Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1682: 463523, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36179602

RESUMO

Refined edible oils and fats are known to contain olefins resisting the typical epoxidation used for the sample preparation of mineral oil saturated and aromatic hydrocarbons (MOSH and MOAH). These olefins can be misinterpreted as MOAH and are therefore an important reason for inconsistent results between laboratories. Collaborative trials confirm this assumption for low MOAH contents near the quantitation limits regularly. In the scope of this work, a new epoxidation approach was developed. Persistent olefins in refined oils could be successfully epoxidized with performic acid. The reaction kinetics was investigated using model substances for biogenic olefins and MOAH. It was rationalized why certain olefins resist epoxidation and which MOAH can potentially get lost. A prominent peak cluster in the MOAH fraction of refined palm oils could be identified by means of GC-MS and explained why it cannot be epoxidized. Based upon this, an automated and streamlined workflow for sample preparation and analysis was composed tackling major problems identified in previously published methods. Optimized and miniaturized saponification, extraction, epoxidation, and enrichment paired with online LC-GC-FID led to a robust method that was tested and validated for edible oils and fats (RSDR < 7% for MOSH and MOAH at values of 14.9 and 2.1 mg/kg, respectively). Due to increased sample amount and minimized blank values, quantitation limits below 1 mg/kg for MOSH and MOAH were achieved. The trueness of the method was verified by analyzing collaborative trial samples.


Assuntos
Hidrocarbonetos Aromáticos , Óleo Mineral , Alcenos/análise , Gorduras , Contaminação de Alimentos/análise , Hidrocarbonetos/análise , Hidrocarbonetos Aromáticos/análise , Óleo Mineral/análise , Óleos de Plantas/análise , Fluxo de Trabalho
2.
J Chromatogr A ; 1505: 69-76, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28533029

RESUMO

The determination of mineral oil aromatic hydrocarbons (MOAH) in foodstuffs gained in importance over the last years as carcinogenicity cannot be excluded for certain MOAH. The existence of olefins in foodstuffs, such as edible oils and fats, can be problematic for the determination of MOAH by LC-GC-FID. Removal of these interfering substances by HPLC based on polarity differences is not possible. During gas chromatographic separation heavily overloaded peaks are observed rendering the detection of small mineral oil contaminations almost impossible. Therefore, removal of these olefins is necessary before subjection of the sample to LC-GC-FID. Epoxidation of olefins to increase their polarity proved to be a valuable tool in the past. Precision and trueness of the results as shown in a collaborative trial, however, are relying on exact reaction conditions. Additionally, it is known that certain MOAH are oxidized during epoxidation and therefore get lost. In the scope of this work, hydroboration, bromohydrin reaction, and epoxidation were examined for their potential for derivatization of unsaturated hydrocarbons with increased robustness and higher recovery of MOAH. Epoxidation by meta-chloroperoxybenzoic acid (mCPBA) delivered the best removal of olefins. Factors influencing this reaction were enlightened. Adaption of the reaction conditions and time-controlled automation increased the recovery of polycyclic MOAH. Good precision (RSDr <1.5%) and recovery (95-102%) for MOAH were also observed for sunflower and olive oils spiked with a lubricating mineral oil (at 24.5mg/kg of MOAH). The trueness of the method was verified by analyzing collaborative trial samples.


Assuntos
Alcenos/análise , Cromatografia Gasosa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Gorduras/química , Contaminação de Alimentos/análise , Hidrocarbonetos Aromáticos/análise , Óleo Mineral/análise , Óleos de Plantas/química , Alcenos/isolamento & purificação , Cromatografia Gasosa/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Ionização de Chama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA