Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 29-39, 2024 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38615163

RESUMO

OBJECTIVES: Trigeminal neuralgia (TN) is a common neuropathic pain. Voltage-gated potassium channel (Kv) has been confirmed to be involved in the occurrence and development of TN, but the specific mechanism is still unclear. MicroRNA may be involved in neuropathic pain by regulating the expression of Kv channels and neuronal excitability in trigeminal ganglion (TG). This study aims to explore the relationship between Kv1.1 and miR-21-5p in TG with a TN model, evaluate whether miR-21-5p has a regulatory effect on Kv1.1, and to provide a new target and experimental basis for the treatment of TN. METHODS: A total of 48 SD rats were randomly divided into 6 groups: 1) a sham group (n=12), the rats were only sutured at the surgical incision without nerve ligation; 2) a sham+agomir NC group (n=6), the sham rats were microinjected with agomir NC through stereotactic brain injection in the surgical side of TG; 3) a sham+miR-21-5p agomir group (n=6), the sham rats were microinjected with miR-21-5p agomir via stereotactic brain injection in the surgical side of TG; 4) a TN group (n=12), a TN rat model was constructed using the chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) method with chromium intestinal thread; 5) a TN+antagonist NC group (n=6), TN rats were microinjected with antagonist NC through stereotactic brain injection method in the surgical side of TG; 6) a TN+miR-21-5p antagonist group (n=6), TN rats were microinjected with miR-21-5p antagonist through stereotactic brain injection in the surgical side of TG. The change of mechanical pain threshold in rats of each group after surgery was detected. The expressions of Kv1.1 and miR-21-5p in the operative TG of rats were detected by Western blotting and real-time reverse transcription polymerase chain reaction. Dual luciferase reporter genes were used to determine whether there was a target relationship between Kv1.1 and miR-21-5p and whether miR-21-5p directly affected the 3'-UTR terminal of KCNA1. The effect of brain stereotaxic injection was evaluated by immunofluorescence assay, and then the analogue of miR-21-5p (agomir) and agomir NC were injected into the TG of rats in the sham group by brain stereotaxic apparatus to overexpress miR-21-5p. The miR-21-5p inhibitor (antagomir) and antagomir NC were injected into TG of rats in the TN group to inhibit the expression of miR-21-5p. The behavioral changes of rats before and after administration were observed, and the expression changes of miR-21-5p and Kv1.1 in TG of rats after intervention were detected. RESULTS: Compared with the baseline pain threshold, the facial mechanical pain threshold of rats in the TN group was significantly decreased from the 5th to 15th day after the surgery (P<0.05), and the facial mechanical pain threshold of rats in the sham group was stable at the normal level, which proved that the dIoN-CCI model was successfully constructed. Compared with the sham group, the expression of Kv1.1 mRNA and protein in TG of the TN group was down-regulated (both P<0.05), and the expression of miR-21-5p was up-regulated (P<0.05). The results of dual luciferase report showed that the luciferase activity of rno-miR-21-5p mimics and KCNA1 WT transfected with 6 nmol/L or 20 nmol/L were significantly decreased compared with those transfected with mimic NC and wild-type KCNA1 WT, respectively (P<0.001). Compared with low dose rno-miR-21-5p mimics (6 nmol/L) co-transfection group, the relative activity of luciferase in the high dose rno-miR-21-5p mimics (20 nmol/L) cotransfection group was significantly decreased (P<0.001). The results of immunofluorescence showed that drugs were accurately injected into TG through stereotaxic brain. After the expression of miR-21-5p in the TN group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were increased. After overexpression of miR-21-5p in the sham group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were decreased. CONCLUSIONS: Both Kv1.1 and miR-21-5p are involved in TN and miR-21-5p can regulate Kv1.1 expression by binding to the 3'-UTR of KCNA1.


Assuntos
Canal de Potássio Kv1.1 , MicroRNAs , Neuralgia , Neuralgia do Trigêmeo , Animais , Ratos , Antagomirs , Regulação para Baixo , Luciferases , MicroRNAs/genética , Neuralgia/genética , Ratos Sprague-Dawley , RNA Mensageiro , Neuralgia do Trigêmeo/genética , Canal de Potássio Kv1.1/genética
2.
Acta Trop ; 252: 107139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307362

RESUMO

Clotrimazole is an FDA approved drug and is widely used as an antifungal agent. An extensive body of research is available about its mechanism of action on various cell types but its mode of killing of Leishmania donovani parasites is unknown. L. donovani causes Visceral Leishmaniasis which is a public health problem with limited treatment options. Its present chemotherapy is expensive, has adverse effects and is plagued with drug resistance issues. In this study we have explored the possibility of repurposing clotrimazole as an antileishmanial drug. We have assessed its efficacy on the parasites and attempted to understand its mode of action. We found that it has a half-maximal inhibitory concentration (IC50) of 35.75 ± 1.06 µM, 12.75 ± 0.35 µM and 73 ± 1.41 µM in promastigotes, intracellular amastigotes and macrophages, respectively. Clotrimazole is 5.73 times more selective for the intracellular amastigotes as compared to the mammalian cell. Effect of clotrimazole was reduced by ergosterol supplementation. It leads to impaired parasite morphology. It alters plasma membrane permeability and disrupts plasma membrane potential. Mitochondrial function is compromised as is evident from increased ROS generation, depolarized mitochondrial membrane and decreased ATP levels. Cell cycle analysis of clotrimazole treated parasites shows arrest at sub-G0 phase suggesting apoptotic mode of cell death.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Animais , Clotrimazol/farmacologia , Clotrimazol/metabolismo , Clotrimazol/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Macrófagos , Pontos de Checagem do Ciclo Celular , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Mamíferos
3.
J Biol Chem ; 300(3): 105759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367666

RESUMO

Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.


Assuntos
Miócitos Cardíacos , Canais de Potássio Shal , Ubiquitina-Proteína Ligases , Animais , Humanos , Coelhos , Potenciais de Ação/fisiologia , Estudo de Associação Genômica Ampla , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células HEK293
4.
Biochem Pharmacol ; 219: 115979, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081367

RESUMO

Methotrexate (MTX) is an immunosuppressant used to treat autoimmune diseases, including psoriasis. However, like other immunosuppressants, MTX alone does not prevent their recurrence. Electrostimulation (ES) has been utilized to treat some inflammatory disorders without any major side-effect. But it remains unknown if ES alone, or together with MTX, ameliorates autoimmune disease relapse: a sticky medical problem. In particular, the mechanisms underlying ES action remain unclear. The objective of this study was to determine an impact of ES and/or MTX on psoriasis relapse and their potential cooperation. We found that regional ES, but not MTX, ameliorated psoriasiform skin inflammation recurrence. Interestingly, treatment with both MTX and ES further prevented psoriasis recurrence compared to ES alone. Moreover, ES downregulated potassium channel Kv1.3 on T-cells and reduced CD4+/CD8+ effector memory (TEM) and CD8+ skin-resident memory T (TRM) cells, while ES plus MTX further decreased CD8+ TEM/TRM cells compared to ES alone. However, ES failed to further attenuate psoriasis recurrence or suppress T cell memory in Kv1.3-deficient mice, whereas lack of Kv1.3 itself ameliorated psoriasis relapse by shrinking T cell memory pool. Importantly, ES moderately inhibited T-cell proliferation in vitro. ES also reduced human CD8+ TRM cells and attenuated human skin lesions in humanized mice grafted with lesional skin from patients with recurrent psoriasis, with an enhanced efficacy in mice treated with both ES and MTX. Thus, ES and MTX cooperated to prevent psoriasis relapse by reducing T-cell memory via targeting potassium channel Kv1.3. Our studies may be implicated for treating human psoriasis.


Assuntos
Terapia por Estimulação Elétrica , Psoríase , Humanos , Animais , Camundongos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Células T de Memória , Psoríase/tratamento farmacológico , Pele , Doença Crônica , Inflamação/patologia , Canais de Potássio
5.
Neurosci Bull ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973721

RESUMO

Trigeminal inflammatory pain is one of the most severe pain-related disorders in humans; however, the underlying mechanisms remain largely unknown. In this study, we investigated the possible contribution of interaction between ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and the voltage-gated K+ channel Kv7.2 (encoded by Kcnq2) to orofacial inflammatory pain in mice. We found that complete Freund's adjuvant (CFA) injection reduced the expression of Kcnq2/Kv7.2 in the trigeminal ganglion (TG) and induced orofacial inflammatory pain. The involvement of Kv7.2 in CFA-induced orofacial pain was further confirmed by Kv7.2 knockdown or overexpression. Moreover, TET1 knockdown in Tet1flox/flox mice significantly reduced the expression of Kv7.2 and M currents in the TG and led to pain-like behaviors. Conversely, TET1 overexpression by lentivirus rescued the CFA-induced decreases of Kcnq2 and M currents and alleviated mechanical allodynia. Our data suggest that TET1 is implicated in CFA-induced trigeminal inflammatory pain by positively regulating Kv7.2 in TG neurons.

6.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3565-3575, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37474990

RESUMO

This study aimed to investigate the underlying mechanism of Zhenwu Decoction in the treatment of heart failure by regulating electrical remodeling through the transient outward potassium current(I_(to))/voltage-gated potassium(Kv) channels. Five normal SD rats were intragastrically administered with Zhenwu Decoction granules to prepare drug-containing serum, and another seven normal SD rats received an equal amount of distilled water to prepare blank serum. H9c2 cardiomyocytes underwent conventional passage and were treated with angiotensin Ⅱ(AngⅡ) for 24 h. Subsequently, 2%, 4%, and 8% drug-containing serum, simvastatin(SIM), and BaCl_2 were used to interfere in H9c2 cardiomyocytes for 24 h. The cells were divided into a control group [N, 10% blank serum + 90% high-glucose DMEM(DMEM-H)], a model group(M, AngⅡ + 10% blank serum + 90% DMEM-H), a low-dose Zhenwu Decoction-containing serum group(Z1, AngⅡ + 2% drug-containing serum of Zhenwu Decoction + 8% blank serum + 90% DMEM-H), a medium-dose Zhenwu Decoction-containing serum group(Z2, AngⅡ + 4% drug-containing serum of Zhenwu Decoc-tion + 6% blank serum + 90% DMEM-H), a high-dose Zhenwu Decoction-containing serum group(Z3, AngⅡ + 8% drug-containing serum of Zhenwu Decoction + 2% blank serum + 90% DMEM-H), an inducer group(YD, AngⅡ + SIM + 10% blank serum + 90% DMEM-H), and an inhibitor group(YZ, AngⅡ + BaCl_2 + 10% blank serum + 90% DMEM-H). The content of ANP in cell extracts of each group was detected by ELISA. The relative mRNA expression levels of ANP, Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 were detected by real-time quantitative PCR. The protein expression of Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 was detected by Western blot. I_(to) was detected by the whole cell patch-clamp technique. The results showed that Zhenwu Decoction at low, medium, and high doses could effectively reduce the surface area of cardiomyocytes. Compared with the M group, the Z1, Z2, Z3, and YD groups showed decreased ANP content and mRNA level, increased protein and mRNA expression of Kv4.2, Kv4.3, DPP6, and KChIP2, and decreased protein and mRNA expression of Kv1.4, and the aforementioned changes were the most notable in the Z3 group. Compared with the N group, the Z1, Z2, and Z3 groups showed significantly increased peak current and current density of I_(to). The results indicate that Zhenwu Decoction can regulate myocardial remodeling and electrical remodeling by improving the expression trend of Kv1.4, Kv4.2, Kv4.3, KChIP2, and DPP6 proteins and inducing I_(to) to regulate Kv channels, which may be one of the mechanisms of Zhenwu Decoction in treating heart failure and related arrhythmias.


Assuntos
Remodelamento Atrial , Insuficiência Cardíaca , Ratos , Animais , Miócitos Cardíacos , Ratos Sprague-Dawley , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , RNA Mensageiro/metabolismo , Potássio
7.
3 Biotech ; 13(8): 266, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37425093

RESUMO

Leishmania donovani is the causative organism for visceral leishmaniasis. Although this parasite was discovered over a century ago, nothing is known about role of potassium channels in L. donovani. Potassium channels are known for their crucial roles in cellular functions in other organisms. Recently the presence of a calcium-activated potassium channel in L. donovani was reported which prompted us to look for other proteins which could be potassium channels and to investigate their possible physiological roles. Twenty sequences were identified in L. donovani genome and subjected to estimation of physio-chemical properties, motif analysis, localization prediction and transmembrane domain analysis. Structural predictions were also done. The channels were majorly α-helical and predominantly localized in cell membrane and lysosomes. The signature selectivity filter of potassium channel was present in all the sequences. In addition to the conventional potassium channel activity, they were associated with gene ontology terms for mitotic cell cycle, cell death, modulation by virus of host process, cell motility etc. The entire study indicates the presence of potassium channel families in L. donovani which may have involvement in several cellular pathways. Further investigations on these putative potassium channels are needed to elucidate their roles in Leishmania. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03692-y.

8.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1792-1799, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282953

RESUMO

Arrhythmia is an external manifestation of cardiac electrophysiological disorder. It exists in healthy people and patients with various heart diseases, which is often associated with other cardiovascular diseases. The contraction and diastole of myocardium are inseparable from the movement of ions. There are many ion channels in the membrane and organelle membrane of myocardium. The dynamic balance of myocardial ions is vital in maintaining myocardial electrical homeostasis. Potassium ion channels that have a complex variety and a wide distribution are involved in the whole process of resting potential and action potential of cardiomyocytes. Potassium ion channels play a vital role in maintaining normal electrophysiological activity of myocardium and is one of the pathogenesis of arrhythmia. Traditional Chinese medicine(TCM)has unique advantages in treating arrhythmia for its complex active components and diverse targets. A large number of TCM preparations have definite effect on treating arrhythmia-related diseases, whose antiarrhythmic mechanism may be related to the effect on potassium channel. This article mainly reviewed the relevant studies on the active components in TCM acting on different potassium channels to provide references for clinical drug use and development.


Assuntos
Cardiopatias , Canais de Potássio , Humanos , Medicina Tradicional Chinesa , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Cardiopatias/tratamento farmacológico , Íons
9.
Artigo em Chinês | WPRIM | ID: wpr-981396

RESUMO

Arrhythmia is an external manifestation of cardiac electrophysiological disorder. It exists in healthy people and patients with various heart diseases, which is often associated with other cardiovascular diseases. The contraction and diastole of myocardium are inseparable from the movement of ions. There are many ion channels in the membrane and organelle membrane of myocardium. The dynamic balance of myocardial ions is vital in maintaining myocardial electrical homeostasis. Potassium ion channels that have a complex variety and a wide distribution are involved in the whole process of resting potential and action potential of cardiomyocytes. Potassium ion channels play a vital role in maintaining normal electrophysiological activity of myocardium and is one of the pathogenesis of arrhythmia. Traditional Chinese medicine(TCM)has unique advantages in treating arrhythmia for its complex active components and diverse targets. A large number of TCM preparations have definite effect on treating arrhythmia-related diseases, whose antiarrhythmic mechanism may be related to the effect on potassium channel. This article mainly reviewed the relevant studies on the active components in TCM acting on different potassium channels to provide references for clinical drug use and development.


Assuntos
Humanos , Canais de Potássio , Medicina Tradicional Chinesa , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Cardiopatias/tratamento farmacológico , Íons
10.
Artigo em Chinês | WPRIM | ID: wpr-981488

RESUMO

This study aimed to investigate the underlying mechanism of Zhenwu Decoction in the treatment of heart failure by regulating electrical remodeling through the transient outward potassium current(I_(to))/voltage-gated potassium(Kv) channels. Five normal SD rats were intragastrically administered with Zhenwu Decoction granules to prepare drug-containing serum, and another seven normal SD rats received an equal amount of distilled water to prepare blank serum. H9c2 cardiomyocytes underwent conventional passage and were treated with angiotensin Ⅱ(AngⅡ) for 24 h. Subsequently, 2%, 4%, and 8% drug-containing serum, simvastatin(SIM), and BaCl_2 were used to interfere in H9c2 cardiomyocytes for 24 h. The cells were divided into a control group [N, 10% blank serum + 90% high-glucose DMEM(DMEM-H)], a model group(M, AngⅡ + 10% blank serum + 90% DMEM-H), a low-dose Zhenwu Decoction-containing serum group(Z1, AngⅡ + 2% drug-containing serum of Zhenwu Decoction + 8% blank serum + 90% DMEM-H), a medium-dose Zhenwu Decoction-containing serum group(Z2, AngⅡ + 4% drug-containing serum of Zhenwu Decoc-tion + 6% blank serum + 90% DMEM-H), a high-dose Zhenwu Decoction-containing serum group(Z3, AngⅡ + 8% drug-containing serum of Zhenwu Decoction + 2% blank serum + 90% DMEM-H), an inducer group(YD, AngⅡ + SIM + 10% blank serum + 90% DMEM-H), and an inhibitor group(YZ, AngⅡ + BaCl_2 + 10% blank serum + 90% DMEM-H). The content of ANP in cell extracts of each group was detected by ELISA. The relative mRNA expression levels of ANP, Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 were detected by real-time quantitative PCR. The protein expression of Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 was detected by Western blot. I_(to) was detected by the whole cell patch-clamp technique. The results showed that Zhenwu Decoction at low, medium, and high doses could effectively reduce the surface area of cardiomyocytes. Compared with the M group, the Z1, Z2, Z3, and YD groups showed decreased ANP content and mRNA level, increased protein and mRNA expression of Kv4.2, Kv4.3, DPP6, and KChIP2, and decreased protein and mRNA expression of Kv1.4, and the aforementioned changes were the most notable in the Z3 group. Compared with the N group, the Z1, Z2, and Z3 groups showed significantly increased peak current and current density of I_(to). The results indicate that Zhenwu Decoction can regulate myocardial remodeling and electrical remodeling by improving the expression trend of Kv1.4, Kv4.2, Kv4.3, KChIP2, and DPP6 proteins and inducing I_(to) to regulate Kv channels, which may be one of the mechanisms of Zhenwu Decoction in treating heart failure and related arrhythmias.


Assuntos
Ratos , Animais , Miócitos Cardíacos , Remodelamento Atrial , Ratos Sprague-Dawley , Insuficiência Cardíaca/metabolismo , RNA Mensageiro/metabolismo , Potássio
11.
Pharmacol Biochem Behav ; 222: 173498, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455670

RESUMO

RATIONALE: The behavioral effects of cannabidiol (CBD) are understudied, but are important, given its therapeutic potential and widespread use as a natural supplement. OBJECTIVE: The objective of this study was to test whether a single injection of CBD affected anxiety-like or attention-like behavior, or memory in wildtype mice or mice with reported trait anxiety due to a targeted gene-deletion in a voltage-dependent potassium channel, Kv1.3. METHODS: Wildtype C57BL/6 J and Kv1.3-/- mice of both sexes were reared to adulthood and then administered an intraperitoneal injection of 10 or 20 mg/kg CBD. Mice were behaviorally-phenotyped using the marble-burying test, the light-dark box (LDB), short (1 h) and long-term (24 h) object memory test, the elevated-plus maze (EPM), and the object-based attention task in order to assess obsessive compulsive-, anxiety-, and attention-like behaviors, and memory. RESULTS: We discovered that acute CBD treatment reduced marble burying in male, but not female mice. CBD was effective in lessening anxiety-like behaviors determined by the LDB test in both male and female wildtype mice, whereby the effective dose required to observe the effect in females was less. In Kv1.3-/- mice, CBD increased anxiety-like behaviors in the LDB in both sexes at the higher concentration of CBD and it similarly increased anxiety-like behavior in females in the EPM at the lower concentration of CBD. Long-term object memory was reduced in male wildtype mice at the lower concentration of CBD. Finally, ADHD- or attention-like behaviors were not altered by CBD in wildtype mice, but in Kv1.3-/- mice, females were observed to have a loss in attention while males demonstrated improved attention. CONCLUSIONS: We conclude that administration of a single dose of CBD has immediate effects on mouse behavior that is dose, sex, and anxiety-state dependent - and that these behavioral outcomes are important to examine in parallel human trials.


Assuntos
Canabidiol , Transtorno Obsessivo-Compulsivo , Humanos , Feminino , Camundongos , Masculino , Animais , Canabidiol/farmacologia , Camundongos Endogâmicos C57BL , Ansiedade/tratamento farmacológico , Transtornos de Ansiedade
12.
Neurotox Res ; 40(5): 1380-1392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057039

RESUMO

Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aß neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aß1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-ß2 subunit expression was determined using western blot analysis in Aß-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aß-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-ß2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-ß2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aß-induced neurotoxicity rat model, an effect that can be linked to increased expression of ß2 subunit.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Canais KATP/metabolismo , Canais KATP/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/farmacologia , Lipídeos/farmacologia , Masculino , Mitocôndrias , Ratos , Ratos Wistar
13.
Int Rev Neurobiol ; 163: 335-355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35750369

RESUMO

Essential tremor is one of the most prevalent movement disorders. Propranolol and primidone are the first-line pharmacological therapies. They provide symptomatic control in less than 50% of patients. Topiramate, alprazolam, clonazepam, gabapentin, and botulinum toxin injections are the next line of treatments. These medications lead to modest improvements and are therefore commonly used as add-on agents. Surgical therapies, including deep brain stimulation (DBS) surgery and focused ultrasound beam targeted to the thalamus, are considered for treating tremor refractory to medications and lead to greater than 75% improvements in tremor symptoms. However, DBS is a costly and an invasive procedure; some patients report tolerance to benefits. Focused ultrasound therapy leading to brain lesions is associated with a possibility for permanent clinical deficits. Therefore, research efforts to develop the next generation of oral medications with greater benefits and lesser adverse effects are warranted. There is considerable evidence that the increased functions of calcium channels (P/Q-type and T-type channels) and reduced functions of calcium-activated potassium channels (SK channels) located in the neuronal membranes lead to tremor oscillations. Consequently, many new pharmacological studies have targeted these channels to leverage better clinical outcomes. The current review will discuss the pathophysiology, the specific importance of these channels, and the early clinical experience of using compounds targeting these channels to treat essential tremor.


Assuntos
Canais de Cálcio Tipo T , Tremor Essencial , Tremor Essencial/diagnóstico , Humanos , Tálamo/cirurgia , Tremor
14.
Pediatr Nephrol ; 37(10): 2245-2254, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35195759

RESUMO

By controlling urinary potassium excretion, the kidneys play a key role in maintaining whole-body potassium homeostasis. Conversely, low urinary potassium excretion (as a proxy for insufficient dietary intake) is increasingly recognized as a risk factor for the progression of kidney disease. Thus, there is a reciprocal relationship between potassium and the kidney: the kidney regulates potassium balance but potassium also affects kidney function. This review explores this relationship by discussing new insights into kidney potassium handling derived from recently characterized tubulopathies and studies on sexual dimorphism. These insights reveal a central but non-exclusive role for the distal convoluted tubule in sensing potassium and subsequently modifying the activity of the sodium-chloride cotransporter. This is another example of reciprocity: activation of the sodium-chloride cotransporter not only reduces distal sodium delivery and therefore potassium secretion but also increases salt sensitivity. This mechanism helps explain the well-known relationship between dietary potassium and blood pressure. Remarkably, in children, blood pressure is related to dietary potassium but not sodium intake. To explore how potassium deficiency can cause kidney injury, we review the mechanisms of hypokalemic nephropathy and discuss if these mechanisms may explain the association between low dietary potassium intake and adverse kidney outcomes. We discuss if potassium should be repleted in patients with kidney disease and what role dietary potassium plays in the risk of hyperkalemia. Supported by data and physiology, we reach the conclusion that we should view potassium not only as a potentially dangerous cation but also as a companion in the battle against kidney disease.


Assuntos
Nefropatias , Potássio , Criança , Humanos , Nefropatias/etiologia , Túbulos Renais Distais , Potássio/metabolismo , Potássio na Dieta , Simportadores de Cloreto de Sódio , Membro 3 da Família 12 de Carreador de Soluto
15.
J Biol Chem ; 298(1): 101497, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919963

RESUMO

The Kv1.3 channel has been widely demonstrated to play crucial roles in the activation and proliferation of T cells, which suggests that selective blockers could serve as potential therapeutics for autoimmune diseases mediated by T cells. We previously described that the toxin mimic FS48 from salivary gland of Xenopsylla cheopis downregulates the secretion of proinflammatory factors by Raw 264.7 cells by blocking the Kv1.3 channel and the subsequent inactivation of the proinflammatory MAPK/NF-κB pathways. However, the effects of FS48 on human T cells and autoimmune diseases are unclear. Here, we described its immunomodulatory effects on human T cells derived from suppression of Kv1.3 channel. Kv1.3 currents in Jurkat T cells were recorded by whole-cell patch-clamp, and Ca2+ influx, cell proliferation, and TNF-α and IL-2 secretion were measured using Fluo-4, CCK-8, and ELISA assays, respectively. The in vivo immunosuppressive activity of FS48 was evaluated with a rat DTH model. We found that FS48 reduced Kv1.3 currents in Jurkat T cells in a concentration-dependent manner with an IC50 value of about 1.42 µM. FS48 also significantly suppressed Kv1.3 protein expression, Ca2+ influx, MAPK/NF-κB/NFATc1 pathway activation, and TNF-α and IL-2 production in activated Jurkat T cells. Finally, we show that FS48 relieved the DTH response in rats. We therefore conclude that FS48 can block the Kv1.3 channel and inhibit human T cell activation, which most likely contributes to its immunomodulatory actions and highlights the great potential of this evolutionary-guided peptide as a drug template in future studies.


Assuntos
Doenças Autoimunes , Canal de Potássio Kv1.3 , Venenos de Escorpião , Linfócitos T , Xenopsylla , Adjuvantes Imunológicos/farmacologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Humanos , Fatores Imunológicos/farmacologia , Interleucina-2/metabolismo , Canal de Potássio Kv1.3/imunologia , Ativação Linfocitária/efeitos dos fármacos , NF-kappa B/metabolismo , Bloqueadores dos Canais de Potássio/imunologia , Ratos , Glândulas Salivares/química , Venenos de Escorpião/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/imunologia , Xenopsylla/química
16.
J Ethnopharmacol ; 283: 114734, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34648900

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Previous studies have shown that the active fraction of Rhodiola tangutica (Maxim.) S.H. Fu (ACRT) dilates pulmonary arteries and thwarts pulmonary artery remodelling. The dilatation effect of ACRT on pulmonary artery vascular rings could be reduced by potassium (K+) channel blockers. However the exact mechanisms of ACRT on ion channels are still unclear. AIM OF THE STUDY: This study aimed to investigate whether the effect of ACRT on K+ channels inhibits cell proliferation after pulmonary artery smooth muscle cells (PASMCs) are exposed to hypoxia. MATERIALS AND METHODS: The whole-cell patch-clamp method was used to clarify the effect of ACRT on the K+ current (IK) of rat PASMCs exposed to hypoxia. The mRNA and protein expression levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The intracellular calcium (Ca2+) concentration ([Ca2+]i) values in rat PASMCs were detected by laser scanning confocal microscopy. The cell cycle and cell proliferation were assessed using flow cytometry analysis and CCK-8 and EdU assays. RESULTS: ACRT pretreatment alleviated the inhibition of IK induced by hypoxia in rat PASMCs. Compared with hypoxia, ACRT upregulated voltage-dependent K+ channel (Kv) 1.5 and big-conductance calcium-activated K+ channel (BKCa) mRNA and protein expression and downregulated voltage-dependent Ca2+ channel (Cav) 1.2 mRNA and protein expression. ACRT decreased [Ca2+]i, inhibited the promotion of cyclin D1 and proliferating cell nuclear antigen (PCNA) expression, and prevented the proliferation of rat PASMCs exposed to hypoxia. CONCLUSION: In conclusion, the present study demonstrated that ACRT plays a key role in restoring ion channel function and then inhibiting the proliferation of PASMCs under hypoxia, ACRT has preventive and therapeutic potential in hypoxic pulmonary hypertension.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Rhodiola/química , Animais , Cálcio/metabolismo , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Artéria Pulmonar/citologia , Ratos , Ratos Sprague-Dawley
17.
Heliyon ; 7(10): e08094, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34712851

RESUMO

OBJECTIVE: This study determines the efficacy and probable underlying mode of action to the folk usage of Euphorbia hirta, Fagonia indica and Capparis decidua in hypertension. METHODS: The aqueous-methanol extracts of E. hirta (EH.Cr), F. indica (FI.Cr) and C. decidua (CD.Cr) were tested for antihypertensive effects in rats using non-invasive and in-vasive blood pressure measuring apparatus. In-vitro assays were carried out using isolated rat aortae using PowerLab station. RESULTS: EH.Cr, FI.Cr and CD.Cr at 500 mg/kg (orally) caused a fall in the mean systolic blood pressure in arsenic-induced hypertensive and normotensive rats, similar to nifedipine. In rat aortae, EH.Cr, CD.Cr and FI.Cr reversed low (20 mM), high (80 mM) K+ and phenylephrine (P.E)-driven contractions, while F. indica partially inhibited high K+ contractions. In the presence of TEA, F. indica remained unable to relax low K+ contractions. EH.Cr and CD.Cr moved Ca++ concentrations response curves to the right, like nifedipine. All fractions of EH.Cr and CD.Cr except aqueous, pet-ether and chloroform fractions of FI.Cr displayed Ca++ antagonistic activity. FI.Cr, its ethyl acetate and aqueous fraction exhibited TEA-sensitive potassium channel activation. On baseline tension, test materials also produced phentolamine-sensitive vasospasm. CONCLUSION: E. hirta, F. indica and C. decidua possess antihypertensive activity in arsenic-induced hypertensive rats possibly mediated via endothelium-dependent vasorelaxation. In normotensive rats, E. hirta and C. decidua showed antihypertensive activities through endothelium-dependent and Ca++ antagonistic pathways, while F. indica exhibited potassium channel activation and Ca++ antagonistic like effects in its vasorelaxation. Additional weaker vasospastic effects were derived through α-adrenergic like pathways.

18.
Front Med (Lausanne) ; 8: 730161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552948

RESUMO

Autoimmunity is increasingly recognized as a novel pathogenic mechanism for cardiac arrhythmias. Several arrhythmogenic autoantibodies have been identified, cross-reacting with different types of surface proteins critically involved in the cardiomyocyte electrophysiology, primarily ion channels (autoimmune cardiac channelopathies). Specifically, some of these autoantibodies can prolong the action potential duration leading to acquired long-QT syndrome (LQTS), a condition known to increase the risk of life-threatening ventricular arrhythmias, particularly Torsades de Pointes (TdP). The most investigated form of autoimmune LQTS is associated with the presence of circulating anti-Ro/SSA-antibodies, frequently found in patients with autoimmune diseases (AD), but also in a significant proportion of apparently healthy subjects of the general population. Accumulating evidence indicates that anti-Ro/SSA-antibodies can markedly delay the ventricular repolarization via a direct inhibitory cross-reaction with the extracellular pore region of the human-ether-a-go-go-related (hERG) potassium channel, resulting in a higher propensity for anti-Ro/SSA-positive subjects to develop LQTS and ventricular arrhythmias/TdP. Recent population data demonstrate that the risk of LQTS in subjects with circulating anti-Ro/SSA antibodies is significantly increased independent of a history of overt AD, intriguingly suggesting that these autoantibodies may silently contribute to a number of cases of ventricular arrhythmias and cardiac arrest in the general population. In this review, we highlight the current knowledge in this topic providing complementary basic, clinical and population health perspectives.

19.
Am J Cancer Res ; 11(4): 1148-1169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948351

RESUMO

In spite of radio- and chemotherapy, glioblastoma (GBM) develops therapeutic resistance leading to recurrence and poor prognosis. Therefore, understanding the underlying mechanisms of resistance is important to improve the treatment of GBM. To this end, we developed a radiation-resistant cell model by exposure to consecutive periods of irradiation. Simultaneously, single high-dose irradiation was introduced to determine "when" GBM developed consecutive irradiation-induced resistance (CIIR). We found that CIIR promoted TGF-ß secretion, activated pro-survival Akt, and downregulated p21 in a p53-independent manner. Furthermore, CIIR upregulated multidrug-resistant proteins, resulting in temozolomide resistance. CIIR GBM also enhanced cell mobility and accelerated cell proliferation. The big-conductance calcium-activated potassium channel (BK channel) is highly expressed and activated in GBM. However, CIIR diminishes BK channel activity in an expression-independent manner. Cilostazol is a phosphodiesterase-3 inhibitor for the treatment of intermittent claudication and was able to reverse CIIR-induced BK channel inactivation. Paxilline, a BK channel blocker, promoted cell migration and proliferation in parental GBM cells. In contrast, Cilostazol inhibited CIIR-induced cell motility, proliferation, and the ability to form tumor spheres. Moreover, we established a radiation-resistant GBM in vivo model by intracranially injecting CIIR GBM cells into the brains of NOD/SCID mice. We found that Cilostazol delayed tumor in vivo growth and prolonged survival. As such, inactivation of the BK channel assists GBM in developing radiation resistance. Accordingly, restoring BK channel activity may be an effective strategy to improve therapeutic efficacy, and cilostazol could be repurposed to treat GBM.

20.
Neuropharmacology ; 191: 108572, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901515

RESUMO

Local field potentials (LFPs) recorded intracranially display a range of location-specific oscillatory spectra which have been related to cognitive processes. Although the mechanisms producing LFPs are not completely understood, it is likely that voltage-gated ion channels which produce action potentials and patterned discharges play a significant role. It is also known that antipsychotic drugs (APDs) affect LFP spectra and a direct inhibitory effect on voltage-gated potassium channels has been reported. Additionally, voltage-gated potassium channels have been implicated in the pathophysiology of schizophrenia, a disorder for which APDs are primary therapies. In this study we sought to: i) better characterise the effects of two APDs on LFPs spectra and connectivity measures and ii) examine the effects of potassium channel modulators on LFPs and potential overlap of effects with APDs. Intracranial electrodes were implanted in hippocampus (HIP) and pre-frontal cortex (PFC) of C57BL/6J mice; power spectra, coherence and phase-amplitude cross-frequency coupling were measured. Drugs tested were APDs haloperidol and clozapine as well as voltage-gated potassium channel modulators (KVMs) 4-aminopyridine (4-AP), tetraethylammonium, retigabine and E-4031. Both APDs and KVMs significantly reduced gamma power except 4-AP, which conversely increased gamma power. Clozapine and retigabine additionally reduced gamma coherence between HIP and PFC, while 4-AP demonstrated the opposite effect. Phase-amplitude coupling between theta and gamma oscillations in HIP was significantly reduced by the administration of haloperidol and retigabine. These results provide previously undescribed effects of APDs on LFP properties and demonstrate novel modulation of LFP characteristics by KVMs that intriguingly overlap with the APD effects.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antipsicóticos/farmacologia , Lobo Frontal/fisiologia , Hipocampo/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Animais , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA