Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580030

RESUMO

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Assuntos
Antibacterianos , Doxiciclina , Nanopartículas , Agulhas , Polilisina , Polilisina/química , Doxiciclina/administração & dosagem , Doxiciclina/farmacologia , Doxiciclina/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Sistemas de Liberação de Medicamentos , Administração Cutânea , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções por Pseudomonas/tratamento farmacológico
2.
Int J Biol Macromol ; 264(Pt 2): 130729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460643

RESUMO

Astrocyte elevated gene-1 (AEG-1) oncogene is a notorious and evolving target in a variety of human malignancies including osteosarcoma. The RNA interference (RNAi) has been clinically proven to effectively knock down specific genes. To successfully implement RNAi in vivo, protective vectors are required not only to protect unstable siRNAs from degradation, but also to deliver siRNAs to target cells with controlled release. Here, we synthesized a Zein-poly(l-lysine) dendrons non-viral modular system that enables efficient siRNA-targeted AEG-1 gene silencing in osteosarcoma and encapsulation of antitumor drugs for controlled release. The rational design of the ZDP integrates the non-ionic and low immunogenicity of Zein and the positive charge of the poly(l-lysine) dendrons (DPLL) to encapsulate siRNA and doxorubicin (DOX) payloads via electrostatic complexes and achieve pH-controlled release in a lysosomal acidic microenvironment. Nanocomplexes-directed delivery greatly improves siRNA stability, uptake, and AEG-1 sequence-specific knockdown in 143B cells, with transfection efficiencies comparable to those of commercial lipofectamine but with lower cytotoxicity. This AEG-1-focused RNAi therapy supplemented with chemotherapy inhibited, and was effective in inhibiting the growth in of osteosarcoma xenografts mouse models. The combination therapy is an alternative or combinatorial strategy that can produce durable inhibitory responses in osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Dendrímeros , Nanopartículas , Osteossarcoma , Zeína , Animais , Camundongos , Humanos , Polilisina , Azidas , Preparações de Ação Retardada , Alcinos , Doxorrubicina/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Pathogens ; 13(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535596

RESUMO

Urinary tract infections occupy a special niche among diseases of infectious etiology. Many microorganisms associated with urinary tract infections, such as Klebsiella oxytoca, Enterococcus spp., Morganella morganii, Moraxella catarrhalis, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, Staphylococcus spp., and Candida spp., can form biofilms. The aim of this research was to study the effect of the enzyme L-lysine-Alpha-oxidase (LO) produced by the fungus Trichoderma harzianum Rifai on the biofilm formation process of microorganisms associated with urinary tract infections. Homogeneous LO showed a more pronounced effect than the culture liquid concentrate (cCL). When adding samples at the beginning of incubation, the maximum inhibition was observed in relation to Enterococcus faecalis 5960-cCL 86%, LO 95%; Enterococcus avium 1669-cCL 85%, LO 94%; Enterococcus cloacae 6392-cCL 83%, LO-98%; and Pseudomonas aeruginosa 3057-cCL 70%, LO-82%. The minimum inhibition was found in Candida spp. Scanning electron microscopy was carried out, and numerous morphological and structural changes were observed in the cells after culturing the bacterial cultures in a medium supplemented with homogeneous LO. For example, abnormal division was detected, manifesting as the appearance of joints in places where the bacteria diverge. Based on the results of this work, we can draw conclusions about the possibility of inhibiting microbial biofilm formation with the use of LO; especially significant inhibition was achieved when the enzyme was added at the beginning of incubation. Thus, LO can be a promising drug candidate for the treatment or prevention of infections associated with biofilm formation.

4.
Exp Anim ; 73(1): 83-92, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37648521

RESUMO

The incidence of autoimmune hepatitis (AIH) has increased significantly worldwide. The present study aims to explore the protective effect of L-lysine supplementation against AIH and to investigate its potential underlying mechanisms. A chronic experimental AIH mouse model was established by repeated tail vein injection of human cytochrome P450 2D6 (CYP2D6) plasmid. Starting from day 14 of the modeling, mice in the CYP2D6-AIH +L-lysine group were given 200 µl of purified water containing 10 mg/kg L-lysine by gavage until day27, once a day, and mice in the healthy control group and model group were given an equal volume of purified water by gavage. Our results showed that L-lysine supplementation partially reversed the liver injury mediated by CYP2D6 overexpression. These effects were consistent with the restraining impacts of L-lysine supplementation on decreasing pro-inflammatory cytokines expression level and CD4+ and CD8+ T lymphocytes infiltration, as well as curbing hepatic oxidative stress. Furthermore, L-lysine supplement relieved liver fibrosis in the context of AIH. In conclusion, L-lysine supplementation attenuates CYP2D6-induced immune liver injury in mice, which may serve as a novel nutrition support approach for AIH.


Assuntos
Hepatite Autoimune , Camundongos , Humanos , Animais , Hepatite Autoimune/prevenção & controle , Hepatite Autoimune/etiologia , Lisina , Citocromo P-450 CYP2D6 , Modelos Animais de Doenças , Autoantígenos , Fígado/metabolismo , Suplementos Nutricionais , Água
5.
World J Microbiol Biotechnol ; 40(1): 20, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996724

RESUMO

To meet the growing demand for L-lysine, an essential amino acid with various applications, it is crucial to produce it on a large scale locally instead of relying solely on imports. This study aimed to evaluate the potential of using Corynebacterium glutamicum ATCC 13032 for L-lysine production from agricultural by-products such as palm kernel cake, soybean cake, groundnut cake, and rice bran. Solid-state fermentation was conducted at room temperature for 72 h, with the addition of elephant grass extract as a supplement. The results revealed that these agricultural by-products contain residual amounts of L-lysine. By employing solid-state fermentation with C. glutamicum (106 CFU/ml) in 100 g of various agricultural by-products, L-lysine production was achieved. Interestingly, the addition of elephant grass extract (1 g of elephant grass: 10 ml of water) further enhanced L-lysine production. Among the tested substrates, 100 g of groundnut cake moistened with 500 ml of elephant grass extract yielded the highest L-lysine concentration of 3.27 ± 0.02 (mg/gds). Furthermore, fermentation led to a substantial rise (p < 0.05) in soluble protein, with solid-state fermented soybean cake moistened with 500 ml of elephant grass extract exhibiting the highest amount of 7.941 ± 0.05 mg/gds. The activities of xylanase, amylase and protease were also significantly enhanced. This study demonstrates a viable biotechnological approach for locally producing L-lysine from agricultural by-products using solid-state fermentation with C. glutamicum. The findings hold potential for both health and industrial applications, providing a sustainable and economically feasible method for L-lysine production.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/metabolismo , Fermentação , Lisina
6.
Amino Acids ; 55(11): 1461-1473, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37728630

RESUMO

Amino acids which are essential nutrients for all cell types' survival are also recognised to serve as opportunistic/alternative fuels in cancers auxotrophic for specific amino acids. Accordingly, restriction of amino acids has been utilised as a therapeutic strategy in these cancers. Contrastingly, amino acid deficiencies in cancer are found to greatly impair immune functions, increasing mortality and morbidity rates. Dietary and supplemental amino acids in such conditions have revealed their importance as 'immunonutrients' by modulating cellular homeostasis processes and halting malignant progression. L-arginine specifically has attracted interest as an immunonutrient by acting as a nodal regulator of immune responses linked to carcinogenesis processes through its versatile signalling molecule, nitric oxide (NO). The quantum of NO generated directly influences the cytotoxic and cytostatic processes of cell cycle arrest, apoptosis, and senescence. However, L-lysine, a CAT transporter competitor for arginine effectively limits arginine input at high L-lysine concentrations by limiting arginine-mediated effects. The phenomenon of arginine-lysine antagonism can, therefore, be hypothesised to influence the immunonutritional effects exerted by arginine. The review highlights aspects of lysine's interference with arginine-mediated NO generation and its consequences on immunonutritional and anti-cancer effects, and discusses possible alternatives to manage the condition. However, further research that considers monitoring lysine levels in arginine immunonutritional therapy is essential to conclude the hypothesis.


Assuntos
Arginina , Neoplasias , Arginina/metabolismo , Lisina , Dieta de Imunonutrição , Aminoácidos , Dieta , Neoplasias/terapia
7.
Biosensors (Basel) ; 13(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37504133

RESUMO

A highly sensitive unlabeled electrochemical aptasensor based on hydroxylated black phosphorus/poly-L-lysine (hBP/PLL) composite is introduced herein for the detection of malathion. Poly-L-lysine (PLL) with adhesion and coating properties adhere to the surface of the nanosheets by noncovalent interactions with underlying hydroxylated black phosphorus nanosheets (hBP) to produce the hBP/PLL composite. The as-synthesized hBP/PLL composite bonded to Au nanoparticles (Au NPs) firmly by assembling and using them as a substrate for the aptamer with high specificity as a probe to fabricate the sensor. Under optimal conditions, the linear range of the electrochemical aptasensor was 0.1 pM~1 µM, and the detection limit was 2.805 fM. The electrochemical aptasensor has great selectivity, a low detection limit, and anti-interference, which has potential application prospects in the field of rapid trace detection of pesticide residues.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Malation , Polilisina , Técnicas Eletroquímicas , Ouro/química , Fósforo , Aptâmeros de Nucleotídeos/química , Limite de Detecção
8.
EFSA J ; 21(6): e08048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293569

RESUMO

Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on concentrated liquid l-lysine, l-lysine monohydrochloride and concentrated liquid l-lysine monohydrochloride produced by a genetically modified strain of Escherichia coli (NITE BP-02917) as nutritional and as sensory (flavouring compound) feed additives for all animal species. In 2022, the FEEDAP Panel issued an opinion on the safety and efficacy of these products. In that assessment, the FEEDAP Panel could not exclude the potential presence of recombinant DNA derived from the genetically modified production organism in the products. The applicant provided supplementary data to exclude the presence of recombinant DNA derived from the production organism in the final products. Based on the new data provided, the FEEDAP Panel concluded that no DNA of the production strain E. coli NITE BP-02917 was detected in concentrated liquid l-lysine, l-lysine monohydrochloride and concentrated liquid l-lysine monohydrochloride.

9.
Microb Cell Fact ; 22(1): 51, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918890

RESUMO

BACKGROUND: ε-Poly-L-lysine (ε-PL) is a natural and safe food preservative that is mainly produced by filamentous and aerobic bacteria Streptomyces albulus. During ε-PL biosynthesis, a large amount of ATP is used for the polymerization of L-lysine. A shortage of intracellular ATP is one of the major factors limiting the increase in ε-PL production. In previous studies, researchers have mainly tried to increase the oxygen supply to enhance intracellular ATP levels to improve ε-PL production, which can be achieved through the use of two-stage dissolved oxygen control, oxygen carriers, heterologous expression of hemoglobin, and supplementation with auxiliary energy substrates. However, the enhancement of the intracellular ATP supply by constructing an ATP regeneration system has not yet been considered. RESULTS: In this study, a polyphosphate kinase (PPK)-mediated ATP regeneration system was developed and introduced into S. albulus to successfully improve ε-PL production. First, polyP:AMP phosphotransferase (PAP) from Acinetobacter johnsonii was selected for catalyzing the conversion of AMP into ADP through an in vivo test. Moreover, three PPKs from different microbes were compared by in vitro and in vivo studies with respect to catalytic activity and polyphosphate (polyP) preference, and PPK2Bcg from Corynebacterium glutamicum was used for catalyzing the conversion of ADP into ATP. As a result, a recombinant strain PL05 carrying coexpressed pap and ppk2Bcg for catalyzing the conversion of AMP into ATP was constructed. ε-PL production of 2.34 g/L was achieved in shake-flask fermentation, which was an increase of 21.24% compared with S. albulus WG608; intracellular ATP was also increased by 71.56%. In addition, we attempted to develop a dynamic ATP regulation route, but the result was not as expected. Finally, the conditions of polyP6 addition were optimized in batch and fed-batch fermentations, and the maximum ε-PL production of strain PL05 in a 5-L fermenter was 59.25 g/L by fed-batch fermentation, which is the highest ε-PL production reported in genetically engineered strains. CONCLUSIONS: In this study, we proposed and developed a PPK-mediated ATP regeneration system in S. albulus for the first time and significantly enhanced ε-PL production. The study provides an efficient approach to improve the production of not only ε-PL but also other ATP-driven metabolites.


Assuntos
Trifosfato de Adenosina , Polilisina , Fermentação , Regeneração
10.
J Reprod Dev ; 69(1): 53-55, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36503905

RESUMO

The vitrification of zygotes is important for their use as donors for generating genome-edited mice. We previously reported the successful vitrification of mouse zygotes using carboxylated ε-poly-L-lysine (COOH-PLL). However, this vitrification solution contains fetal calf serum (FCS), which contains unknown factors and presents risks of pathogenic viral and microbial contamination. In this study, we examined whether polyvinyl alcohol (PVA) can be used as an alternative to FCS in vitrification solutions for mouse zygotes. When COOH-PLL was added to the vitrification solutions, zygotes vitrified with solutions containing 0.01% PVA (PV0.01) and those vitrified in a control solution containing FCS (75.6%) developed into blastocysts (78.4%). In addition, there were no significant differences in the ability to develop to term between the control solution (46.6%) and PV0.01 (44.1%) groups. In conclusion, we clearly demonstrated that PVA can replace FCS in our vitrification solution supplemented with COOH-PLL for mouse zygotes.


Assuntos
Criopreservação , Zigoto , Camundongos , Animais , Polilisina , Álcool de Polivinil , Vitrificação , Blastocisto
11.
Cells Tissues Organs ; 212(1): 8-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34937023

RESUMO

Human mesenchymal stromal cells (hMSCs) are multipotent cells that have been proposed for the treatment of immune-mediated diseases. Culturing hMSCs on tissue culture plastic reduces their therapeutic potential in part due to the lack of extracellular matrix components. The aim of this study is to evaluate multilayers of heparin and poly(L-lysine) (HEP/PLL) as a bioactive surface for hMSCs stimulated with soluble interferon gamma (IFN-γ). Multilayers were formed, via layer-by-layer assembly, with HEP as the final layer and supplemented with IFN-γ in the culture medium. Multilayer construction and chemistry were confirmed using Azure A staining, quartz crystal microbalance, and X-ray photoelectron spectroscopy. hMSCs adhesion, viability, and differentiation, were assessed. Results showed that (HEP/PLL) multilayer coatings were poorly adhesive for hMSCs. However, performing chemical crosslinking using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide significantly enhanced hMSCs adhesion and viability. The immunosuppressive properties of hMSCs cultured on crosslinked (HEP/PLL) multilayers were confirmed by measuring indoleamine 2,3-dioxygenase activity. Lastly, hMSCs cultured on crosslinked (HEP/PLL) multilayers in the presence of soluble IFN- γ successfully differentiated towards the osteogenic and adipogenic lineages as confirmed by Alizarin red, and oil-red O staining, as well as alkaline phosphatase activity. This study suggests that crosslinked (HEP/PLL) films can modulate hMSCs response to soluble factors, which may improve hMSCs-based therapies aimed at treating several immune diseases.


Assuntos
Heparina , Células-Tronco Mesenquimais , Humanos , Heparina/farmacologia , Heparina/metabolismo , Polilisina/farmacologia , Polilisina/química , Polilisina/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Osteogênese , Diferenciação Celular
12.
Biomolecules ; 12(12)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551297

RESUMO

Unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) induce inflammatory cytokines and type I interferons (IFNs) to activate the immune system. To apply CpG ODNs as vaccine adjuvants, the cellular uptake and stability of phosphodiester-based, non-modified ODNs require further improvement. Previously developed new CpG ODNs forming guanine-quadruplex (G4) structures showed higher nuclease resistance and cellular uptake than linear CpG ODNs; however, the complex formation of G4-CpG ODNs with antigen proteins is necessary for their application as vaccine adjuvants. In this study, we utilized a cationic polymer, ε-poly-L-lysine (ε-PLL), as a carrier for G4-CpG ODNs and antigen. The ε-PLL/G4-CpG ODN complex exhibited enhanced stability against nucleases. Cellular uptake of the ε-PLL/G4-CpG ODN complex positively correlated with the N/P ratio. In comparison to naked G4-CpG ODNs, the ε-PLL/G4-CpG ODN complex induced extremely high levels of interleukin (IL)-6, IL-12, and IFN-ß. Relative immune cytokine production was successfully tuned by N/P ratio modification. Mice with the ε-PLL/G4-CpG ODN/ovalbumin (OVA) complex showed increased OVA-specific immunoglobulin (Ig)G, IgG1, and IgG2c levels, whereas total IgE levels did not increase and weight gain rates were not affected. Therefore, ε-PLL can serve as a safe and effective phosphodiester-based, non-modified CpG ODN delivery system, and the ε-PLL/G4-CpG ODN/antigen complex is a highly promising candidate for vaccine adjuvants and can be further used in clinical research.


Assuntos
Adjuvantes Imunológicos , Adjuvantes de Vacinas , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Lisina , Formação de Anticorpos , Guanina , Antígenos , Imunoglobulina G , Fosfatos , Oligodesoxirribonucleotídeos/química
13.
EFSA J ; 20(10): e07612, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36304834

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of concentrated liquid l-lysine, l-lysine monohydrochloride and concentrated liquid l-lysine monohydrochloride produced by Escherichia coli NITE BP-02917 as nutritional and as sensory (flavouring compound) feed additives for all animal species. The production strain did not carry ■■■■■ antimicrobial resistance genes and no viable cells of the production strain were detected in the final products. ■■■■■ However, since no sequences of concern remained in the production strain, the potential presence of that DNA did not raise safety concerns. The use of the three forms of l-lysine produced by E. coli NITE BP-02917 in supplementing feed to compensate for l-lysine deficiency in feedingstuffs was safe for the target species. This conclusion would also cover the use as a sensory additive. The FEEDAP Panel identified risks of nutritional imbalances and hygienic concerns for amino acids when administered simultaneously in feed and in water for drinking. The use of the three forms of l-lysine produced by E. coli NITE BP-02917 in animal nutrition was considered safe for the consumers and for the environment. Concentrated liquid l-lysine, l-lysine HCl and concentrated liquid l-lysine HCl were not considered to have the potential to cause respiratory toxicity, or skin sensitisation. l-Lysine HCl and concentrated liquid l-lysine HCl were not considered skin and eye irritants. Concentrated liquid l-lysine, due to its high pH, might be corrosive for skin and eyes. The three forms were considered an efficacious source of the essential amino acid l-lysine for non-ruminant animal species. For the supplemental l-lysine to be as efficacious in ruminants as in non-ruminant species, it would require protection against degradation in the rumen. The three forms of the additive were also considered efficacious as feed flavouring compounds under the proposed conditions of use.

14.
Biosens Bioelectron ; 216: 114681, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087402

RESUMO

L-lysine is a crucial nutrient for both humans and animals, and its main commercial use is as a supplement in animal feed to promote chicken and other animal growth. Fluorescence biosensors based on the transcriptional regulator have been developed for high-throughput screening of L-lysine producers. However, due to its inability to specifically detect lysine, this fluorescent biosensor cannot be employed to screen high-yielding strains. Here, we present a novel technique for observing L-lysine concentrations within individual Corynebacterium glutamicum cells. The transcriptional regulator LysG and its binding site, as well as the phytoene desaturase that catalyzes the synthesis of the red pigment, make up the functional core of the biosensor. The lysine-sensitive mutant LysG(E123Y, E125A), which improved the sensitivity of biosensors, was generated by site-directed saturation mutagenesis. In addition, we increased the lysine-induced chromogenic biosensor response to 320 mM by optimizing the L-lysine export mechanism and the pathway for the synthesis of lycopene precursors. The direct identification of producers with elevated L-lysine accumulation is thus made straightforward by colorimetric screening. Lys-8, a lysine producer with a maximum lysine titer of 316.2 mM, was sorted out based on the biosensor. The enzymatic colorimetric biosensor constructed here is a simple tool with great potential for the development of high-level lysine-producing C. glutamicum.


Assuntos
Técnicas Biossensoriais , Corynebacterium glutamicum , Técnicas Biossensoriais/métodos , Colorimetria , Corynebacterium glutamicum/metabolismo , Humanos , Licopeno/metabolismo , Lisina/metabolismo
15.
Microb Cell Fact ; 21(1): 48, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346203

RESUMO

BACKGROUND: Sunflower seeds (Helianthus annuus) display an attractive source for the rapidly increasing market of plant-based human nutrition. Of particular interest are press cakes of the seeds, cheap residuals from sunflower oil manufacturing that offer attractive sustainability and economic benefits. Admittedly, sunflower seed milk, derived therefrom, suffers from limited nutritional value, undesired flavor, and the presence of indigestible sugars. Of specific relevance is the absence of vitamin B12. This vitamin is required for development and function of the central nervous system, healthy red blood cell formation, and DNA synthesis, and displays the most important micronutrient for vegans to be aware of. Here we evaluated the power of microbes to enrich sunflower seed milk nutritionally as well as in flavor. RESULTS: Propionibacterium freudenreichii NCC 1177 showed highest vitamin B12 production in sunflower seed milk out of a range of food-grade propionibacteria. Its growth and B12 production capacity, however, were limited by a lack of accessible carbon sources and stimulants of B12 biosynthesis in the plant milk. This was overcome by co-cultivation with Bacillus amyloliquefaciens NCC 156, which supplied lactate, amino acids, and vitamin B7 for growth of NCC 1177 plus vitamins B2 and B3, potentially supporting vitamin B12 production by the Propionibacterium. After several rounds of optimization, co-fermentation of ultra-high-temperature pre-treated sunflower seed milk by the two microbes, enabled the production of 17 µg (100 g)-1 vitamin B12 within four days without any further supplementation. The fermented milk further revealed significantly enriched levels of L-lysine, the most limiting essential amino acid, vitamin B3, vitamin B6, improved protein quality and flavor, and largely eliminated indigestible sugars. CONCLUSION: The fermented sunflower seed milk, obtained by using two food-grade microbes without further supplementation, displays an attractive, clean-label product with a high level of vitamin B12 and multiple co-benefits. The secret of the successfully upgraded plant milk lies in the multifunctional cooperation of the two microbes, which were combined, based on their genetic potential and metabolic signatures found in mono-culture fermentations. This design by knowledge approach appears valuable for future development of plant-based milk products.


Assuntos
Bacillus amyloliquefaciens , Propionibacterium freudenreichii , Animais , Técnicas de Cocultura , Humanos , Leite , Sementes , Vitamina B 12 , Vitaminas/metabolismo
16.
Amino Acids ; 54(6): 967-976, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35352207

RESUMO

L-Lysine (Lys) and L-arginine (Arg), but not L-homoarginine (hArg), are proteinogenic amino acids. In healthy humans, oral administration of hArg increased the plasma concentration of Lys, suggesting Lys as a metabolite of hArg. In humans and animals, hArg is biosynthesized from Arg and Lys by arginine:glycine amidinotransferase (AGAT). In vitro, recombinant human arginase and bovine liver arginase I hydrolyzed hArg to Lys, suggesting Lys as a metabolite of hArg. The aim of the present study was to investigate whether changes in blood concentrations of hArg and Lys in old rats fed for 4 months with varied controlled experimental diets could suggest interconversion of these amino acids. Blood samples (n = 253) were taken before (T0) and after 2 months (T2) and 4 months (T4) of the experiment. Plasma concentrations of Lys and hArg were determined by gas chromatography-mass spectrometry. The plasma hArg concentration markedly correlated with the plasma Lys concentration at all timepoints (r ≥ 0.7, P < 0.0001). Further analysis demonstrated that hArg and Lys are closely and specifically associated independently of experimental time/rat age and diet, suggesting that hArg and Lys are mutual metabolites in old rats. Based on the plasma concentration changes, the median yield of hArg from Lys was determined to be 0.17% at T0 and each 0.27% at T2 and T4. With a circulating concentration of about 3 µM, hArg a major metabolite of Lys in healthy humans. hArg supplementation is currently investigated as a cardioprotective means to improve impaired hArg synthesis. Present knowledge suggests that Lys rather than hArg supplementation may be even more favorable.


Assuntos
Homoarginina , Lisina , Animais , Arginase , Arginina , Bovinos , Cromatografia Gasosa-Espectrometria de Massas , Ratos
17.
Adv Healthc Mater ; 11(10): e2101846, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114076

RESUMO

Black phosphorus (BP) nanosheets emerged as promising 2D nanomaterial that have been applied to eradicate antibiotic-resistant bacteria. However, their applications are limited by intrinsic ambient instability. Here, the ε-poly-l-lysine (ε-PL)-engineered BP nanosheets are constructed via simple electrostatic interaction to cater the demand for passivating BP with amplified antibacterial activity. The dual drug-delivery complex named BP@ε-PL can closely anchor onto the surface of bacteria, leading to membrane disintegration. Subsequently, in situ hyperthermia generated by BP under near-infrared (NIR) irradiation can precisely eradicate pathogenic bacteria. In vitro antibacterial studies verify the rapid disinfection ability of BP@ε-PL against Methicillin-resistant Staphylococcus aureus (MRSA) within 15 min. Moreover, ε-PL can serve as an effective protector to avoid chemical degradation of bare BP. The in vivo antibacterial study shows that a 99.4% antibacterial rate in a MRSA skin infection model is achieved, which is accompanied by negligible toxicity. In conclusion, this work not merely provides a new conjecture for protecting the BP, but also opens a novel window for synergistic antibiotic-resistant bacteria therapy based on antimicrobial peptides and 2D photothermal nanomaterial.


Assuntos
Hipertermia Induzida , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Fósforo
18.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163414

RESUMO

Liver cancer is currently regarded as the second leading cause of cancer-related mortality globally and is the sixth most diagnosed malignancy. Selenium nanoparticles (SeNPs) have attracted favorable attention as nanocarriers for gene therapy, as they possess beneficial antioxidant and anticancer properties. This study aimed to design, functionalize and characterize SeNPs to efficiently bind, protect and deliver pCMV-Luc DNA to hepatocellular carcinoma (HepG2) cells. The SeNPs were synthesized by ascorbic acid reduction and functionalized with poly-L-lysine (PLL) to stabilize and confer positive charges to the nanoparticles. The SeNPs were further decorated with lactobionic acid (LA) to target the asialoglycoprotein receptors abundantly expressed on the surface of the hepatocytes. All SeNPs were spherical, in the nanoscale range (<130 nm) and were capable of successfully binding, compacting and protecting the pDNA against nuclease degradation. The functionalized SeNP nanocomplexes exhibited minimal cytotoxicity (<30%) with enhanced transfection efficiency in the cell lines tested. Furthermore, the targeted SeNP (LA-PLL-SeNP) nanocomplex showed significant (* p < 0.05, ** p < 0.01, **** p < 0.0001) transgene expression in the HepG2 cells compared to the receptor-negative embryonic kidney (HEK293) cells, confirming receptor-mediated endocytosis. Overall, these functionalized SeNPs exhibit favorable features of suitable gene nanocarriers for the treatment of liver cancer.


Assuntos
Dissacarídeos/química , Técnicas de Transferência de Genes , Fígado/metabolismo , Nanopartículas Metálicas/química , Polilisina/química , Selênio/química , Células HEK293 , Células HeLa , Células Hep G2 , Humanos
19.
Bioengineered ; 13(3): 5892-5902, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35188864

RESUMO

Poly(ε-L-lysine) and poly(L-diaminopropionic acid) are valuable homopoly (amino acids) with antimicrobial properties and mainly produced in submerged fermentation. In this study, we investigated their co-production using waste biomass and spent mushroom substrate in solid-state fermentation. Simultaneous production of poly(L-diaminopropionic acid) and poly(ε-L-lysine) was achieved in a single fermentation process using pearl oyster mushroom residues as substrate, with the supplement of glycerol and corn steep liquor. After optimization of the fermentation parameters, the maximum yield of poly(ε-L-lysine) and poly(L-diaminopropionic acid) reached 51.4 mg/g substrate and 25.4 mg/g substrate, respectively. The optimal fermentation conditions were 70% initial moisture content, pH of 6.5, 30°C and an inoculum size of 14%. Furthermore, the fermentation time was reduced from 8 days to 6 days using repeated-batch solid-state fermentation. Finally, the antimicrobial effects of poly(L-diaminopropionic acid) and poly(ε-L-lysine) were evaluated in freshly pressed grape juice, which indicated tremendous potential of this mixture in its use as biological preservative.


Assuntos
Agaricales , Streptomyces , Fermentação , Conservantes de Alimentos/farmacologia , Polilisina
20.
Molecules ; 27(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209157

RESUMO

Supramolecular oleogel is a soft material with a three-dimensional structure, formed by the self-assembly of low-molecular-weight gelators in oils; it shows broad application prospects in the food industry, environmental protection, medicine, and other fields. Among all the gelators reported, amino-acid-based compounds have been widely used to form organogels and hydrogels because of their biocompatibility, biodegradation, and non-toxicity. In this study, four Nα, Nε-diacyl-l-lysine gelators (i.e., Nα, Nε-dioctanoyl-l-lysine; Nα, Nε-didecanoyl-l-lysine; Nα, Nε-dilauroyl-l-lysine; and Nα, Nε-dimyristoyl-l-lysine) were synthesized and applied to prepare oleogels in four kinds of vegetable oils. Gelation ability is affected not only by the structure of the gelators but also by the composition of the oils. The minimum gel concentration (MGC) increased with the increase in the acyl carbon-chain length of the gelators. The strongest gelation ability was displayed in olive oil for the same gelator. Rheological properties showed that the mechanical strength and thermal stability of the oleogels varied with the carbon-chain length of the gelators and the type of vegetable oil. The microstructure of oleogels is closely related to the carbon-chain length of gelators, regardless of oil type. The highest oil-binding capacity (OBC) was obtained in soybean oil for all four gelators, and Nα, Nε-dimyristoyl-l-lysine showed the best performance for entrapping oils.


Assuntos
Lisina/química , Óleos de Plantas/química , Fenômenos Químicos , Técnicas de Química Sintética , Estrutura Molecular , Compostos Orgânicos/síntese química , Compostos Orgânicos/química , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA