Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8644, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622163

RESUMO

Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a medicinal and edible plant with multiple functions of liver protection, anti-tumor, anti-inflammation, balancing blood sugar and blood lipids. The nutritional value of the G. pentaphyllum plant is mainly due to its rich variety of biologically active substances, such as flavonoids, terpenes and polysaccharides. In this study, we performed a comprehensive analysis combining metabolomics and root, stem and leaf transcriptomic data of G. pentaphyllum. We used transcriptomics and metabolomics data to construct a dynamic regulatory network diagram of G. pentaphyllum flavonoids and terpenoids, and screened the transcription factors involved in flavonoids and terpenoids, including basic helix-loop-helix (bHLH), myb-related, WRKY, AP2/ERF. Transcriptome analysis results showed that among the DEGs related to the synthesis of flavonoids and terpenoids, dihydroflavonol 4-reductase (DFR) and geranylgeranyl diphosphate synthases (GGPPS) were core genes. This study presents a dynamic image of gene expression in different tissues of G. pentaphyllum, elucidating the key genes and metabolites of flavonoids and terpenoids. This study is beneficial to a deeper understanding of the medicinal plants of G. pentaphyllum, and also provides a scientific basis for further regulatory mechanisms of plant natural product synthesis pathways and drug development.


Assuntos
Flavonoides , Gynostemma , Flavonoides/metabolismo , Gynostemma/genética , Gynostemma/química , Terpenos/metabolismo , Extratos Vegetais/química , Perfilação da Expressão Gênica
2.
Front Plant Sci ; 15: 1368869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545395

RESUMO

Background: Thymus mandschuricus is an aromatic and medicinal plant with notable antibacterial and antioxidant properties. However, traditional breeding methods rely on phenotypic selection due to a lack of molecular resources. A high-quality reference genome is crucial for marker-assisted breeding, genome editing, and molecular genetics. Results: We utilized PacBio and Hi-C technologies to generate a high-quality chromosome-level reference genome for T. mandschuricus, with a size of 587.05 Mb and an N50 contig size of 8.41 Mb. The assembled genome contained 29,343 predicted protein-coding genes, and evidence of two distinct whole-genome duplications in T. mandschuricus was discovered. Comparative genomic analysis revealed rapid evolution of genes involved in phenylpropanoid biosynthesis and the CYP450 gene family in T. mandschuricus. Additionally, we reconstructed the gene families of terpenoid biosynthesis structural genes, such as TPS, BAHD, and CYP, and identified regulatory networks controlling the expression of aroma-synthesis genes by integrating transcriptome data from various organs and developmental stages. We discovered that hormones and transcription factors may collaborate in controlling aroma-synthesis gene expression. Conclusion: This study provides the first high-quality genome sequence and gene annotation for T. mandschuricus, an indigenous thyme species unique to China. The genome assembly and the comprehension of the genetic basis of fragrance synthesis acquired from this research could potentially serve as targets for future breeding programs and functional studies.

3.
Nat Prod Res ; : 1-14, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38333915

RESUMO

In this review out of 300 selected articles 70 articles were evaluated, and the most significant compounds impacting COVID-19 and their mechanism of action were introduced. The compounds belong to four categories as follow: Phenolic, Flavonoid, Terpenoid, and Alkaloid compounds. In the phenol groups, the most effective compounds are scutellarin (suppressor of COVID-19 virus), thymol and carvacrol (the most inhibitory effect on COVID-19 virus), in the flavonoid groups, hesperdin (a strong inhibitor on COVID-19), in the terpenoids, methyl tanshinonate and sojil COVID-19 inhibitory effect) and 1,8-cineol (COVID-19 inhibitory effect) and in the last group, niglidine and quinoline alkaloid compounds (COVID-19 inhibitory effect) have been identified and introduced. These compounds have shown promising results due to their structure and effective mechanisms on COVID-19, so it can be an idea for researchers in this field to try to produce drugs by using natural compounds against the COVID-19 and Corona viruses.

4.
Fitoterapia ; 174: 105828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296166

RESUMO

Aster tataricus L.f. is highly valued for its rich reserves of bioactive compounds. Our research focused on the identification of previously unreported compounds found within the ethanol extract of A. tataricus. Through meticulous spectroscopic analyses and computational methods like NMR calculations and ECD, we successfully elucidated the structures of five novel compounds termed tatarisides A-E (1-5), alongside two known compounds (6, 7). The anti-inflammatory assays conducted yielded noteworthy results, particularly in relation to compounds 1 and 5. These compounds exhibited significant potential in inhibiting the release of NO in LPS-induced RAW 264.7 cells, as evidenced by their respective IC50 values of 17.81 ± 1.25 µM and 13.32 ± 0.84 µM. The discovery of these new compounds adds to the existing knowledge of A. tataricus's chemical composition and potential applications.


Assuntos
Aster , Estrutura Molecular , Aster/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Etanol
5.
Int J Biol Macromol ; 255: 128218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992933

RESUMO

Peucedanum praeruptorum Dunn, a traditional Chinese medicine rich in coumarin, belongs to the Apiaceae family. A high-quality assembled genome of P. praeruptorum is lacking, which has posed obstacles to functional identification and molecular evolution studies of genes associated with coumarin production. Here, a chromosome-scale reference genome of P. praeruptorum, an important medicinal and aromatic plant, was first sequenced and assembled using Oxford Nanopore Technologies and Hi-C sequencing. The final assembled genome size was 1.83 Gb, with a contig N50 of 11.12 Mb. The entire BUSCO evaluation and second-generation read comparability rates were 96.0 % and 99.31 %, respectively. Furthermore, 99.91 % of the genome was anchored to 11 pseudochromosomes. The comparative genomic study revealed the presence of 18,593 orthogroups, which included 476 species-specific orthogroups and 1211 expanded gene families. Two whole-genome duplication (WGD) events and one whole-genome triplication (WGT) event occurred in P. praeruptorum. In addition to the γ-WGT shared by core eudicots or most eudicots, the first WGD was shared by Apiales, while the most recent WGD was unique to Apiaceae. Our study demonstrated that WGD events that occurred in Apioideae highlighted the important role of tandem duplication in the biosynthesis of coumarins and terpenes in P. praeruptorum. Additionally, the expansion of the cytochrome P450 monooxygenase, O-methyltransferase, ATP-binding cassette (ABC) transporter, and terpene synthase families may be associated with the abundance of coumarins and terpenoids. Moreover, we identified >170 UDP-glucosyltransferase members that may be involved in the glycosylation post-modification of coumarins. Significant gene expansion was observed in the ABCG, ABCB, and ABCC subgroups of the ABC transporter family, potentially facilitating the transmembrane transport of coumarins after bolting. The P. praeruptorum genome provides valuable insights into the machinery of coumarin biosynthesis and enhances our understanding of Apiaceae evolution.


Assuntos
Apiaceae , Cumarínicos , Cumarínicos/química , Sistema Enzimático do Citocromo P-450/genética , Apiaceae/genética , Apiaceae/química , Metiltransferases/genética , Cromossomos
6.
Phytochemistry ; 217: 113923, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37963510

RESUMO

Terpenoids are the largest class of all known natural products, possessing structural diversity and numerous biological activities. Ten previously undescribed terpenoid glycosides, glechlongsides A-J (1-10), were isolated from the ethanol extract of the whole plant of Glechoma longituba, including diterpenoid glycoside and pentacyclic triterpenoid saponin. The structures of these compounds were characterized by extensive analysis of 1D and 2D NMR as well as HRESIMS spectra. In addition, glechlongsides F-I (6-9) exhibited weak cytotoxicity against human cancer cell lines BGC-823, Be1, HCT-8, A2780, and A549 with IC50 values ranging from 3.77 to 30.95 µM, respectively.


Assuntos
Lamiaceae , Neoplasias Ovarianas , Humanos , Feminino , Terpenos/farmacologia , Glicosídeos/farmacologia , Glicosídeos/química , Linhagem Celular Tumoral , Extratos Vegetais , Lamiaceae/química , Estrutura Molecular
8.
Planta ; 259(1): 2, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971670

RESUMO

KEY MESSAGE: This review summarized how TFs function independently or in response to environmental factors to regulate terpenoid biosynthesis via fine-tuning the expression of rate-limiting enzymes. Terpenoids are derived from various species and sources. They are essential for interacting with the environment and defense mechanisms, such as antimicrobial, antifungal, antiviral, and antiparasitic properties. Almost all terpenoids have high medicinal value and economic performance. Recently, the control of enzyme genes on terpenoid biosynthesis has received a great deal of attention, but transcriptional factors regulatory network on terpenoid biosynthesis and accumulation has yet to get a thorough review. Transcription factors function as activators or suppressors independently or in response to environmental stimuli, fine-tuning terpenoid accumulation through regulating rate-limiting enzyme expression. This study investigates the advancements in transcription factors related to terpenoid biosynthesis and systematically summarizes previous works on the specific mechanisms of transcription factors that regulate terpenoid biosynthesis via hormone signal-transcription regulatory networks in plants. This will help us to better comprehend the regulatory network of terpenoid biosynthesis and build the groundwork for terpenoid development and effective utilization.


Assuntos
Plantas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/genética , Plantas/metabolismo , Terpenos/metabolismo , Extratos Vegetais/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003520

RESUMO

Uncaria rhynchophylla (Miq.) Miq. ex Havil, a traditional medicinal herb, is enriched with several pharmacologically active terpenoid indole alkaloids (TIAs). At present, no method has been reported that can comprehensively select and evaluate the appropriate reference genes for gene expression analysis, especially the transcription factors and key enzyme genes involved in the biosynthesis pathway of TIAs in U. rhynchophylla. Reverse transcription quantitative PCR (RT-qPCR) is currently the most common method for detecting gene expression levels due to its high sensitivity, specificity, reproducibility, and ease of use. However, this methodology is dependent on selecting an optimal reference gene to accurately normalize the RT-qPCR results. Ten candidate reference genes, which are homologues of genes used in other plant species and are common reference genes, were used to evaluate the expression stability under three stress-related experimental treatments (methyl jasmonate, ethylene, and low temperature) using multiple stability analysis methodologies. The results showed that, among the candidate reference genes, S-adenosylmethionine decarboxylase (SAM) exhibited a higher expression stability under the experimental conditions tested. Using SAM as a reference gene, the expression profiles of 14 genes for key TIA enzymes and a WRKY1 transcription factor were examined under three experimental stress treatments that affect the accumulation of TIAs in U. rhynchophylla. The expression pattern of WRKY1 was similar to that of tryptophan decarboxylase (TDC) under ETH treatment. This research is the first to report the stability of reference genes in U. rhynchophylla and provides an important foundation for future gene expression analyses in U. rhynchophylla. The RT-qPCR results indicate that the expression of WRKY1 is similar to that of TDC under ETH treatment. It may coordinate the expression of TDC, providing a possible method to enhance alkaloid production in the future through synthetic biology.


Assuntos
Transcrição Reversa , Fatores de Transcrição , Fatores de Transcrição/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase
10.
Comput Struct Biotechnol J ; 21: 5066-5072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867972

RESUMO

Medicinal plants are rich in secondary metabolites with beneficial pharmacological effects. The production of plant secondary metabolites is subjected to the influences by environmental factors including the plant-associated microbiome, which is crucial to the host's fitness and survival. As a result, research interests are increasing in exploiting microbial capacities for enhancing plant production of pharmacological metabolites. A growing body of recent research provides accumulating evidence in support of developing microbe-based tools for achieving this objective. This mini review presents brief summaries of recent studies on medicinal plants that demonstrate microbe-augmented production of pharmacological terpenoids, polyphenols, and alkaloids, followed by discussions on some key questions beyond the promising observations. Explicit molecular insights into the underlying mechanisms will enhance microbial applications for metabolic fortification in medicinal plants.

11.
Life (Basel) ; 13(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895482

RESUMO

Panax notoginseng (Burk.) F.H. Chen is a species of the Araliaceae family that inhabits southwestern China, Burma, and Nepal. It is cultivated on a commercial scale in Yunnan province, China, owing to its significance in traditional Chinese medicine. Panax notoginseng roots are usually yellow-white (HS); however, purple roots (ZS) have also been reported. The majority of P. notoginseng research has concentrated on the identification and production of natural chemicals in HS; however, there is little to no information about the composition of ZS. Using UPLC-MS/MS, we investigated the global metabolome profile of both ZS- and HS-type roots and discovered 834 metabolites from 11 chemical groups. There were 123 differentially accumulated metabolites (DAM) in the HS and ZS roots, which were classified as lipids and lipid-like molecules, polyketides, organoheterocyclic chemicals, and organooxygen compounds. We investigated the associated compounds in the DAMs because of the importance of anthocyanins in color and saponins and ginsenosides in health benefits. In general, we discovered that pigment compounds such as petunidin 3-glucoside, delphinidin 3-glucoside, and peonidin-3-O-beta-galactoside were more abundant in ZS. The saponin (eight compounds) and ginsenoside (26 compounds) content of the two varieties of roots differed as well. Transcriptome sequencing revealed that flavonoid and anthocyanin production genes were more abundant in ZS than in HS. Similarly, we found differences in gene expression in genes involved in terpenoid production and related pathways. Overall, these findings suggest that the purple roots of P. notoginseng contain varying amounts of ginsenosides and anthocyanins compared to roots with a creamy yellow color.

12.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764389

RESUMO

Four previously undescribed terpenoid glucosides, including one sesquiterpenoid di-glucoside (1), two new iridoid glucosides (2, 3), and a new triterpenoid tri-glucoside (4), were isolated from a 70% ethanol extract of the root of Gentiana macrophylla (Gentianaceae), along with eight known terpenoids. Their structures were determined by spectroscopic techniques, including 1D, 2D NMR, and HRMS (ESI), as well as chemical methods. The absolute configuration of compound 1 was determined by quantum chemical calculation of its theoretical electronic circular dichroism (ECD) spectrum. The sugar moieties of all the new compounds were confirmed to be D-glucose by GC analysis after acid hydrolysis and acetylation. Anti-pulmonary inflammation activity of the iridoids were evaluated on a TNF-α induced inflammation model in A549 cells. Compound 2 could significantly alleviate the release of proinflammatory cytokines IL-1ß and IL-8 and increase the expression of anti-inflammatory cytokine IL-10.


Assuntos
Gentiana , Pneumonia , Humanos , Terpenos/farmacologia , Fator de Necrose Tumoral alfa , Glucosídeos/farmacologia , Células A549 , Citocinas , Extratos Vegetais/farmacologia
13.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513954

RESUMO

Plants from the genus Styrax have been extensively used in folk medicines to treat diseases such as skin diseases and peptic ulcers and as an antiseptic and analgesic. Most Styrax species, especially Styrax tonkinensis, which is used as an expectorant, antiseptic, and analgesic in Chinese traditional medicine, could screen resin after external injury. Styrax is also used in folk medicines in Korea to treat sore throat, bronchitis, cough, expectoration, paralysis, laryngitis, and inflammation. Different parts of various Styrax species can be widely employed for ethnopharmacological applications. Moreover, for ethnopharmacological use, these parts of Styrax species can be applied in combination with other folk medicines. Styrax species consist of versatile natural compounds, with some of them exhibiting particularly excellent pharmacological activities, such as cytotoxic, acetylcholinesterase inhibitory, antioxidant, and antifungal activities. Altogether, these exciting results indicate that a comprehensive review of plants belonging to this genus is essential for helping researchers to continuously conduct an in-depth investigation. In this review, the traditional uses, phytochemistry, corresponding pharmacological activities, and structure-activity relationships of different Styrax species are clarified and critically discussed. More insights into potential opportunities for future research are carefully assessed.

14.
Plant Physiol Biochem ; 201: 107843, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354729

RESUMO

The present study is aimed to isolate terpenoids from Gymnosporia senegalensis through analytical and preparative thin-layer chromatography (TLC) and to determine their antioxidant activity using the 2, 2-diphenyl-1- picrylhydrazyl (DPPH) assay and to find out the presence of ß-carotene through high-performance thin-layer chromatography (HPTLC). The validation included linearity, limit of detection (LOD), limit of quantification (LOQ), specificity, precision, recovery, and robustness. All the isolated compounds from TLC exhibited significant antioxidant activity. Among all, isolated compounds from leaf showed highest IC50 values. The highest total terpenoid content (TTC) was found 51.6 ± 0.06 in stem, then 49.02 ± 0.01 in bark, and 46.27 ± 0.01 in leaf. DPPH results indicated that leaf-isolated compound 1 (LIC1) showed the highest IC50 at 7.55 ± 0.02 and stem-isolated compound 2 (SIC2) showed the lowest IC50 at 0.616 ± 0.01 among all the isolated compounds of G. senegalensis. HPTLC separation was carried out on aluminium plates pre-coated with silica gel 60 F254 as the stationary phase and n-hexane: ethyl acetate (6:4, v/v) as the mobile phase. Quantification was achieved based on a densitometric analysis of ß-carotene in the concentration range of 100-500 ng/band at 254 nm. For the calibration plots, linear regression produced r2 = 0.96450 and Rf = 0.27. The LOD and LOQ were 10.15 and 30.76 ng/mL for HPTLC and relative standard deviation were 137.26 ± 2.03 and 160.43 ± 2.95 (intra-day) and 127.88 ± 2.14 and 157.27 ± 1.90 (inter-day) for 200 and 400 ng/band, respectively. The present study shows the presence of various types of terpenoids through TLC whereas the HPTLC results indicated that the developed methods were accurate and precise. It also shows that the approach is appropriate for its intended use in routine quality control testing of commercially available tablet formulations and drug assay to assist both industries and researchers in making important decisions at a reasonable cost. Moreover, due to the use of a safer and more environmentally friendly mobile phase in comparison to the toxic mobile phases used in recent analytical techniques to estimate ß-carotene, this methodology is also secure and sustainable.


Assuntos
Antioxidantes , beta Caroteno , Cromatografia em Camada Fina/métodos , Extratos Vegetais
15.
Plant Physiol Biochem ; 200: 107766, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37220674

RESUMO

Chrysanthemum indicum L. is a valuable medicinal plant with diploid and tetraploid forms that are widely distributed in central and southern China, and it contains abundant volatile organic compounds (VOCs). Despite the discovery of some terpene synthase (TPS) in C. indicum (i.e., CiTPS) in previous studies, many TPSs and their corresponding terpene biosynthesis pathways have yet to be discovered. In the present study, terpenoid VOCs in different tissues from two cytotypes of C. indicum were analyzed. We identified 52 types of terpenoid VOCs and systematically investigated the content and distribution of these compounds in various tissues. The two cytotypes of C. indicum exhibited different volatile terpenoid profiles. The content of monoterpenes and sesquiterpenes in the two cytotypes showed an opposite trend. In addition, four full-length candidate TPSs (named CiTPS5-8) were cloned from Ci-GD4x, and their homologous TPS genes were screened based on the genome data of Ci-HB2x. These eight TPSs displayed various tissue expression patterns and were discovered to produce 22 terpenoids, 5 of which are monoterpenes and 17 are sesquiterpenes. We further proposed corresponding terpene synthesis pathways, which can enable the establishment of an understanding of the volatile terpenoid profiles of C. indicum with different cytotypes. This knowledge may provide a further understanding of germplasm in C. indicum and may be useful for biotechnology applications of Chrysanthemum plants.


Assuntos
Alquil e Aril Transferases , Chrysanthemum , Sesquiterpenos , Compostos Orgânicos Voláteis , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Diploide , Tetraploidia , Chrysanthemum/genética , Chrysanthemum/metabolismo , Monoterpenos/metabolismo , Alquil e Aril Transferases/genética
16.
Adv Biomed Res ; 12: 67, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200741

RESUMO

Background: Cutaneous leishmaniasis (CL) is an ulcerative skin disease caused by some species of the genus Leishmania. Evidence shows that Perovskia abrotanoides is an important herbal medicine against Leishmania. This study was conducted to investigate the killing effect of terpenoid-rich fractions on promastigotes of L. major (MRHO/IR/75/ER). Material and Method: The eluates of reverse phased medium pressure liquid chromatography (RP-MPLC) of the extract were subjected to thin-layer chromatography (TLC) and categorized into six final fractions. Primary proton nuclear magnetic resonance (H-NMR) spectroscopy confirmed fractions' nature. Fractions 4, 5, and 6 (F4, F5, F6) were identified as terpenoid-rich content. Two concentrations of 50 and 100 µg/ml were prepared to test leishmanicidal activity. Followed by treating promastigotes of L. major by the fractions in incubation times of 12, 24, and 48 hours, their viability was determined using a cell proliferation MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Result: F4, F5, and F6 showed significant killing activity on promastigotes of L. major in a concentration-dependent manner. The viability of promastigotes was significantly reduced at a concentration of 100 µg/ml compared to 50 µg/ml (P-value <0.05). Also, over time a significant decreasing trend in the viability of promastigotes confirmed the time-dependent manner of the fractions (P-value <0.01). Furthermore, F5 had the highest leishmanicidal activity at the first incubation time compared with other fractions. Conclusion: Terpenoid-rich fractions of the P. abrotanoides have a leishmanicidal activity that depends on time and concentration. Among them, F5 has the highest potency that may contain potent terpenoid constituents.

17.
Front Plant Sci ; 14: 1105240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035090

RESUMO

Farnesyl diphosphate synthase (FPS), a key enzyme of the terpene metabolic pathway, catalyzes the precursor of sesquiterpene compounds farnesyl diphosphate (FPP) synthesis, and plays an important role in regulating plant growth and development. Dryopteris fragrans is a medicinal plant rich terpenoids. In this study, the function of the gene was verified in vitro and in vivo, the promoter of the gene was amplified and its transcriptional activity was analyzed. In the present study, we report the molecular cloning and functional characterization of DfFPS1 and DfFPS2, two FPS genes from D. fragrans. We found that the two genes were evolutionarily conserved. Both DfFPS genes were highly expressed in the gametophyte and mature sporophyte leaves, and their expression levels increased in response to methyl jasmonate (MeJA) and high temperature. Both DfFPS proteins were localized in the cytoplasm and could catalyze FPP synthesis in vitro. We also found that the overexpression of DfFPS genes in tobacco plants promoted secondary metabolite accumulation but exhibited negligible effect on plant growth and development. However, the transgenic plants exhibited tolerance to high temperature and drought. The promoters of the two genes were amplified using fusion primer and nested integrated polymerase chain reaction (FPNI-PCR). The promoter sequences were truncated and their activity was examined using the ß-glucuronidase (GUS) gene reporter system in tobacco leaves, and we found that both genes were expressed in the stomata. The transcriptional activity of the promoters was found to be similar to the expression pattern of the genes, and the transcriptional core regions of the two genes were mainly between -943 bp and -740 bp of proDfFPS1. Therefore, we present a preliminary study on the function and transcriptional activity of the FPS genes of D. fragrans and provide a basis for the regulation of terpene metabolism in D. fragrans. The results also provide a novel basis for the elucidation of terpene metabolic pathways in ferns.

18.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37108101

RESUMO

Terpenes, especially volatile terpenes, are important components of tea aroma due to their unique scents. They are also widely used in the cosmetic and medical industries. In addition, terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress conditions, leading to plant defense responses and plant-plant interactions. The transcriptional levels of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These regulators can bind to corresponding cis-elements in the promoter regions of the corresponding genes, and some of them interact with other transcription factors to form a complex. Recently, several key terpene synthesis genes and important transcription factors involved in terpene biosynthesis have been isolated and functionally identified from tea plants. In this work, we focus on the research progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential strategies used in studying the specific transcriptional regulation functions of candidate transcription factors that have been discriminated to date.


Assuntos
Camellia sinensis , Terpenos , Terpenos/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Chá/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108302

RESUMO

Blinin, a unique terpenoid from Conyza blinii (C. blinii), benefits our health even though this is not its primary function. Physiological and ecological studies have found that the great secondary metabolites participate in important biological processes and relate to species evolution, environmental adaptation, and so on. Moreover, our previous studies have shown that the metabolism and accumulation of blinin has a close correspondence with nocturnal low temperature (NLT). To find out the transcriptional regulation linker in the crosstalk between blinin and NLT, RNA-seq, comparative analysis, and co-expression network were performed. The results indicated that CbMYB32 is located in a nucleus without independent transcriptional activation activity and is probably involved in the metabolism of blinin. Furthermore, we compared the silence and overexpression of CbMYB32 with wild C. blinii. Compared with the overexpression and the wildtype, the CbMYB32 silence line lost more than half of the blinin and detected more peroxide under NLT. Finally, as a characteristic secret of C. blinii, it is reasonable to infer that blinin participates in the NLT adaptation mechanism and has contributed to the systematic evolution of C. blinii.


Assuntos
Asteraceae , Conyza , Temperatura , Extratos Vegetais , Terpenos
20.
Phytochemistry ; 210: 113651, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965762

RESUMO

Five undescribed terpenoids including a polyketide-terpenoid hybrid paraphaone, and four eremophilane sesquiterpenoids, paraphaterpenes A-D, as well as two known compounds were isolated from the endophytic fungus Paraphaeosphaeria sp. cultured by extract of host Ginkgo biloba L. The structures were established by spectroscopic analyses, and the single-crystal X-ray diffraction. The antifungal activity of Paraphaeosphaeria sp. cultured by extract of G. biloba against the plant pathogen Alternaria alternata was significant and higher than that of PDB medium. Tested compounds indicated antifeedant activities against silkworms with feeding deterrence index at 10-70%. Paraphaone, paraphaterpenes A, C, D and alternariol methyl ether showed significant antifungal activities against the phytopathogens A. alternata, Aspergillus fumigatus, and entomopathogen Beauveria bassiana with MICs ≤4 µg/mL. And the preliminary structure-activity relationship of eremophilane sesquiterpenoids was exhibited. The culture of Paraphaeosphaeria sp. by host G. biloba medium afforded agricultural antibiotics.


Assuntos
Ascomicetos , Sesquiterpenos , Ginkgo biloba/química , Antifúngicos/farmacologia , Antifúngicos/química , Terpenos/farmacologia , Extratos Vegetais , Sesquiterpenos/farmacologia , Sesquiterpenos Policíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA