Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 249: 115128, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36709647

RESUMO

Like tuberculosis and Acquired Immune Deficiency Syndrome (AIDS), hepatitis B is a globally recognized major public health threat. Although there are many small-molecule drugs for the treatment of hepatitis B, the approved drugs cannot eradicate the pathogenic culprit covalently closed circular DNA in patients, so the patients need long-term medication to control HBV amplification. Driven by a high unmet medical need, many pharmaceutical companies and research institutions have been engaged in the development of anti-HBV drugs to achieve a functional cure for chronic hepatitis B as soon as possible. This review summarizes the pathogenesis of hepatitis B virus and the research progress in the development of anti-HBV small molecule drugs, and introduces the cccDNA formation and transcription inhibitors and core inhibitors in detail, especially emphasizes the role of chinese herbal medicine in the treatment of chronic hepatitis B. Furthermore, this review proposes three potential strategies for cccDNA eradication in the future. We believe this review will provide meaningful guidance to achieve a functional cure for viral hepatitis B in the future.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral , DNA Viral , Vírus da Hepatite B , Hepatite B/tratamento farmacológico
2.
Viruses ; 13(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452329

RESUMO

Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure.


Assuntos
DNA Circular/genética , DNA Viral/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Animais , DNA Circular/metabolismo , DNA Viral/química , DNA Viral/metabolismo , Vírus da Hepatite B/fisiologia , Humanos , Replicação Viral
3.
Emerg Microbes Infect ; 9(1): 2455-2464, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33084547

RESUMO

HBV cccDNA stably exists in the nuclei of infected cells as an episomal munichromosome which is responsible for viral persistence and failure of current antiviral treatments. However, the regulatory mechanism of cccDNA transcription by viral and host cellular factors is not well understood. In this study, we investigated whether cccDNA could be recruited into a specific region of the nucleus via specific interaction with a cellular chromatin to regulate its transcription activity. To investigate this hypothesis, we used chromosome conformation capture (3C) technology to search for the potential interaction of cccDNA and cellular chromatin through rcccDNA transfection in hepatoma cells and found that cccDNA is specifically associated with human chromosome 19p13.11 region, which contains a highly active enhancer element. We also confirmed that cellular transcription factor Yin-Yang 1 (YY1) and viral protein HBx mediated the spatial regulation of HBV cccDNA transcription by 19p13.11 enhancer. Thus, These findings indicate that YY1 and HBx mediate the recruitment of HBV cccDNA minichromosomes to 19p13.11 region for transcription activation, and YY1 may present as a novel therapeutic target against HBV infection.


Assuntos
Carcinoma Hepatocelular/virologia , Cromossomos Humanos Par 19/metabolismo , DNA Viral/metabolismo , Vírus da Hepatite B/genética , Neoplasias Hepáticas/virologia , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Fator de Transcrição YY1/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Elementos Facilitadores Genéticos , Genoma Viral , Células Hep G2 , Vírus da Hepatite B/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Transcrição Gênica , Replicação Viral
4.
J Hepatol ; 66(6): 1149-1157, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28213165

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) persists as a stable episome in infected hepatocytes and serves as a template for the transcription of all viral genes. Due to the narrow host range of HBV, the development of a robust mouse model that supports cccDNA-dependent viral replication is a key hurdle in the development of novel HBV therapeutics. This study aimed to develop a novel tool to investigate HBV cccDNA. METHODS: Through minicircle technology, HBVcircle, a recombinant cccDNA, was easily generated and extracted from a genetically engineered E. coli strain. We characterized the performance of HBVcircle in cell culture by transfection and in immunocompetent mice by hydrodynamic injection (HDI). RESULTS: We demonstrated that HBVcircle formed authentic cccDNA-like molecules in vitro in transiently transfected hepatic cells and in vivo in mouse liver after HDI. HBVcircle supported high levels and persistent HBV replication. In addition, we investigated different factors affecting HBV in vivo replication and persistence, including the host genetic background, vector design and dosage, viral genes and genotypes, and immune activation status. Furthermore, different classes of anti-HBV drugs were also assessed with the HBVcircle system. CONCLUSION: Compared with previous reported HBV mouse models which employ other viral vectors to introduce overlength HBV genomes, viral gene expression and associated phenotypes are entirely driven by cccDNA-like viral genomes in the HBVcircle mouse model. Therefore, the HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery. LAY SUMMARY: To establish a mouse model that supports cccDNA-dependent transcription, a novel tool named HBVcircle, was developed with minicircle technology. HBVcircle formed authentic cccDNA-like molecules in hepatocytes, and supported high levels and persistent HBV replication in vivo. The HBVcircle is a close mimic of cccDNA, and it represents a novel tool for addressing HBV cccDNA related biological questions and for anti-HBV drug discovery.


Assuntos
DNA Circular/genética , DNA Viral/genética , Técnicas Genéticas , Vírus da Hepatite B/genética , Imunidade Adaptativa , Animais , Linhagem Celular , DNA Circular/biossíntese , DNA Circular/imunologia , DNA Viral/biossíntese , DNA Viral/imunologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Genes Virais , Engenharia Genética , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Modelos Genéticos , Transcrição Gênica , Transfecção , Replicação Viral/genética
5.
Antiviral Res ; 134: 97-107, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27591143

RESUMO

The development of new agents to target HBV cccDNA is urgently needed because of the limitations of current available drugs for treatment of hepatitis B. By using a cell-based assay in which the production of HBeAg is in a cccDNA-dependent manner, we screened a compound library derived from Chinese herbal remedies for inhibitors against HBV cccDNA. Three hydrolyzable tannins, specifically punicalagin, punicalin and geraniin, emerged as novel anti-HBV agents. These compounds significantly reduced the production of secreted HBeAg and cccDNA in a dose-dependent manner in our assay, without dramatic alteration of viral DNA replication. Furthermore, punicalagin did not affect precore/core promoter activity, pgRNA transcription, core protein expression, or HBsAg secretion. By employing the cell-based cccDNA accumulation and stability assay, we found that these tannins significantly inhibited the establishment of cccDNA and modestly facilitated the degradation of preexisting cccDNA. Collectively, our results suggest that hydrolyzable tannins inhibit HBV cccDNA production via a dual mechanism through preventing the formation of cccDNA and promoting cccDNA decay, although the latter effect is rather minor. These hydrolyzable tannins may serve as lead compounds for the development of new agents to cure HBV infection.


Assuntos
DNA Circular/antagonistas & inibidores , DNA Viral/antagonistas & inibidores , Glucosídeos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Antivirais/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA Circular/efeitos dos fármacos , DNA Viral/efeitos dos fármacos , Descoberta de Drogas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Hepatite B/tratamento farmacológico , Antígenos E da Hepatite B/efeitos dos fármacos , Antígenos E da Hepatite B/metabolismo , Bibliotecas de Moléculas Pequenas , Replicação Viral/efeitos dos fármacos
6.
Antiviral Res ; 123: 193-203, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26476376

RESUMO

Chronic hepatitis B (CHB) is currently treated with IFN-α and nucleos(t)ide analogues, which have many clinical benefits, but there is no ultimate cure. The major problem consists in the persistence of cccDNA in infected hepatocytes. Because no antiviral drug has been evaluated which significantly reduces copies of cccDNA, cytolytic and noncytolytic approaches are needed. Effective virus-specific T- and B-cell responses remain crucial in eliminating cccDNA-carrying hepatocytes and for the long-term control of HBV infection. Reduction of viremia by antiviral drugs provides a window for reconstitution of an HBV-specific immune response. Preclinical studies in mice and woodchucks have shown that immunostimulatory strategies, such as prime-boost vaccination and PD-1 blockade, can boost a weak virus-specific T cell response and lead to effective control of HBV infection. Based on data obtained in our preclinical studies, the combination of antiviral drugs and immunomodulators may control HBV viremia during a patient's drug-off period. In this article, we review current immune-modulatory approaches for the treatment of chronic hepatitis B and the elimination of cccDNA in preclinical models. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis".


Assuntos
Antivirais/administração & dosagem , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/terapia , Fatores Imunológicos/administração & dosagem , Imunomodulação , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada/métodos , Hepatite B Crônica/virologia , Marmota , Camundongos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA