Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16601, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789063

RESUMO

Lactic acid bacteria (LAB) are of major concern due to their health benefits. Fermented food products comprise variable LAB demonstrating probiotic properties. Discovering and evaluating new probiotics in fermented food products poses a global economic and health importance. Therefore, the present work aimed to investigate and evaluate the probiotic potentials of LAB strains isolated from Egyptian fermented food. In this study, we isolated and functionally characterized 100 bacterial strains isolated from different Egyptian fermented food sources as probiotics. Only four LAB strains amongst the isolated LAB showed probiotic attributes and are considered to be safe for their implementation as feed or dietary supplements. Additionally, they were shown to exert antimicrobial activities against pathogenic bacteria and anticancer effects against the colon cancer cell line Caco-2. The Enterococcus massiliensis IS06 strain was exclusively reported in this study as a probiotic strain with high antimicrobial, antioxidant, and anti-colon cancer activity. Hitherto, few studies have focused on elucidating the impact of probiotic supplementation in vivo. Therefore, in the current study, the safety of the four strains was tested in vivo through the supplementation of rats with potential probiotic strains for 21 days. The results revealed that probiotic bacterial supplementation in rats did not adversely affect the general health of rats. The Lactiplantibacillus plantarum IS07 strain significantly increased the growth performance of rats. Furthermore, the four strains exhibited increased levels of antioxidants such as superoxide dismutase and glutathione in vivo. Consistently, all strains also showed high antioxidant activity of the superoxide dismutase enzyme in vitro. Overall, these findings demonstrated that these isolated potential probiotics harbor desirable characteristics and can be applied widely as feed additives for animals or as dietary supplements for humans to exert their health benefits and combat serious diseases.


Assuntos
Anti-Infecciosos , Alimentos Fermentados , Lactobacillales , Probióticos , Humanos , Animais , Ratos , Células CACO-2 , Egito , Probióticos/metabolismo , Alimentos Fermentados/microbiologia , Superóxido Dismutase
2.
J Med Food ; 26(8): 560-569, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405755

RESUMO

The antiobesity effects of kimchi with catechin and lactic acid bacteria as starters were studied in C57BL/6 mice with high-fat diet (HFD)-induced obesity. We prepared four types of kimchi: commercial kimchi, standard kimchi, green tea functional kimchi, and catechin functional kimchi (CFK). Body weight and weight of adipose tissue were significantly lower in the kimchi-treated groups than in the HFD and Salt (HFD +1.5% NaCl) groups. In addition, in the CFK group, the serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol were significantly lower and those of high-density lipoprotein cholesterol were markedly higher than the corresponding levels in the HFD and Salt groups. Moreover, CFK reduced fat cells and crown-like structures in the liver and epididymal fat tissues. The protein expression of adipo/lipogenesis-related genes in the liver and epididymal fat tissues was significantly lower (1.90-7.48-fold) in the CFK group than in the HFD and Salt groups, concurrent with upregulation of lipolysis-related genes (1.71-3.38-fold) and downregulation of inflammation-related genes (3.17-5.06-fold) in epididymal fat tissues. In addition, CFK modulated the gut microbiomes of obese mice by increasing the abundance of Bacteroidetes (7.61%), while in contrast, Firmicutes (82.21%) decreased. In addition, the presence of the Erysipelotrichaceae (8.37%) family in the CFK group decreased, while the number of beneficial bacteria of the families, Akkermansiaceae (6.74%), Lachnospiraceae (14.95%), and Lactobacillaceae (38.41%), increased. Thus, CFK exhibited an antiobesity effect through its modulation of lipid metabolism and the microbiome.


Assuntos
Fármacos Antiobesidade , Catequina , Alimentos Fermentados , Lactobacillales , Animais , Camundongos , Catequina/farmacologia , Catequina/metabolismo , Lactobacillales/metabolismo , Camundongos Endogâmicos C57BL , Fármacos Antiobesidade/farmacologia , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Colesterol
3.
Food Chem ; 421: 136130, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37116444

RESUMO

The study aims to enhance the functional properties of soybean meal (SBM) using potent proteolytic Bacillus strains isolated from kinema, a traditional fermented soybean product of Sikkim Himalaya. Selected Bacillus species; Bacillus licheniformis KN1G, B. amyloliquifaciens KN2G, B. subtilis KN36D, B. subtilis KN2B, and B. subtilis KN36D were employed for solid state fermentation (SSF) of SBM samples. The water and methanol extracts of SBM hydrolysates presented a significant increase in antioxidant activity. The water-soluble extracts of B. subtilis KN2B fermented SBM exhibited the best DPPH radical scavenging activity of 2.30 mg/mL. In contrast, the methanol-soluble extract of B. licheniformis KN1G fermented SBM showed scavenging activity of 0.51 mg/mL. Proteomic analysis of fermented soybean meal revealed several common and unique peptides produced by applying different starter cultures. Unique antioxidant peptides (HFDSEVVFF and VVDMNEGALFLPH) were identified from FSBM via LC/MS. B. subtilis KN36D showed the highest diversity of peptides produced during fermentation. The results indicate the importance of specific strains for fermentation to upgrade the nutritional value of raw fermented biomass.


Assuntos
Bacillus , Alimentos Fermentados , Metanol , Proteômica , Glycine max/química , Peptídeos , Peptídeo Hidrolases , Fermentação , Extratos Vegetais
4.
Sci Rep ; 13(1): 3691, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878925

RESUMO

This study investigates the effects of soybean meal fermented by Enterococcus faecium as a replacement for soybean meal on growth performance, apparent total tract digestibility, blood profile and gut microbiota of weaned pigs. Eighty piglets (weaned at 21 days) [(Landrace × Yorkshire) × Duroc] with average body weight of 6.52 ± 0.59 kg) were selected and assigned to 4 treatments/4 replicate pens (3 barrows and 2 gilts). The four diets (SBM, 3, 6 and 9% FSBM) were formulated using fermented soybean meal to replace 0, 3, 6 and 9% of soybean meal, respectively. The trial lasted for 42 days phase 1, 2 and 3. Result showed that supplemental FSBM increased (P < 0.05) the body weight gain (BWG) of piglets at day 7, 21 and 42 and ADG at days 1-7, 8-21, 22-42 and 1-42, and ADFI at days 8-21, 22-42 and 1-42 and G: F at days 1-7, 8-21 and 1-42, and crude protein, dry matter, and gross energy digestibility at day 42, and lowered (P < 0.05) diarrhea at days 1-21 and 22-42. The concentration of glucose levels, WBC, RBC, and lymphocytes were increased while, concentration of BUN level in the serum was lowered in the FSBM treatment compared to the SBM group (P < 0.05). Microbiota sequencing found that FSBM supplementation increased the microbial Shannon, Simpsons and Chao indexs, (P < 0.05) and the abundances of the phylum Firmicutes, and genera prevotella, Lactobacillus, Lachnospiraceae and Lachnoclostridium (P < 0.05), lower in the abundances of the phylum bacteroidetes, Proteobacteria, genera Escherichia-Shigella, Clostridium sensu stricto1, Bacteroides and Parabacteroides (P < 0.05). Overall, FSBM replacing SBM improved the growth performance, apparent total tract digestibility, and blood profiles; perhaps via altering the faecal microbiota and its metabolites in weaned pigs. The present study provides theoretical support for applying FSBM at 6-9% to promote immune characteristics and regulate intestinal health in weaning piglets.


Assuntos
Alimentos Fermentados , Microbioma Gastrointestinal , Animais , Feminino , Bacteroidetes , Peso Corporal , Clostridiales , Suplementos Nutricionais , Suínos , Desmame
5.
J Agric Food Chem ; 71(10): 4426-4439, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853956

RESUMO

Identification of food intake biomarkers (FIBs) for fermented foods could help improve their dietary assessment and clarify their associations with cardiometabolic health. We aimed to identify novel FIBs for fermented foods in the plasma and urine metabolomes of 246 free-living Dutch adults using nontargeted LC-MS and GC-MS. Furthermore, associations between identified metabolites and several cardiometabolic risk factors were explored. In total, 37 metabolites were identified corresponding to the intakes of coffee, wine, and beer (none were identified for cocoa, bread, cheese, or yoghurt intake). While some of these metabolites appeared to originate from raw food (e.g., niacin and trigonelline for coffee), others overlapped different fermented foods (e.g., 4-hydroxybenzeneacetic acid for both wine and beer). In addition, several fermentation-dependent metabolites were identified (erythritol and citramalate). Associations between these identified metabolites with cardiometabolic parameters were weak and inconclusive. Further evaluation is warranted to confirm their relationships with cardiometabolic disease risk.


Assuntos
Doenças Cardiovasculares , Alimentos Fermentados , Adulto , Humanos , Café , Metaboloma , Doenças Cardiovasculares/epidemiologia , Biomarcadores
6.
Poult Sci ; 102(3): 102478, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696763

RESUMO

This study aimed to investigate the effects of dietary supplementation with fermented soybean meal (FSM) or fermented miscellaneous meal (FMM, cottonseed meal: coconut meal = at a 1:1 ratio) on the intestinal health, laying performance, egg quality, and follicle development of laying hens. A total of 1,008 54-wk-old laying hens were randomly divided into 7 treatment groups and fed a corn-soybean base diet in addition to 2%, 4%, and 8% FSM or FMM. The results showed that fermentation increased the contents of crude protein, amino acids (Ser, Gly, Cys, Leu, Lys, His, and Arg), and organic acids (butyric acid, citric acid, succinic acid) and decreased the contents of neutral and acid detergent fiber in the soybean and miscellaneous meals (P < 0.05). Compared with the results found for the control group, feeding with 4% FSM increased the egg production, egg mass and average daily feed intake (ADFI), and feeding with 4% FMM increased the ADFI of laying hens (P < 0.05). Furthermore, feeding with 8% FMM reduced the productive performance and laying performance, supplementation with 4% FSM increased the eggshell strength and weight, and 2 to 4% FSM increased the egg albumen height and Haugh unit (P < 0.05). Moreover, 2 to 8% FSM or 2 to 4% FMM enhanced the apparent digestibility of dry matter, crude protein, and NDF for laying hens (P < 0.05). The relative weight, villus height, crypt depth, and villus:crypt ratio of the jejunum were higher in the 4% FSM- and FMM-fed groups (P < 0.05). Moreover, diamine oxidase (DAO) activity, transepithelial electrical resistance (TEER), and the expression of tight junction proteins (ZO-1, Occluding, and Claudin1), the intestinal stem cell marker Lgr5, and the proliferation cell marker proliferating cell nuclear antigen (PCNA) was upregulated in the jejunum of laying hens fed 4% FSM and FMM (P < 0.05). The relative weight of the ovaries, and the number of small yellow follicles and large white follicles were elevated after 4% FSM or FMM supplementation. Furthermore, the levels of serum follicle-stimulating hormone and luteinizing hormone were increased in the 4% FSM and FMM groups (P < 0.05). In conclusion, the supplementation of laying hen feed with FSM and FMM improved the laying performance, egg quality, intestinal barrier function, and follicle development of aged laying hens, and 4% FSM supplementation was optimal.


Assuntos
Galinhas , Suplementos Nutricionais , Alimentos Fermentados , Alimentos de Soja , Animais , Feminino , Ração Animal/análise , Dieta/veterinária , Farinha , Nutrientes , Glycine max/química
7.
Appl Microbiol Biotechnol ; 106(22): 7627-7642, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36264306

RESUMO

The study was conducted to evaluate the rumen microbiota as well as the milk composition and milk component yields of Holstein cows supplemented with fermented soybean meal (FSBM). Eighteen Holstein cows in their 2nd parity with 54.38 ± 11.12 SD days in milking (DIM) were divided into two dietary groups (CON and TRT) of nine cows per group. The cows in the TRT group received 300 g of FSBM per cow per day in addition to the conventional diet, while each cow in the CON group was supplemented with 350 g of soybean meal (SBM) in their diet daily throughout the 28-day feeding trial. Rumen bacterial composition was detected via 16S rRNA sequencing, and the functional profiles of bacterial communities were predicted. Milk composition, milk yield, as well as rumen fermentation parameters, and serum biochemistry were also recorded. The inclusion of FSBM into the diets of Holstein cows increased the milk urea nitrogen (MUN), milk protein yield, fat corrected milk (FCM), and milk fat yield while the milk somatic cell count (SCC) was decreased. In the rumen, the relative abundances of Fibrobacterota, and Spirochaetota phyla were increased in the TRT group, while the percentage of Proteobacteria was lower. In addition, the supplementation of FSBM to Holstein cows increased the acetate percentage, rumen pH, and acetate to propionate ratio, while the proportion of propionate and propionate % was observed to decrease in the TRT group. The KEGG pathway and functional prediction revealed an upregulation in the functional genes associated with the biosynthesis of amino acids in the TRT group. This enrichment in functional genes resulted in an improved synthesis of several essential amino acids including lysine, methionine, and branch chain amino acids (BCAA) which might be responsible for the increased milk protein yield. Future studies should employ shotgun metagenomics, transcriptomics, and metabolomics technology to investigate the effects of FSBM on other rumen microbiomes and milk protein synthesis in the mammary gland in Holstein cows. KEY POINTS: • The supplementation of fermented soybean meal (FSBM) to Holstein cows modified the proportion of rumen bacteria. • Predicted metabolic pathways and functional genes of rumen bacteria revealed an enrichment in pathway and genes associated with biosynthesis of amino acids in the group fed FSBM. • The cows supplemented with FSBM record an improved rumen fermentation. • Cows supplemented with FSBM recorded an increased yield of milk protein and milk fat.


Assuntos
Alimentos Fermentados , Microbiota , Animais , Bovinos , Feminino , Gravidez , Acetatos/metabolismo , Ração Animal , Dieta/veterinária , Suplementos Nutricionais , Fermentação , Lactação , Metionina/metabolismo , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia , Propionatos/metabolismo , RNA Ribossômico 16S/metabolismo , Rúmen/microbiologia , Glycine max/metabolismo
8.
Nutrients ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889834

RESUMO

Menopause syndrome causes a decline in the quality of life of postmenopausal women. Hormone therapy is recommended for the treatment of menopausal syndromes. However, it has several side effects. Soybean has been safely used to relieve the symptoms of menopause. Lettuce has antidiabetic and anti-inflammatory effects and improves sleep quality. Natural nitric oxide metabolites are produced through fermentation, which increases the effectiveness of the functional substances. This study assessed the alleviation of menopausal syndrome symptoms by natural nitric oxide-containing soybean lettuce extract using the Kupperman index. This study included adult women with menopausal syndrome and a Kupperman index of ≥15. After a four-week study with 40 participants, the final analysis included 39 participants in the experimental group (n = 19) and the placebo group (n = 20). Body mass index, waist circumference, and the total cholesterol, low-density and high-density lipoprotein cholesterol, and triglyceride levels were not altered before and after treatment in both groups. There was a significant decrease in the Kupperman index after treatment in the experimental group, but no significant change was observed in the placebo group. Soybean lettuce extract alleviates menopause syndrome without any special side effects.


Assuntos
Alimentos Fermentados , Glycine max , Adulto , HDL-Colesterol , Feminino , Fogachos/tratamento farmacológico , Humanos , Lactuca , Menopausa , Óxido Nítrico/farmacologia , Extratos Vegetais/efeitos adversos , Pós , Qualidade de Vida
9.
Appl Environ Microbiol ; 88(15): e0066622, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35852360

RESUMO

The importance of individual nutrients for microbial strain robustness and coexistence in habitats containing different members of the same species is not well understood. To address this for Lactiplantibacillus plantarum in food fermentations, we performed comparative genomics and examined the nutritive requirements and competitive fitness for L. plantarum strains B1.1 and B1.3 isolated from a single sample of teff injera fermentation batter. Compared to B1.1 and other L. plantarum strains, B1.3 has a smaller genome, limited biosynthetic capacities, and large mobilome. Despite these differences, B1.3 was equally competitive with B1.1 in a suspension of teff flour. In commercially sourced, nutrient-replete MRS (cMRS) medium, strain B1.3 reached 3-fold-higher numbers than B1.1 within 2 days of passage. Because B1.3 growth and competitive fitness were poor in mMRS medium (here called mMRS), a modified MRS medium lacking beef extract, we used mMRS to identify nutrients needed for robust B1.3 growth. No improvement was observed when mMRS was supplemented with nucleotides, amino acids, vitamins, or monovalent metals. Remarkably, the addition of divalent metal salts increased the growth rate and cell yields of B1.3 in mMRS. Metal requirements were confirmed by inductively coupled plasma mass spectrometry, showing that total B1.3 intracellular metal concentrations were significantly (up to 2.7-fold) reduced compared to B1.1. Supplemental CaCl2 conferred the greatest effect, resulting in equal growth between B1.1 and B1.3 over five successive passages in mMRS. Moreover, calcium supplementation reversed a B1.3 strain-specific, stationary-phase, flocculation phenotype. These findings show how L. plantarum calcium requirements affect competitive fitness at the strain level. IMPORTANCE Ecological theory states that the struggle for existence is stronger between closely related species. Contrary to this assertion, fermented foods frequently sustain conspecific individuals, in spite of their high levels of phylogenetic relatedness. Therefore, we investigated two isolates of Lactiplantibacillus plantarum, B1.1 and B1.3, randomly selected from a single batch of teff injera batter. These strains spanned the known genomic and phenotypic range of the L. plantarum species, and in laboratory culture medium used for strain screening, B1.3 exhibited poor growth and was outcompeted by the more robust strain B1.1. Nonetheless, B1.1 and B1.3 were equally competitive in teff flour. This result shows how L. plantarum has adapted for coexistence in that environment. The capacity for the single macronutrient calcium to restore B1.3 competitive fitness in laboratory culture medium suggests that L. plantarum intraspecies diversity found in food systems is fine-tuned to nutrient requirements at the strain level.


Assuntos
Alimentos Fermentados , Lactobacillus plantarum , Probióticos , Animais , Cálcio/metabolismo , Bovinos , Fermentação , Lactobacillus plantarum/metabolismo , Filogenia
10.
Nutrients ; 14(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565660

RESUMO

Fermented red ginseng (FRG) has been used as a general stimulant and herbal medicine for health promotion in Asia for thousands of years. Few studies have investigated the effects of FRG containing prebiotics on the gut microbiota. Here, 29 Korean women aged ≥ 50 years were administered FRG for three weeks to determine its effect on stool characteristics, biochemical parameters, and gut microbiome. Gut microbial DNA was subjected to 16S rRNA V3-V4 region sequencing to assess microbial distribution in different stages. Additionally, the stool consistency, frequency of bowel movements, and biochemical parameters of blood were evaluated. We found that FRG intake improved stool consistency and increased the frequency of bowel movements compared to before intake. Biochemical parameters such as glucose, triglyceride, cholesterol, low-density lipoprotein cholesterol, creatinine, alkaline phosphatase, and lactate dehydrogenase decreased and high-density lipoprotein cholesterol increased with FRG intake. Gut microbiome analysis revealed 20 specific bacteria after three weeks of FRG intake. Additionally, 16 pathways correlated with the 20 specific bacteria were enhanced after red ginseng intake. In conclusion, FRG promoted health in elderly women by lowering blood glucose levels and improving bowel movement frequency. The increase in bacteria observed with FRG ingestion supports these findings.


Assuntos
Alimentos Fermentados , Microbioma Gastrointestinal , Panax , Idoso , Bactérias/genética , Feminino , Humanos , RNA Ribossômico 16S/genética , República da Coreia
11.
J Agric Food Chem ; 70(18): 5701-5714, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35502792

RESUMO

Understanding the microbial and chemical diversities, as well as what affects these diversities, is important for modern manufacturing of traditional fermented foods. In this work, Chinese dark teas (CDTs) that are traditional microbial fermented beverages with relatively high sample diversity were collected. Microbial DNA amplicon sequencing and mass spectrometry-based untargeted metabolomics show that the CDT microbial ß diversity, as well as the nonvolatile chemical α and ß diversities, is determined by the primary impact factors of geography and manufacturing procedures, in particular, latitude and pile fermentation after blending. A large number of metabolites sharing between CDTs and fungi were discovered by Feature-based Molecular Networking (FBMN) on the Global Natural Products Social Molecular Networking (GNPS) web platform. These molecules, such as prenylated cyclic dipeptides and B-vitamins, are functionally important for nutrition, biofunctions, and flavor. Molecular networking has revealed patterns in metabolite profiles on a chemical family level in addition to individual structures.


Assuntos
Camellia sinensis , Alimentos Fermentados , China , Fermentação , Metabolômica/métodos
12.
Sci Rep ; 12(1): 1940, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121802

RESUMO

Lactiplantibacillus plantarum is one of the most diverse species of lactic acid bacteria found in various habitats. The aim of this work was to perform preliminary phenotypic and genomic characterization of two novel and potentially probiotic L. plantarum strains isolated from Indian foods, viz., dhokla batter and jaggery. Both the strains were bile and acid tolerant, utilized various sugars, adhered to intestinal epithelial cells, produced exopolysaccharides and folate, were susceptible for tetracycline, erythromycin, and chloramphenicol, did not cause hemolysis, and exhibited antimicrobial and plant phenolics metabolizing activities. The genetic determinants of bile tolerance, cell-adhesion, bacteriocins production, riboflavin and folate biosynthesis, plant polyphenols utilization, and exopolysaccharide production were found in both the strains. One of the strains contained a large number of unique genes while the other had a simultaneous presence of glucansucrase and fructansucrase genes which is a rare trait in L. plantarum. Comparative genome analysis of 149 L. plantarum strains highlighted high variation in the cell-adhesion and sugar metabolism genes while the genomic regions for some other properties were relatively conserved. This work highlights the unique properties of our strains along with the probiotic and technically important genomic features of a large number of L. plantarum strains.


Assuntos
DNA Bacteriano/genética , Alimentos Fermentados/microbiologia , Genômica , Células HT29 , Lactobacillus plantarum/genética , Extratos Vegetais , Probióticos , Aderência Bacteriana , DNA Bacteriano/metabolismo , Microbiologia de Alimentos , Regulação Bacteriana da Expressão Gênica , Genótipo , Humanos , Índia , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/metabolismo , Fenótipo , Filogenia , Probióticos/isolamento & purificação , Probióticos/metabolismo , Sequenciamento Completo do Genoma
13.
J Ethnopharmacol ; 286: 114922, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34923087

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocyte lipid accumulation is the main feature in the early stage of nonalcoholic fatty liver disease (NAFLD). Highland barley Monascus purpureus Went (HBMPW), a fermentation product of Hordeum vulgare Linn. var. nudum Hook. f. has traditionally been used as fermented foods in Tibet with the effect of reducing blood lipid in folk medicine. AIM OF THE STUDY: This study investigated the protective effects and molecular mechanism of highland barley Monascus purpureus Went extract (HBMPWE) on NAFLD in syrian golden hamster fed with high-fat, high-fructose, high-cholesterol diet (HFFCD). MATERIALS AND METHODS: HFFCD-induced NAFLD golden hamster model was established and treated with HBMPWE. Liver index, biochemical index, and hematoxylin and eosin (HE) staining were observed. Liver metabolomics and western blot analysis were employed. RESULTS: Our study found that HBMPWE ameliorated HFFCD induced dyslipidemia, weight gain and elevated the liver index. In addition, HBMPWE treatment significantly attenuated lipid accumulation in the liver and modulated lipid metabolism (sphingolipid, glycerophospholipid). Our data demonstrated that HBMPWE not only regulated the expression of proteins related to fatty acid synthesis and decomposition (SREBP-1/ACC/FAS/AceS1, PPARα/ACSL/CPT1/ACOX1), but also regulated the expression of proteins related to cholesterol synthesis and clearance (HMGCR, LDLR, CYP7A1). CONCLUSIONS: HBMPWE improved NAFLD through multiple pathways and multiple targets in body metabolism and could be used as a functional food to treat NAFLD and other lipid metabolic disorders.


Assuntos
Alimentos Fermentados , Metabolismo dos Lipídeos/efeitos dos fármacos , Monascus/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos/biossíntese , Frutose , Hordeum/metabolismo , Masculino , Medicina Tradicional Tibetana , Mesocricetus , Tibet
14.
Food Funct ; 13(2): 702-715, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34935826

RESUMO

Fermented egg-milk beverage (FEMB) can alleviate the symptoms of intestinal diseases by regulating intestinal flora and supplying nutrition. This study investigated the protective effect of FEMB on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. The results showed that FEMB relieved the UC mice's pathological abnormalities and colonic inflammation, and restructured the intestinal flora composition simultaneously. After FEMB treatment for 14 days, the body weight of the mice rose and the disease activity index (DAI) value decreased. Furthermore, the length and form of colons in the UC mice were notably restored. Inflammatory cells decreased or disappeared, and goblet cells and crypt were enriched and modified. 16S rRNA gene sequencing results demonstrated that FEMB treatment could increase the abundance of beneficial bacteria in the cecum content of mice, including unclassified_f_Lachnospiraceae and Lactobacillus. Moreover, probiotics that can increase the content of short-chain fatty acids (SCFAs) may contribute to inflammation alleviation. An increase in amino acids was observed in our experiment, which may benefit nutritional supplements. In conclusion, FEMB treatment can alleviate the damage of DSS-induced colitis in Balb/c mice. This study provides a theoretical basis for both the relief of inflammation and the application of FEMB.


Assuntos
Colite/metabolismo , Produtos Fermentados do Leite , Ovos , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Animais , Sulfato de Dextrana/efeitos adversos , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Alimentos Fermentados , Masculino , Camundongos , Camundongos Endogâmicos BALB C
15.
São Paulo; s.n; s.n; 2022. 61 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-1415198

RESUMO

Os casos de transtorno de ansiedade têm apresentado crescimento considerável desde o início do século XX, onde a terapia medicamentosa oferecida, geralmente apresenta efeito sedativo, portanto, a busca por tratamentos adjuvantes para tratar quadros de ansiedade se fazem necessários. Estudos indicam que a modulação da microbiota intestinal pode estar relacionada à regulação neural dos indivíduos através de diversas vias, incluindo a aplicação de cepas probióticas e consumo de alimentos fermentados tradicionais como iogurte e kombucha, colaborando para a melhoria da qualidade de vida destes pacientes. Este projeto teve como objetivo buscar os metabólitos e neurotransmissores presentes no kombucha a fim de verificar seu potencial psicobióticos e comparar as aplicações e metabólitos produzidos por cepas probióticas existentes no mercado e em alimentos fermentados tradicionais que atuem no eixo intestino-cérebro. Foram realizadas pesquisas em bases de dados online, como Pubmed, Web of Science, Scielo, Scopus e Google Scholar no período entre 2002 e 2022 relacionados aos possíveis efeitos dos probióticos em condições de ansiedade, bem como como os mecanismos que envolvem o eixo cérebro-intestino, seja por meio de testes em humanos e em modelos animais. As espécies mais testadas quanto ao seu potencial probiótico e ação nos transtornos de ansiedade encontradas foram Lactobacillus paracasei, L. casei, L. rhamnosus, Bifidobacterium infanti e B. longum. Cada gênero demonstra um grau diferente na redução da ansiedade dos indivíduos. Os alimentos potencialmente probióticos, incluindo alimentos fermentados tradicionais, além de atuar como complemento à terapia em quadros de ansiedade, tem relevância no setor socioeconômico


Anxiety disorder cases have shown considerable growth since the beginning of the 20th century, where the drug therapy offered usually has a sedative effect. Therefore, the search for adjuvant treatments to treat anxiety disorders is necessary. Studies indicate that the modulation of the intestinal microbiota may be related to the neural regulation of individuals in several ways, including the application of probiotic strains and consumption of traditional fermented foods such as yogurt and kombucha, contributing to the improvement of the quality of life of these patients. This project aimed to identify and compare the psychobiotic effect in the gut-brain axis of the metabolites and neurotransmitters produced by kombucha and commercial probiotic strains. The research was carried out in online databases, such as Pubmed, Web of Science, Scielo, Scopus, and Google Scholar in the period between 2002 and 2022 related to the possible effects of probiotics in anxiety conditions as the mechanisms that involve the brain-gut axis either through tests in humans or animal models. The species most tested for their probiotic potential and action on anxiety disorders were Lactobacillus paracasei, L. casei, L. rhamnosus, Bifidobacterium infanti, and B. longum. Each genus demonstrates a different degree of reducing individuals' anxiety. Potentially probiotic foods, including traditional fermented foods, acting as a complement to therapy in cases of anxiety, have relevance in the socioeconomic sector


Assuntos
Transtornos Fóbicos/patologia , Chá de Kombucha/análise , Chá de Kombucha/efeitos adversos , Serotonina/análogos & derivados , Microbiota , Alimentos Fermentados/efeitos adversos , Eixo Encéfalo-Intestino
16.
São Paulo; s.n; s.n; 2022. 94 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-1396412

RESUMO

Um dos maiores desafios no desenvolvimento de produtos probióticos é entender como os microrganismos interagem entre si e com o hospedeiro. Quando falamos em alimentos fermentados tradicionais, este obstáculo aumenta porque a matriz alimentar já possui um microbioma intrínseco. No entanto, também é conhecido que muitos microrganismos podem interagir e cooperar para sobreviver quando condições de estresse são encontradas. Assim, o objetivo deste trabalho foi isolar leveduras de quatro diferentes kombuchas em distintos momentos fermentativos e verificar a influência que leveduras isoladas de kombucha têm na manutenção da viabilidade da bactéria probiótica Bifidobacterium animalis subsp. lactis HN019 em condições de aerobiose. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa e Pichia membranifaciens foram leveduras encontradas nas kombuchas, das quais as duas últimas favoreceram a manutenção da alta viabilidade de HN019 em cocultura por 14 dias. Observou-se a viabilidade da bactéria acima de 9 log ao longo de todo o experimento, o que não foi observado em monocultura. Ademais, utilizou-se de análise de autoagregação, hidrofobicidade, atividade enzimática de proteases e fosfolipases das leveuras para analisar seu potencial patogênico. Observou-se que R. mucilaginosa demonstrou características semelhantes à Saccharomyces cerevisiae subsp. boulardii, e sua interação benéfica com HN019 reforça a possibilidade de que esta levedura seja uma chave para a inserção da bactéria em uma kombucha probiótica. Análises metabólicas foram realizadas e encontrou-se uma vasta diversidade de dipeptídeos, principalmente os compostos de prolina, durante a cocultura da bactéria com as leveduras. Tais dipeptídeos apresentam importantes mecanismos de ação no controle biológico e quorum sensing de bactérias e leveduras, e supostamente regulam a manutenção das relações mutualísticas entre ambos microrganismo


One of the biggest challenges in the development of probiotic products is to understand how microorganisms interact with each other and with the host. When we talk about traditional fermented foods, this obstacle increases because the food matrix already has an intrinsic microbiome. However, it is also known that many microorganisms can interact and cooperate to survive when stressful situations are encountered. Thus, the objective of this work was to isolate yeasts from four different kombuchas at different fermentation times and to verify the influence that yeasts isolated from kombucha have on maintaining the viability of the probiotic bacterium Bifidobacterium animalis subsp. lactis HN019 under aerobic conditions. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa and Pichia membranifaciens were yeasts found in kombuchas, of which the last two favored the maintenance of HN019 high viability in co-culture for 14 days. Bacteria viability above 9 log was observed throughout the experiment, which was not observed in monoculture. In addition, analysis of autoaggregation, hydrophobicity, enzyme activity of proteases and phospholipases of yeasts was used to analyze their pathogenic potential. It was observed that R. mucilaginosa demonstrated characteristics similar to Saccharomyces cerevisiae subsp. boulardii, and its beneficial interaction with HN019 reinforces the possibility that this yeast is a key to the insertion of the bacterium in a probiotic kombucha. Metabolic analysis were performed and a wide diversity of dipeptides, mainly proline-based, was found during the co-culture of the bacteria with the yeasts. Such dipeptides have important mechanisms of action in the biological control and quorum sensing of bacteria and yeast, and supposedly regulate the maintenance of mutualistic relationships between both microorganism


Assuntos
Leveduras/classificação , Chá de Kombucha/análise , Alimentos Fermentados/análise , Rhodotorula/classificação , Técnicas de Cocultura/métodos , Probióticos , Dipeptídeos/agonistas , Microbiota , Bifidobacterium animalis/patogenicidade
17.
Nutrients ; 13(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34959754

RESUMO

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Assuntos
Tecido Adiposo/metabolismo , Fibras na Dieta/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hipernutrição/metabolismo , Aminoácidos/metabolismo , Animais , Pão , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Feminino , Alimentos Fermentados , Glucose/metabolismo , Incretinas/metabolismo , Intestinos/metabolismo , Ácido Láctico/metabolismo , Suínos , Porco Miniatura , Ureia/metabolismo
18.
Sci Rep ; 11(1): 22700, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811448

RESUMO

Traditional fermented Rosa (TFR) is a typical food and medical product among the Dali Bai people, and its popularity is growing. A few studies have looked into TFR's medicinal advantages, linked germplasm resources, traditional processing procedures, and functional food qualities. Our goal was to look into Rosa's traditional processing, examine the dominant strains in TFR, and prove how these strains affected antioxidant and tyrosinase inhibitory activities. We used a snowball selection strategy to pick 371 informants for a semi-structured interview, supplemented with direct observations and sample collection. A microbial strain was isolated and identified from a TFR sample collected in the field. We synthesized TFR in the lab using the traditional way. Both of 2, 2-diphenyl-1 picrylhydrazyl (DPPH) free radical scavenging and tyrosinase inhibitory properties of the fermented solution of Rosa 'Dianhong' have been tested in this study. Altogether 15 species belonging to the genus Rosa, which are utilized in herbal medicine and fermented foods. Rosa 'Dianhong' was the Bai community's principal species with considerable cultural value and consumption. Raw Rosa petals included 15 major flavonoids and phenols, which were identified as TFR's active components. TFR-1 was discovered to be the dominating microbial strain in TFR, increasing total phenolic and flavonoid content in the fermented solution of Rosa 'Dianhong' by 0.45 mg GAE/ml and 0.60 mg RE/ml, respectively, after 30 days. TFR-1 also exhibited promising activity in terms of DPPH free radical scavenging and tyrosinase inhibition. TFR showed potent antioxidant and free-radical scavenger properties and is beneficial in skincare and nutrition, according to the findings. TFR's medicinal and edible properties suggest that it could be used as a cosmetic or nutraceutical product.


Assuntos
Inibidores Enzimáticos/farmacologia , Fermentação , Flores/química , Flores/metabolismo , Sequestradores de Radicais Livres/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Rosa/química , Rosa/metabolismo , Compostos de Bifenilo/metabolismo , China , Fazendeiros , Feminino , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Flavonoides/análise , Humanos , Masculino , Monofenol Mono-Oxigenase/metabolismo , Fenóis/análise , Picratos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrofotometria/métodos
19.
J Ethnopharmacol ; 280: 114448, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34303805

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Milk production, processing and consumption are integral part of traditional practices in Fulani tribe of Cameroon. It has been observed that Fulani are resistant to malaria. Dairy products traditionally processed by Fulani are intensively used in the ritual treatment of malarial, inflammations and behavioural disorders. Many studies have demonstrated that fermented milk is a rich source of probiotic bacteria. However, the antimalarial activity of probiotics isolated from this natural source has not been experimentally tested. AIM OF THE STUDY: Hence, this study was therefore aimed at evaluating the antimalarial activity of a probiotic bacterium Lactobacillus sakei isolated from traditionally fermented milk in mice infected with chloroquine sensitive Plasmodium berghei ANKA. MATERIALS AND METHODS: The probiotic bacterium was isolated from the Cameroonian Mborro Fulani's traditionally fermented milk and identified using the 16S r RNA gene sequencing. The schizontocidal activity of Lactobacillus sakei on established malaria infection was evaluated. Eighty-four healthy young adult Balb/c mice infected with Plasmodium berghei parasite were randomly divided into two sets of seven group of six mice each, and were given three different doses of Lactobacillus sakei, chloroquine and sulfadoxine/pyrimethamine for seven and fourteen days respectively. The level of parasitaemia, body temperature, survival time and haematological parameters were evaluated. RESULTS: The parasite growth inhibition was observed to increase with increasing dose of probiotic bacterium with maximum suppression being 100 % at dose 3 on day 20. Also, the probiotic bacterium significantly prevented body weight loss and was associated with body temperature reduction and prevented (p<0.05) a decrease in haematological parameters compared to that untreated malaria infected mice. CONCLUSION: The results obtained suggest that Lactobacillus sakei is a probiotic bacterium with antimalarial activity in mice infected with chloroquine sensitive Plasmodium berghei.


Assuntos
Antimaláricos/farmacologia , Latilactobacillus sakei , Malária/terapia , Plasmodium berghei/efeitos dos fármacos , Probióticos/farmacologia , Animais , Antimaláricos/administração & dosagem , Camarões , Cloroquina/farmacologia , Modelos Animais de Doenças , Combinação de Medicamentos , Alimentos Fermentados , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Leite/microbiologia , Parasitemia/parasitologia , Parasitemia/terapia , Probióticos/administração & dosagem , Pirimetamina/farmacologia , Sulfadoxina/farmacologia
20.
Food Chem ; 365: 130495, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243128

RESUMO

Lactobacillus enriched with organic/inorganic selenium and pickles fermented with the Lactobacillus plantarum R were prepared. The results showed that selenium-enriched Lactobacillus plantarum R enhanced the antioxidant capacity, inhibition rate of advanced glycation end-products (AGEs), nitrite degradation, and the organic acid production of fermented pickles, while Lactobacillus plantarum R enriched with inorganic selenium (R-Se-IN) showed the best performance. Twenty-three aroma-active substances and seven characteristic compounds were detected in the R-Se-IN group. Moreover, the bacterial community result revealed that Lactococcus, Lactobacillus, and Leuconostoc were predominant in the R-Se-IN group, while the other groups contained Enterobacter, Halomonas, and Klebsiella. Furthermore, the correlations between environmental factors, differential flavor substances, and microbial communities were explored based on multivariate statistical analysis. These results indicate that the addition of Lactobacillus plantarum R enriched with organic/inorganic selenium influenced the environmental factors, differential flavor substances, and microbial communities of the fermented pickles.


Assuntos
Alimentos Fermentados , Lactobacillus plantarum , Microbiota , Selênio , Fermentação , Lactobacillus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA