Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Food Sci ; 89(4): 2232-2248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380698

RESUMO

Sugarcane juice is a popular beverage and is also processed to produce sugar. The polyphenol oxidase (PPO) in sugarcane juice causes enzymatic browning and makes the process of sugar production complex and cumbersome. Storage of sugarcane juice is also hampered by the high sugar content and rapid microbial fermentation. The present research assessed the potential of lemon juice (LJ) and ginger extract (GE) as natural inhibitors of PPO. Enzyme kinetics and the mechanism of inhibition of LJ and GE were studied. Primary investigation was carried out using molecular docking approach to assess the inhibitory potential of LJ and GE and to determine the nature of interaction between the enzyme and inhibitors. Extracts were used as inhibitors and studies revealed that both reduced the PPO activity. Subsequently, pure bioactive inhibitors such as ascorbic acid, citric acid, and 6-shogaol present in these natural extracts were used to study the mode of inhibition of PPO. Citric acid decreased PPO activity by lowering pH, while ascorbic acid was found to be a competitive inhibitor of PPO with a Ki of 75.69 µM. The proportion of LJ and GE required in sugarcane juice was optimized on the basis of browning index and sensory acceptance. Further, the sugarcane cane juice after inhibition of PPO under optimized conditions was spray dried and evaluated for reconstitution properties. The product formulated in the present study is a new and effective approach to address quality-compromising issues associated with long-term storage of cane juice.


Assuntos
Saccharum , Saccharum/química , Catecol Oxidase/química , Simulação de Acoplamento Molecular , Ácido Ascórbico , Açúcares , Ácido Cítrico
2.
Biomolecules ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397470

RESUMO

Sugarcane, a globally cultivated crop constituting nearly 80% of total sugar production, yields residues from harvesting and sugar production known for their renewable bioactive compounds with health-promoting properties. Despite previous studies, the intricate interplay of extracts from diverse sugarcane byproducts and their biological attributes remains underexplored. This study focused on extracting the lipid fraction from a blend of selected sugarcane byproducts (straw, bagasse, and filter cake) using ethanol. The resulting extract underwent comprehensive characterization, including physicochemical analysis (FT-IR, DSC, particle size distribution, and color) and chemical composition assessment (GC-MS). The biological properties were evaluated through antihypertensive (ACE), anticholesterolemic (HMG-CoA reductase), and antidiabetic (alpha-glucosidase and Dipeptidyl Peptidase-IV) assays, alongside in vitro biocompatibility assessments in Caco-2 and Hep G2 cells. The phytochemicals identified, such as ß-sitosterol and 1-octacosanol, likely contribute to the extract's antidiabetic, anticholesterolemic, and antihypertensive potential, given their association with various beneficial bioactivities. The extract exhibited substantial antidiabetic effects, inhibiting α-glucosidase (5-60%) and DPP-IV activity (25-100%), anticholesterolemic potential with HMG-CoA reductase inhibition (11.4-63.2%), and antihypertensive properties through ACE inhibition (24.0-27.3%). These findings lay the groundwork for incorporating these ingredients into the development of food supplements or nutraceuticals, offering potential for preventing and managing metabolic syndrome-associated conditions.


Assuntos
Saccharum , Humanos , Saccharum/metabolismo , Células CACO-2 , Anti-Hipertensivos/farmacologia , alfa-Glucosidases/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Açúcares , Lipídeos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Front Plant Sci ; 14: 1257894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905170

RESUMO

The availability of efficient diagnostic methods is crucial to monitor the incidence of crop diseases and implement effective management strategies. One of the most important elements in diagnostics, especially in large acreage crops, is the sampling strategy as hundreds of thousands of individual plants can grow in a single farm, making it difficult to assess disease incidence in field surveys. This problem is compounded when there are no external disease symptoms, as in the case for the ratoon stunting disease (RSD) in sugarcane. We have developed an alternative approach of disease surveillance by using the crude cane juice expressed at the sugar factory (mill). For this purpose, we optimized DNA extraction and amplification conditions for the bacterium Leifsonia xyli subsp xyli, the causal agent of RSD. The use of nucleic acid dipsticks and LAMP isothermal amplification allows to perform the assays at the mills, even in the absence of molecular biology laboratories. Our method has been validated using the qPCR industry standard and shows higher sensitivity. This approach circumvents sampling limitations, providing RSD incidence evaluation on commercial crops and facilitating disease mapping across growing regions. There is also potential is to extend the technology to other sugarcane diseases as well as other processed crops.

4.
Front Microbiol ; 14: 1257355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744907

RESUMO

Auxin response factor (ARF) is a critical regulator in the auxin signaling pathway, involved in a variety of plant biological processes. Here, gene members of 24 SpapARFs and 39 SpnpARFs were identified in two genomes of Saccharum spontaneum clones AP85-441 and Np-X, respectively. Phylogenetic analysis showed that all ARF genes were clustered into four clades, which is identical to those ARF genes in maize (Zea mays) and sorghum (Sorghum bicolor). The gene structure and domain composition of this ARF family are conserved to a large degree across plant species. The SpapARF and SpnpARF genes were unevenly distributed on chromosomes 1-8 and 1-10 in the two genomes of AP85-441 and Np-X, respectively. Segmental duplication events may also contribute to this gene family expansion in S. spontaneum. The post-transcriptional regulation of ARF genes likely involves sugarcane against various stressors through a miRNA-medicated pathway. Expression levels of six representative ShARF genes were analyzed by qRT-PCR assays on two sugarcane cultivars [LCP85-384 (resistant to leaf scald) and ROC20 (susceptible to leaf scald)] triggered by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections and salicylic acid (SA) treatment. ShARF04 functioned as a positive regulator under Xa and Aaa stress, whereas it was a negative regulator under SA treatment. ShARF07/17 genes played positive roles against both pathogenic bacteria and SA stresses. Additionally, ShARF22 was negatively modulated by Xa and Aaa stimuli in both cultivars, particularly LCP85-384. These findings imply that sugarcane ARFs exhibit functional redundancy and divergence against stressful conditions. This work lays the foundation for further research on ARF gene functions in sugarcane against diverse environmental stressors.

5.
J Sci Food Agric ; 103(15): 7529-7538, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37406160

RESUMO

BACKGROUND: Fresh-cut fruit are convenient ready-to-eat products increasingly demanded by consumers, but highly susceptible to oxidation. To increase the shelf life of these products, this industry is currently facing the challenge of finding sustainable natural preservatives capable of maintaining fresh-cut fruit quality while meeting consumers' expectations regarding health and environmental concerns. RESULTS: In this work, fresh-cut apple slices were treated with two antioxidant extracts derived from industrial by-products: a phenolic-rich extract produced from sugarcane straw (PE-SCS) and applied at 15 g L-1 , and a mannan-rich extract obtained from brewer's spent yeast (MN-BSY) applied at two concentrations: 1 and 5 g L-1 . PE-SCS, having a brown color, imparted a brownish hue to the fruit and increased the browning rate during storage, and not even the initial robust antioxidant response (high superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase activities), prevented oxidation. Fruit treated with MN-BSY extract at 5 g L-1 showed lower color loss rate and higher polyphenol oxidase inhibition, while at 1 g L-1 it showed lower firmness loss rate and lower lipid peroxidation after 6 days of storage. CONCLUSION: The results showed that PE-SCS triggers a potent antioxidant response in fresh-cut fruit and, despite it imparting a brown color to the fruit at 15 g L-1 , it may have potential for application at lower concentrations. Regarding MN-BSY, it generally decreased oxidative stress, but its effect on quality maintenance was dependent on the concentration and, thus, to confirm its potential as a fruit preservative more concentrations must be tested. © 2023 Society of Chemical Industry.


Assuntos
Malus , Saccharum , Antioxidantes , Saccharomyces cerevisiae , Mananas , Frutas , Extratos Vegetais/farmacologia
6.
J Food Sci ; 88(8): 3274-3286, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37350070

RESUMO

Sucrose, obtained from either sugar beet or sugarcane, is one of the main ingredients used in the food industry. Due to the same molecular structure, chemical methods cannot distinguish sucrose from both sources. More practical and affordable methods would be valuable. Sucrose samples (cane and beet) were collected from nine countries, 25% (w/w) aqueous solutions were prepared and their absorbances recorded from 200 to 1380 nm. Spectral differences were observable in the ultraviolet-visible (UV-Vis) region from 200 to 600 nm due to impurities in sugar. Linear discriminant analysis (LDA), classification and regression trees, and soft independent modeling of class analogy were tested for the UV-Vis region. All methods showed high performance accuracies. LDA, after selection of five wavelengths, gave 100% correct classification with a simple interpretation. In addition, binary mixtures of the sugar samples were prepared for quantitative analysis by means of partial least squares regression and multiple linear regression (MLR). MLR with first derivative Savitzky-Golay were most acceptable with root mean square error of cross-validation, prediction, and the ratio of (standard error of) prediction to (standard) deviation values of 3.92%, 3.28%, and 9.46, respectively. Using UV-Vis spectra and chemometrics, the results show promise to distinguish between the two different sources of sucrose. An affordable and quick analysis method to differentiate between sugars, produced from either sugar beet or sugarcane, is suggested. This method does not involve complex chemical analysis or high-level experts and can be used in research or by industry to detect the source of the sugar which is important for some countries' agricultural policies.


Assuntos
Beta vulgaris , Saccharum , Sacarose/química , Beta vulgaris/química , Saccharum/química , Quimiometria , Carboidratos/análise , Açúcares , Análise Espectral , Análise dos Mínimos Quadrados , Grão Comestível/química
7.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140919, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164048

RESUMO

Lignocellulosic biomass is a promising alternative for producing biofuels, despite its recalcitrant nature. There are microorganisms in nature capable of efficiently degrade biomass, such as the filamentous fungi. Among them, Aspergillus fumigatus var. niveus (AFUMN) has a wide variety of carbohydrate-active enzymes (CAZymes), especially hydrolases, but a low number of oxidative enzymes in its genome. To confirm the enzymatic profile of this fungus, this study analyzed the secretome of AFUMN cultured in sugarcane bagasse as the sole carbon source. As expected, the secretome showed a predominance of hydrolytic enzymes compared to oxidative activity. However, it is known that hydrolytic enzymes act in synergy with oxidative proteins to efficiently degrade cellulose polymer, such as the Lytic Polysaccharide Monooxygenases (LPMOs). Thus, three LPMOs from the fungus Thermothelomyces thermophilus (TtLPMO9D, TtLPMO9H, and TtLPMO9O) were selected, heterologous expressed in Aspergillus nidulans, purified, and used to supplement the AFUMN secretome to evaluate their effect on the saccharification of sugarcane bagasse. The saccharification assay was carried out using different concentrations of AFUMN secretome supplemented with recombinant T. thermophilus LPMOs, as well as ascorbic acid as reducing agent for oxidative enzymes. Through a statistic design created by Design-Expert software, we were able to analyze a possible cooperative effect between these components. The results indicated that, in general, the addition of TtLPMO9D and ascorbic acid did not favor the conversion process in this study, while TtLPMO9O had a highly significant cooperative effect in bagasse saccharification compared to the control using only AFUMN secretome.


Assuntos
Celulose , Saccharum , Aspergillus fumigatus/metabolismo , Oxigenases de Função Mista , Saccharum/metabolismo , Saccharum/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polissacarídeos
8.
Bioprocess Biosyst Eng ; 46(7): 995-1009, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160769

RESUMO

Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (µmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.


Assuntos
Eichhornia , Resíduos Industriais , Óleos de Plantas/química , Anaerobiose , Óleo de Palmeira , Reatores Biológicos , Metano/metabolismo , Digestão , Eliminação de Resíduos Líquidos
9.
Int J Food Sci Nutr ; 74(2): 219-233, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915255

RESUMO

We investigated the effects of (poly)phenol-rich sugarcane extract (PRSE), sugarcane fibre (SCFiber), and the combination of them (PRSE + SCFiber) on the gut microbiota and short-chain fatty acids (SCFA) production using in vitro digestion and pig faecal fermentation. Measuring total phenolic content and antioxidant activity through the in vitro digestion stages showed that PRSE + SCFiber increased the delivery of (poly)phenols to the in vitro colonic fermentation stage compared to PRSE alone. The PRSE + SCFiber modulated the faecal microbiota profile by enhancing the relative abundances of Prevotella, Lactobacillus, and Blautia, and reducing the relative abundance of Streptococcus. PRSE + SCFiber also mitigated the inhibitory effects of PRSE on SCFA production. These results suggest that the inclusion of sugarcane fibre with PRSE could increase the availability of phenolic compounds in the colon and modulate the gut microbiota towards a more favourable profile.


Assuntos
Fibras na Dieta , Fezes , Microbioma Gastrointestinal , Saccharum , Animais , Fibras na Dieta/administração & dosagem , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Digestão , Grão Comestível/química , Ácidos Graxos Voláteis/biossíntese , Fezes/química , Fezes/microbiologia , Fermentação , Suínos , Polifenóis/farmacologia , Extratos Vegetais/farmacologia , Microbioma Gastrointestinal/fisiologia
10.
Heliyon ; 9(3): e14486, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950632

RESUMO

The study evaluated the bioactive components and antioxidant properties of sugarcane phenolic extracts (SCPE) against lipid oxidation in raw ground pork and beef during refrigerated storage conditions. Results showed that SCPE has a high total phenolic content of 35.9 g GAE/100 g sample majority of which are vanillic (799.77 mg/100 g), sinapic (434.38 mg/100 g), and coumaric (342.37 mg/100 g) acids. These phenolic compounds exhibited strong radical scavenging activities against DPPH (191.00 mg TE/g) and ABTS (359.80 mg TE/g) radical, ferric reducing capacity (97.80 mg TE/g), and lipid peroxidation inhibition (120.20 mg TE/g) activities which are comparable to BHT. Supplementation of SCPE at 400 mg/kg fresh weight of ground pork and ground beef improved the antioxidant activities of meat samples, leading to the delay in TBARS formation, lower reduction in heme iron content, and minimal increase in metmyoglobin content during 14-day refrigerated storage as compared to BHT-treated and control. Moreover, the redness of meat was preserved in SCPE- and BHT-treated samples as measured by a* color value. Correlation heat maps showed that TBARS, metmyoglobin, and ΔE are positively correlated with each other, and at the same time showed negatively correlated with heme iron and a*. This study revealed that antioxidant extracts from sugarcane presented a positive effect on the oxidative stability of raw ground pork and beef during refrigerated storage.

11.
Ecotoxicol Environ Saf ; 254: 114759, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950993

RESUMO

Selenium is an important trace element that is beneficial to human health and can enhance plant resistance and crop quality. The occurrence of up-to-date nanotechnology greatly promotes the beneficial efficiency of this trace element on crops. The discovery of nano-Se increased the crop quality and reduced plant disease in different plant. In this study, we reduced sugarcane leaf scald disease incidence by exogenously spraying different concentrations (5 mg/L and 10 mg/L) of nano-Se. Additional studies revealed that spraying of nano-Se reduced reactive oxygen species (ROS) and H2O2 accumulation, and increased antioxidant enzyme activities in sugarcane. The nano-selenium treatments also increased the content of jasmonic acid (JA) and the expression of JA pathway genes. Furthermore, we also found that use nano-Se treatment in an appropriate way can enhance the quality of cane juice. The brix of the cane juice of the selenium-enriched treatment was significantly higher than that of the control group, which was 10.98% and 20.81% higher than that of the CK group, respectively. Meanwhile, the content of certain beneficial amino acids was increased, with the highest being 3.9 times higher than the control. Taken together, our findings inferred that nano-Se could act as a potential eco-fungicide to protect sugarcane from can be used as a potential ecological bactericide to protect sugarcane from Xanthomonas albilineans infections, and improve sugarcane quality. The results arising from this study not only introduces an ecological method to control X. albilineans, but also provides a deep insight into this trace elements for improving juice quality.


Assuntos
Saccharum , Selênio , Oligoelementos , Xanthomonas , Humanos , Selênio/farmacologia , Selênio/metabolismo , Oligoelementos/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo
12.
Chemosphere ; 318: 137736, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36603677

RESUMO

A farm at Taoyuan in Taiwan was highly contaminated with decabrominated diphenyl ether (BDE-209), a widely used commercial brominated flame retardant and persistent in the environment, more than 10 years. Since crops are able to absorb and accumulate BDE-209 from soils in our previous research, posing a hazardous risk for humans, it is essential to develop a practical method of soil treatment. Thermal treatment was studied among different approaches. In our previous study (Ko et al., 2022), we found that heating to 450 °C for 30 min achieved a complete removal of BDE-209 in soil. However, the high temperature significantly decreased the original soil organic matter (SOM) from 2.47% to 0.27%, altering the soil texture, damaging microbial biomass, and thus affecting the revegetation after the thermal treatment. Sugarcane bagasse, a common agricultural residue, served as an amendment to restore soil fertility. Current results indicate that 2.5% bagasse can improve the SOM in soil by up to 2.73% and restore its bacterial composition, making the plant growth conditions similar to those of the untreated contaminated soil. In light of the high removal efficiency provided by the 450°C-thermal treatment and the high recovery efficiency of sugarcane bagasse, the strategy presented in this study serves to be a promising method for sustainable remediation.


Assuntos
Retardadores de Chama , Saccharum , Poluentes do Solo , Humanos , Celulose , Poluentes do Solo/análise , Solo/química , Saccharum/metabolismo , Éteres Difenil Halogenados/análise , Grão Comestível/química
13.
Bioresour Technol ; 369: 128382, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423754

RESUMO

Lignocellulose is resistant to degradation and requires pretreatment before hydrolytic enzymes can release fermentable sugars. Sulfuric acid has been widely used for biomass pretreatment, but high amount of degradation products usually occurred when using this method. To enhance accessibility to cellulose, we studied the performances of several dilute organic acid pretreatments of sugarcane bagasse and oil palm empty fruit bunch fiber. The results revealed that pretreatment with maleic acid yields the highest xylose and glucose release among other organic acids. The effects of concentration, duration of heating and heating temperature were further studied. Dilute maleic acid 1 % (w/w) pretreatment at 180 °C was the key to its viability as a substitute for sulfuric acid. Moreover, maleic acid did not seem to highly promote the formation of either furfural or 5-HMF in the liquid hydrolysate after pretreatment.


Assuntos
Celulose , Saccharum , Celulose/metabolismo , Frutas/metabolismo , Saccharum/metabolismo , Carboidratos , Ácidos , Ácidos Sulfúricos/farmacologia , Hidrólise , Óleo de Palmeira
14.
Carbohydr Polym ; 297: 120014, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184137

RESUMO

Ocular drug delivery is a significantly challenging task due to the presence of various anatomical and physiological barriers in the eye. Naturally available polysaccharides, when used as drug vehicles provide increased retention time, bioavailability, and penetration due to their unique mucoadhesive and charge-possessing nature. This review discusses the polysaccharide-based drug delivery system for the eye. Polysaccharides like alginic acid, cellulose derivatives, chitosan, pectin, xanthan gum, gellan gum, and hyaluronic acid are reviewed in this report. Additionally, emphasis is given to some of the recently investigated polymers such as sugarcane bagasse cellulose, a polysaccharide extracted from the seeds of Manilkara zapota, and Tremella fuciformis polysaccharide as drug vehicles for effective ocular drug delivery. This review also provides insight on clinical status and FDA-approved polysaccharides for ophthalmic delivery of therapeutics.


Assuntos
Quitosana , Saccharum , Ácido Algínico , Celulose , Sistemas de Liberação de Medicamentos , Excipientes , Ácido Hialurônico , Pectinas , Polímeros , Polissacarídeos , Polissacarídeos Bacterianos
15.
BMC Plant Biol ; 22(1): 497, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280810

RESUMO

BACKGROUND: As one of the vital crops globally, sugarcane (Saccharum officinarum L.) has been one of model crops for conducting metabolome research. Although many studies have focused on understanding bioactive components in specific sugarcane tissues, crucial questions have been left unanswered about the response of metabolites to niche differentiation such as different sugarcane tissues (leaf, stem and root), and soil regions (rhizosphere and bulk) under silicon (Si) amended soils. Here, nontargeted metabolite profiling method was leveraged to assess the similarities and differences in the abundance and community composition of metabolites in the different sugarcane and soil compartments. Identify the compartment-specific expression patterns of metabolites, and their association with cane agronomic traits and edaphic factors. We also investigated the response of sugarcane agronomic traits and edaphic factors to Si amended soil. RESULTS: We found that Si fertilizer exhibited the advantages of overwhelmingly promoting the height and theoretical production of cane, and profoundly increased soil Si content by 24.8 and 27.0%, while soil available potassium (AK) was enhanced by 3.07 and 2.67 folds in the bulk and rhizosphere soils, respectively. It was also noticed that available phosphorus (AP) in the rhizosphere soil tremendously increased by 105.5%. We detected 339 metabolites in 30 samples using LC-MS/MS analyses, 161 of which were classified and annotated, including organooxygen compounds (19.9%), carboxylic acids and derivatives (15.5%), fatty acyls (15.5%), flavonoids (4.4%), phenols (4.4%), and benzene and substituted derivatives (3.7%). In addition, the total percentages covered by these core metabolites in each compartment ranged from 94.0% (bulk soil) to 93.4% (rhizosphere soil), followed by 87.4% (leaf), 81.0% (root) and 80.5% (stem), suggesting that these bioactive compounds may have migrated from the belowground tissues and gradually filtered in various aboveground niches of the plant. We also observed that the variations and enrichment of metabolites abundance and community were compartment-specific. Furthermore, some key bioactive compounds were markedly associated with plant growth parameters and soil edaphic. CONCLUSION: Taken together, we hypothesized that Si utilization can exhibit the advantage of enhancing edaphic factors and cane agronomic traits, and variations in metabolites community are tissue-specific.


Assuntos
Saccharum , Solo , Fertilizantes , Silício , Cromatografia Líquida , Benzeno , Espectrometria de Massas em Tandem , Microbiologia do Solo , Flavonoides , Fósforo , Fenóis , Potássio , Ácidos Carboxílicos
16.
J Appl Microbiol ; 133(3): 1676-1687, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716383

RESUMO

AIMS: To examine the interaction of diagnostic techniques, initial titres of Leifsonia xyli subsp. xyli (Lxx), sugarcane genotype and thermotherapy on ratoon stunt (RSD) control. METHODS AND RESULTS: Single buds of RB867515, RB92579 and RB966928 were submitted to 50°C/2 h or 52°C/30 min under factorial block design and five replications; results were checked 9 months later by serological (DBI) and molecular (PCR) techniques. A 10,000 bootstrapping simulations were performed to infer the best plot size based on the experimental coefficient of variation. Analysis of variance showed significance only on initial Lxx titres and RSD control. Despite the absence of significance in the overall analysis, minor differences in control success with different methods and cultivars are predicted to have a major epidemiological impact on RSD, considering successive harvests and vegetative increase. According to an epidemiological interpretation, the 50°C/2 h treatment was more effective, cultivar RB966928 was the most susceptible and the PCR-based method was the most sensitive for pathogen detection. The minimum required plants per plot was 15, indicating high precision of our experiment CONCLUSIONS: Data interpretation considered both the statistical analysis and the epidemiology aspect of RSD in order to improve RSD management. The Brazilian sugarcane industry will benefit from this approach since it is not using it. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study that examined multiple factors that affect RSD control. Our work pinpointed the importance of the thermotherapy, its best combination as well as the diagnostic test. Also, the effect of the cultivar to respond to management strategies. Because the epidemiological aspect of RSD was taken into consideration, results of our work can have an impact on RSD control in the field.


Assuntos
Actinomycetales , Hipertermia Induzida , Saccharum , Actinobacteria , Actinomycetales/genética , Brasil , Grão Comestível , Genótipo
17.
Materials (Basel) ; 15(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591351

RESUMO

Cement production is environmentally unsustainable due to the high anthropogenic carbon emissions produced. Supplementary cementitious materials (SCMs), derived from the by-products of different industries, have been deemed an effective way to reduce carbon emissions. The reduction in carbon emissions is achieved by lowering the clinker factor of cement, through a partial replacement with an SCM. Sugarcane Bagasse Ash (SCBA) is produced as an agricultural waste from the sugarcane industry and has gained a lot of attention for being a feasible and readily available pozzolanic material, underutilised as an SCM. This study evaluates alkali-activated sugarcane bagasse ash's mechanical and durability performance, at varied contents, in binary blended cement concrete and ternary blended cement concrete containing silica fume (SF). Potassium Hydroxide (KOH), used as the alkali activator, is intended to enhance the reactivity of the ash, with the possibility of a high-volume SCBA content. The mechanical performance was investigated by compressive and split tensile strength tests, and durability performance was investigated using the Oxygen Permeability Index (OPI) test. In addition, a micro-CT porosity test was conducted to assess how the microstructure and porosity of the concrete affect the mechanical and durability performance. The results indicated that using SCBA in a ternary blend with SF can significantly improve the overall performance and create less porous concrete. At 30% SCBA and 10% SF replacement, the performance tests revealed the highest mechanical strength and the lowest permeability, outperforming the control concrete and the binary blended cement concrete containing only SCBA.

18.
J Sci Food Agric ; 102(14): 6632-6642, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35603546

RESUMO

BACKGROUND: Sugarcane provides many secondary metabolites for the pharmacological and cosmetic industries. Secondary metabolites, such as phenolic compounds, flavonoids, and anthocyanins, have been studied, but few reports focus on the identification of alkaloid and non-alkaloid phytocompounds in sugarcane. RESULTS: In this study, we identified 40 compounds in total from the rinds of cultivated sugarcane varieties (including eight alkaloids, 24 non-alkaloids, and eight others) by using the liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. Among these compounds, 31 were novel and are reported for the first time in sugarcane. Some alkaloids such as 3-indoleacrylic acid, N,N-dimethyl-5-methoxytryptamine, tryptamine, 6-hydroxynicotinic acid, and 6-deoxyfagomine are identified the first time in sugarcane rind. Four alkaloids such as trigonelline, piperidine, 3-indoleacrylic acid, and 6-deoxyfagomine are found abundantly in sugarcane rind and these compounds have promising pharmaceutical value. Some phytocompounds such as choline and acetylcholine (non-alkaloid compounds) were most common in the rind of ROC22 and Yuetang93/159 (YT93/159). Hierarchical cluster analysis and principal component analysis revealed that the ROC22, Taitang172 (F172), and Yuetang71/210 (YT71/210) varieties were quite similar in alkaloid composition when compared with other sugarcane varieties. We have also characterized the biosynthesis pathway of sugarcane alkaloids. The rind of F172, ROC22, and YT71/210 showed the highest total alkaloid content, whereas the rind of ROC16 revealed a minimum level. Interestingly, the rind extract from YT71/210 and F172 showed maximum antioxidant activity, followed by ROC22. CONCLUSION: Our results showed the diversity of alkaloid and non-alkaloid compounds in the rind of six cultivated sugarcanes and highlighted the promising phytocompounds that can be extracted, isolated, and utilized by the pharmacological industry. © 2022 Society of Chemical Industry.


Assuntos
Saccharum , Acetilcolina , Antocianinas , Antioxidantes/química , Colina , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Flavonoides , Metabolômica/métodos , Metoxidimetiltriptaminas , Piperidinas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Saccharum/química , Espectrometria de Massas em Tandem/métodos
19.
Environ Sci Pollut Res Int ; 29(47): 71882-71893, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35606590

RESUMO

The production of pellets from residual biomass generated monocropping by Brazilian agribusiness is an environmentally and economically interesting alternative in view of the growing demand for clean, low-cost, and efficient energy. In this way, pellets were produced with sugarcane bagasse and coffee processing residues, in different proportions with charcoal fines, aiming to improve the energy properties and add value to the residual biomass. The pellets had their properties compared to the commercial quality standard. Artificial neural networks and multivariate statistical models were used to validate the best treatments for biofuel production. The obtained pellets presented the minimum characteristics required by DIN EN 14961-6. However, the sugarcane bagasse biomass distinguished itself for use in energy pellets, more specifically, the treatment with 20% of fine charcoal because of its higher net calorific value (17.85 MJ·kg-1) and energy density (13.30 GJ·m-3), achieving the characteristics required for type A pellets in commercial standards. The statistical techniques were efficient and grouped the treatments with similar properties, as well as validated the sugarcane biomass mixed with charcoal fines for pellet production. Thus, these results demonstrate that waste charcoal fines mixed with agro-industrial biomass have great potential to integrate the production chain for energy generation.


Assuntos
Celulose , Saccharum , Biocombustíveis , Biomassa , Carvão Vegetal/química , Café , Redes Neurais de Computação
20.
Pan Afr Med J ; 41: 133, 2022.
Artigo em Francês | MEDLINE | ID: mdl-35519171

RESUMO

The identification of allergens is essential in the management of allergic rhinitis. Sugarcane produces anemophilic pollen. The purpose of our study is to assess the role of sugarcane pollen in the occurrence of allergic rhinitis. We conducted a case-control analytical study of patients living in a Malagasy rural commune in which sugarcane cultivation and processing are important sources of employment, from July 2017 to June 2018. We enrolled 182 patients (91 cases and 91 controls). Factors associated with the occurrence of symptoms of allergic rhinitis were: a distance of less than 500 meters between homes and sugarcane fields (OR = 1.50), being a sugarcane worker (OR=1.16) and having a family history of allergic rhinitis (OR=13.67). In addition, exposure to wind gusts (OR=0.84) and outdoor occupation (OR=0.92) were protective factors. Exposure of patients to sugarcane pollen is associated with clinical manifestations of allergic rhinitis and confirms the role of this allergen in the occurrence of the disease. Avoidance and hygiene measures are the basis of treatment.


Assuntos
Rinite Alérgica Sazonal , Rinite Alérgica , Saccharum , Alérgenos , Estudos de Casos e Controles , Humanos , Pólen , Rinite Alérgica/epidemiologia , Rinite Alérgica Sazonal/diagnóstico , Rinite Alérgica Sazonal/tratamento farmacológico , Rinite Alérgica Sazonal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA