition, were investigated. GC-MS analysis was carried out to evaluate the volatile fraction, while HPLC-MS/MS was used for cannabinoids and polyphenolic compounds. The evaluation of antioxidant activity was carried out using ABTS*+, Trolox equivalence antioxidant capacity (TEAC), ferric reducing antioxidant property (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH*) assays in vitro. The obtained data, demonstrated that each cultivar has a characteristic chemical profile, with highest antioxidant capacity for CL, F75, GSK and F. Based on the in vitro antioxidant activity the plant extracts can be considered as promising candidates for different applications in food field.


Assuntos
Canabinoides , Cannabis , Cannabis/química , Antioxidantes/análise , Espectrometria de Massas em Tandem , Canabinoides/química , Extratos Vegetais/análise
13.
Phytother Res ; 37(5): 1924-1937, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36583304

RESUMO

Neuropathic pain (NP) is a chronic disease that affects the normal quality of life of patients. To date, the therapies available are only symptomatic and they are unable to reduce the progression of the disease. Many studies reported the efficacy of Cannabis sativa L. (C. sativa) on NP, but no Δ9 -tetrahydrocannabinol (Δ9 -THC)-free extracts have been investigated in detail for this activity so far. The principal aim of this work is to investigate the potential pain-relieving effect of innovative cannabidiol-rich non-psychotropic C. sativa oils, with a high content of terpenes (K2), compared to the same extract devoid of terpenes (K1). Oral administration of K2 (25 mg kg-1 ) induced a rapid and long-lasting relief of pain hypersensitivity in a mice model of peripheral neuropathy. In spinal cord samples, K2 reduced mitogen-activated protein kinase (MAPKs) levels and neuroinflammatory factors. These effects were reverted by the administration of a CB2 antagonist (AM630), but not by a CB1 antagonist (AM251). Conversely, K1 showed a lower efficacy in the absence of CB1/CB2-mediated mechanisms. In LPS-stimulated murine microglial cells (BV2), K2 reduced microglia pro-inflammatory phenotype through the downregulation of histone deacetylase 1 (HDAC-1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IKBα) and increased interleukin-10 (IL-10) expression, an important antiinflammatory cytokine. In conclusion, these results suggested that K2 oral administration attenuated NP symptoms by reducing spinal neuroinflammation and underline the important role of the synergism between cannabinoids and terpenes.


Assuntos
Canabidiol , Cannabis , Neuralgia , Receptor CB2 de Canabinoide , Animais , Camundongos , Canabidiol/farmacologia , Cannabis/química , Microglia , Neuralgia/tratamento farmacológico , Doenças Neuroinflamatórias , Óleos , Qualidade de Vida , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo
14.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202676

RESUMO

Cannabis is considered (Cannabis sativa L.) a sacred herb in many countries and is vastly employed in traditional medicine to remedy numerous diseases, such as diabetes. This research investigates the chemical composition of the aqueous extracts from Cannabis sativa L. seeds. Furthermore, the impact of these extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase enzymes is evaluated, as well as their antihyperglycemic effect. Analysis of the chemical composition of the aqueous extract was conducted using high-performance liquid chromatography with a photodiode array detector (HPLC-DAD). In contrast, the ethanol, hexanic, dichloromethane, and aqueous extract compositions have been established. Additionally, the inhibitory effects of ethanolic, dichloromethane, and aqueous extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase activities were evaluated in vitro and in vivo. The results of HPLC analysis indicate that the most abundant phenolic compound in the aqueous cannabis seed extract is 3-hydroxycinnamic acid, followed by 4-hydroxybenzoic acid and rutin acid. Moreover, administration of ethanolic and aqueous extracts at a dose of 150 mg/Kg significantly suppressed postprandial hyperglycemia compared to the control group; the ethanolic, dichloromethane, and aqueous extracts significantly inhibit pancreatic α-amylase and lipase, and intestinal α-glucosidase in vitro. The pancreatic α-amylase test exhibited an inhibition with IC50 values of 16.36 ± 1.24 µg/mL, 19.33 ± 1.40 µg/mL, 23.53 ± 1.70 µg/mL, and 17.06 ± 9.91 µg/mL for EAq, EDm, EET, and EHx, respectively. EET has the highest inhibitory capacity for intestinal α-glucosidase activity, with an IC50 of 32.23 ± 3.26 µg/mL. The extracts inhibit porcine pancreatic lipase activity, demonstrating their potential as lipase inhibitors. Specifically, at a concentration of 1 mg/mL, the highest inhibition rate (77%) was observed for EDm. To confirm these results, the inhibitory effect of these extracts on enzymes was tested in vivo. The oral intake of aqueous extract markedly reduced starch- and sucrose-induced hyperglycemia in healthy rats. Administration of the ethanolic extract at a specific dose of 150 mg/kg significantly reduced postprandial glycemia compared with the control group. It is, therefore, undeniable that cannabis extracts represent a promising option as a potentially effective treatment for type 2 diabetes.


Assuntos
Cannabis , Diabetes Mellitus Tipo 2 , Alucinógenos , Hiperglicemia , Animais , Ratos , Suínos , Hipoglicemiantes/farmacologia , alfa-Amilases Pancreáticas , alfa-Glucosidases , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cloreto de Metileno , Lipase , Hiperglicemia/tratamento farmacológico , Agonistas de Receptores de Canabinoides , Etanol , Extratos Vegetais/farmacologia
15.
Front Pharmacol ; 13: 1033069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532754

RESUMO

MaZiRenWan (MZRW) is the most frequently used Traditional Chinese Medicine formula to treat chronic constipation, Cannabis sativa L. is regarded as a monarch drug in MZRW. However, the targets of Cannabis sativa L. that enhance colonic motility and improve constipation symptoms remain unknown. This study was designed to investigate the laxative effect and underlying mechanism of the water extract of Cannabis sativa L. (WECSL) using a loperamide-induced constipation mouse model. We found that WECSL treatment significantly improved intestinal motility and water-electrolyte metabolism, decreased inflammatory responses, prevented gut barrier damage, and relieved anxiety and depression in constipated mice. WECSL also structurally remodeled the composition of the gut microbiota and altered the abundance of bacteria related to inflammation, specifically Butyricicoccus and Parasutterella. Moreover, WECSL failed to relieve constipation symptoms following intestinal flora depletion, indicating that WECSL alleviates constipation symptoms depending on the gut microbiota. Our research provides a basis for WECSL to be further investigated in the treatment of constipation from the perspective of modern medicine.

16.
Rev. direito sanit ; 22(2): e0012, 20221230.
Artigo em Português | LILACS | ID: biblio-1419251

RESUMO

A utilização medicinal da Cannabis sativa L., usualmente chamada de maconha, é conhecida desde tempos remotos devido a suas elevadas propriedades terapêuticas. As discussões acerca de seu uso medicinal no Brasil são urgentes, notadamente porque já há comprovação científica dos benefícios relacionados ao tratamento de diversas enfermidades. Este artigo teve como foco demonstrar que os argumentos apresentados para criminalizar a C. sativa, além de concorrerem para uma conjuntura racista e criminalizadora de classes sociais baixas, violam os princípios bioéticos da beneficência, autonomia e justiça, ao impedir que o sujeito tenha acesso a prescrições médicas adequadas e menos onerosas, a fim de proporcionar o alívio de suas dores físicas e psíquicas. Para tanto, utilizou-se da metodologia qualitativa, por meio da qual se realizou revisão bibliográfica de artigos científicos publicados em português, entre os anos de 2015 e 2020, nas bases de dados Google Scholar e Scientific Electronic Library Online, juntamente com pesquisa de resoluções da Agência Nacional de Vigilância Sanitária e do Conselho Federal de Medicina. De posse desses dados, constatou-se a necessidade de democratização no acesso à C. sativa medicinal, sendo imprescindível o fornecimento gratuito de canabidiol pelo Sistema Único de Saúde, bem como uma normatização que permita o cultivo da C. sativa para fins medicinais para a produção de medicamentos no país.


The medicinal use of Cannabis sativa L., usually called marijuana, has been known since ancient times, due to its enhanced therapeutic properties. Discussions about its medicinal use in Brazil are urgent, especially because there is already scientific proof of the benefits that it can produce in treatment of various diseases. Therefore, it is essential that there is support from the State so that access to C. sativa for medicinal purposes is universal, considering the right to health treatments as a fundamental right, provided for in the Constitution. However, the use and possession for own consumption are still criminalized. Thus, the article seeks to demonstrate that the justifications presented to criminalize this plant, in addition to contributing to a racist marginalization of low social classes, violate Bioethical precepts, by preventing patients from accessing medical prescriptions that are adequate and less costly, to provide relief from their physical and mental pain. For that, we used a qualitative methodology. A bibliographic review of scientific articles published in Portuguese, between the years 2015 and 2020, was carried out in the Google Scholar and Scientific Electronic Library Online databases. Resolutions of the Brazilian Health Regulatory Agency, as well as of the Federal Council of Medicine were also considered. With these data, this article concludes that the need for democratization in access to medicinal C. sativa is imperative, by supplying patients with CBD compounds through the Brazilian National Public Health System, and by enacting legislation that allows for the cultivation of C. sativa for medicinal purposes and for medicine production in Brazil.


Assuntos
Bioética , Jurisprudência
17.
Life (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431042

RESUMO

The present study aimed to explore the effects of exogenous gibberellins (GAs) on seed germination and subsequent seedling growth of hemp (Cannabis sativa L.) under drought stress. Seeds of two industrial hemp cultivars i.e., 'Yunma 1', (YM) and 'Bamahuoma', (BM) were treated with different concentrations of GA3 solution (0, 200, 400, 600, 800 mg/L) at 20 °C for 8 h. The effect of pre-treatment was assessed on germination characteristics and physiological indexes on subsequent exposure to drought stress using 20% (m/v) polyethylene glycol (PEG) for 7 days. The results revealed that seed germination in hemp was sensitive to drought stress, as the germination indexes (germination rate and germination potential) decreased significantly, and seedling growth (hypocotyl length and radicle length) was impeded under 20% PEG-6000 condition. GA3 pre-treatment affected germination rate, germination potential, hypocotyl length and radicle length. With increasing GA3 concentration, these indexes first increased and then decreased. For seedling physiology characteristics in hemp, GA3-pretreatment remarkedly increased the osmotic regulating substances (soluble sugar and soluble protein contents) and the activities of antioxidant enzymes (SOD, superoxide dismutase and POD, peroxidase), while sharply decreased the lipid peroxidation (malondialdehyde, MDA) in seedlings grown under PEG-6000 induced drought stress. These results suggested that seeds pre-treated with GA3 could enhance the drought tolerance of hempseeds, and the optimal effect of GA3 for seed pre-treatment of YM and BM could be obtained when the concentration of GA3 solution reached 400 mg/L and 600 mg/L, respectively.

18.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364027

RESUMO

Unrefined vegetable oils from niche oilseeds are now sought after by consumers because of their unique nutritional properties and taste qualities. The color and flavor intensity of niche oils is a big problem, and their refining is not industrially feasible due to the small production scale. The study undertaken aimed analyze the effect of changing the amount of phytosterols (PSs) after the bleaching process of hemp oils of the 'Finola', 'Earlina 8FC' and 'Secuieni Jubileu' varieties. Cold-pressed (C) and hot-pressed (H) crude vegetable oils were bleached with selected bleaching earth (BE) at two concentrations. The post-process BE was extracted with methanol. The amount of PSs in the crude oils and the extract after washing the BE with methanol was analyzed by GC (gas chromatography). The study shows that the bleaching process did not significantly affect the depletion of PSs in the oils. Trace amounts of PSs remain on the BE and, due to methanol extraction, can be extracted from the oil. The conclusion of the performed research is that the bleaching of hemp oil does not cause depletion of the oil, and it significantly improves organoleptic properties. The oil bleaching process results in an oil loss of less than 2% by weight of the bleached oil, while the loss depends on the type of BE used. The study shows that the loss of phytosterols after the bleaching process averages 2.69 ± 0.69%, and depends on the type of BE used and the oil extracted from different varieties of hemp seeds.


Assuntos
Cannabis , Fitosteróis , Cannabis/química , Fitosteróis/análise , Metanol/análise , Sementes/química , Óleos de Plantas/química
19.
Phytomedicine ; 107: 154485, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36209703

RESUMO

BACKGROUND: Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer's disease. Although several approved treatments exist for Alzheimer's disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases. PURPOSE: This review evaluated the neuroprotective potential of C. sativa's active constituents for potential therapeutic use in dementia and Alzheimer's disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration. STUDY DESIGN: Relevant information on the neuroprotective potential of the C. sativa's phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa's component bioactivity was organized for therapeutic applications against neurodegenerative diseases. METHODS: The therapeutic use of C. sativa related to Alzheimer's disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS: Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer's disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer's disease, amyloid ß. CONCLUSIONS: These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.


Assuntos
Doença de Alzheimer , Cannabis , Maconha Medicinal , Fármacos Neuroprotetores , Idoso , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Antioxidantes , Cannabis/química , Flavonoides/química , Humanos , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Receptores de Canabinoides , Terpenos/farmacologia
20.
Fitoterapia ; 163: 105315, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36179898

RESUMO

The purpose of this study was to evaluate the neuroprotective effect of a cannabidiol-enriched non-psychotropic Cannabis sativa L. extract (CSE) and its main constituents, cannabidiol and ß-caryophyllene. An in vitro model of glutamate-induced neuronal excitotoxicity using SH-SY5Y cells was optimized. The impact of CSE on glutamate-impaired cell viability, brain-derived neurotrophic factor release, CB1 protein expression, and ERK levels was evaluated. The involvement of CB1 modulation was verified by the cotreatment with the CB1 antagonist AM4113. CSE was able to significantly protect SH-SY5Y from glutamate-impaired cell viability, and to counteract the changes in brain-derived neurotrophic factor levels, with a mechanism of action involving ERK modulation. Moreover, CSE completely reversed the reduction of CB1 receptor expression induced by glutamate, and the presence of the CB1 antagonist AM4113 reduced CSE effectiveness, suggesting that CBr play a role in the modulation of neuronal excitotoxicity. This work demonstrated the in vitro effectiveness of CSE as a neuroprotective agent, proposing the whole cannabis phytocomplex as a more effective strategy, compared to its main constituents alone, and suggested further investigations by using more complex cell models before moving to in vivo studies.


Assuntos
Canabidiol , Cannabis , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Canabidiol/farmacologia , Fármacos Neuroprotetores/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Estrutura Molecular , Ácido Glutâmico , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA