Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.726
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(3): 49, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642182

RESUMO

Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.


Assuntos
Brassica napus , Plântula , Plântula/genética , Sementes/genética , Cotilédone/genética , Lipídeos , Aminoácidos/metabolismo , Brassica napus/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612864

RESUMO

Flavonoids exhibit various bioactivities including anti-oxidant, anti-tumor, anti-inflammatory, and anti-viral properties. Methylated flavonoids are particularly significant due to their enhanced oral bioavailability, improved intestinal absorption, and greater stability. The heterologous production of plant flavonoids in bacterial factories involves the need for enough biosynthetic precursors to allow for high production levels. These biosynthetic precursors are malonyl-CoA and l-tyrosine. In this work, to enhance flavonoid biosynthesis in Streptomyces albidoflavus, we conducted a transcriptomics study for the identification of candidate genes involved in l-tyrosine catabolism. The hypothesis was that the bacterial metabolic machinery would detect an excess of this amino acid if supplemented with the conventional culture medium and would activate the genes involved in its catabolism towards energy production. Then, by inactivating those overexpressed genes (under an excess of l-tyrosine), it would be possible to increase the intracellular pools of this precursor amino acid and eventually the final flavonoid titers in this bacterial factory. The RNAseq data analysis in the S. albidoflavus wild-type strain highlighted the hppD gene encoding 4-hydroxyphenylpyruvate dioxygenase as a promising target for knock-out, exhibiting a 23.2-fold change (FC) in expression upon l-tyrosine supplementation in comparison to control cultivation conditions. The subsequent knock-out of the hppD gene in S. albidoflavus resulted in a 1.66-fold increase in the naringenin titer, indicating enhanced flavonoid biosynthesis. Leveraging the improved strain of S. albidoflavus, we successfully synthesized the methylated flavanones hesperetin, homoeriodictyol, and homohesperetin, achieving titers of 2.52 mg/L, 1.34 mg/L, and 0.43 mg/L, respectively. In addition, the dimethoxy flavanone homohesperetin was produced as a byproduct of the endogenous metabolism of S. albidoflavus. To our knowledge, this is the first time that hppD deletion was utilized as a strategy to augment the biosynthesis of flavonoids. Furthermore, this is the first report where hesperetin and homoeriodictyol have been synthesized from l-tyrosine as a precursor. Therefore, transcriptomics is, in this case, a successful approach for the identification of catabolism reactions affecting key precursors during flavonoid biosynthesis, allowing the generation of enhanced production strains.


Assuntos
Anormalidades Craniofaciais , Flavonas , Flavonoides , Perfilação da Expressão Gênica , Hesperidina , Streptomyces , Aminoácidos , Tirosina
3.
BMC Pregnancy Childbirth ; 24(1): 295, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643102

RESUMO

BACKGROUND: Vitamin D deficiency is common in pregnancy, however, its effects has not been fully elucidated. Here, we conducted targeted metabolomics profiling to study the relationship. METHODS: This study enrolled 111 pregnant women, including sufficient group (n = 9), inadequate group (n = 49) and deficient group (n = 53). Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based targeted metabonomics were used to characterize metabolite profiles associated with vitamin D deficiency in pregnancy. RESULTS: Many metabolites decreased in the inadequate and deficient group, including lipids, amino acids and others. The lipid species included fatty acyls (FA 14:3, FA 26:0; O), glycerolipids (MG 18:2), glycerophospholipids (LPG 20:5, PE-Cer 40:1; O2, PG 29:0), sterol lipids (CE 20:5, ST 28:0; O4, ST 28:1; O4). Decreased amino acids included aromatic amino acids (tryptophan, phenylalanine, tyrosine) and branched-chain amino acids (valine, isoleucine, leucine), proline, methionine, arginine, lysine, alanine, L-kynurenine,5-hydroxy-L-tryptophan, allysine. CONCLUSIONS: This targeted metabolomics profiling indicated that vitamin D supplementation can significantly affect lipids and amino acids metabolism in pregnancy.


Assuntos
Espectrometria de Massas em Tandem , Deficiência de Vitamina D , Feminino , Humanos , Gravidez , Aminoácidos , Alanina , Metabolômica , Deficiência de Vitamina D/complicações , Lipídeos
4.
N Engl J Med ; 390(16): 1493-1504, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657245

RESUMO

BACKGROUND: Most moderate-to-late-preterm infants need nutritional support until they are feeding exclusively on their mother's breast milk. Evidence to guide nutrition strategies for these infants is lacking. METHODS: We conducted a multicenter, factorial, randomized trial involving infants born at 32 weeks 0 days' to 35 weeks 6 days' gestation who had intravenous access and whose mothers intended to breast-feed. Each infant was assigned to three interventions or their comparators: intravenous amino acid solution (parenteral nutrition) or dextrose solution until full feeding with milk was established; milk supplement given when maternal milk was insufficient or mother's breast milk exclusively with no supplementation; and taste and smell exposure before gastric-tube feeding or no taste and smell exposure. The primary outcome for the parenteral nutrition and the milk supplement interventions was the body-fat percentage at 4 months of corrected gestational age, and the primary outcome for the taste and smell intervention was the time to full enteral feeding (150 ml per kilogram of body weight per day or exclusive breast-feeding). RESULTS: A total of 532 infants (291 boys [55%]) were included in the trial. The mean (±SD) body-fat percentage at 4 months was similar among the infants who received parenteral nutrition and those who received dextrose solution (26.0±5.4% vs. 26.2±5.2%; adjusted mean difference, -0.20; 95% confidence interval [CI], -1.32 to 0.92; P = 0.72) and among the infants who received milk supplement and those who received mother's breast milk exclusively (26.3±5.3% vs. 25.8±5.4%; adjusted mean difference, 0.65; 95% CI, -0.45 to 1.74; P = 0.25). The time to full enteral feeding was similar among the infants who were exposed to taste and smell and those who were not (5.8±1.5 vs. 5.7±1.9 days; P = 0.59). Secondary outcomes were similar across interventions. Serious adverse events occurred in one infant. CONCLUSIONS: This trial of routine nutrition interventions to support moderate-to-late-preterm infants until full nutrition with mother's breast milk was possible did not show any effects on the time to full enteral feeding or on body composition at 4 months of corrected gestational age. (Funded by the Health Research Council of New Zealand and others; DIAMOND Australian New Zealand Clinical Trials Registry number, ACTRN12616001199404.).


Assuntos
Aleitamento Materno , Nutrição Enteral , Recém-Nascido Prematuro , Nutrição Parenteral , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Aminoácidos/administração & dosagem , Idade Gestacional , Glucose/administração & dosagem , Leite Humano , Olfato , Paladar , Apoio Nutricional , Soluções de Nutrição Parenteral/uso terapêutico , Adiposidade
5.
Animal ; 18(4): 101127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574452

RESUMO

Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.


Assuntos
Lactação , Lisina , Feminino , Bovinos , Animais , Lisina/metabolismo , Rúmen/metabolismo , Disponibilidade Biológica , Dieta/veterinária , Aminoácidos/metabolismo , Proteínas do Leite/metabolismo , Aminas/metabolismo , Metionina/metabolismo
6.
Adv Exp Med Biol ; 1446: 155-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625528

RESUMO

The bone is a large and complex organ (12-15% of body weight) consisting of specialized connective tissues (bone matrix and bone marrow), whereas joints are composed of cartilage, tendons, ligaments, synovial joint capsules and membranes, and a synovial joint cavity filled with synovial fluid. Maintaining healthy bones and joints is a dynamic and complex process, as bone deposition (formation of new bone materials) and resorption (breakdown of the bone matrix to release calcium and phosphorus) are the continuous processes to determine bone balance. Bones are required for locomotion, protection of internal organs, and have endocrine functions to maintain mineral homeostasis. Joints are responsible for resisting mechanical stress/trauma, aiding in locomotion, and supporting the overall musculoskeletal system. Amino acids have multiple regulatory, compositional, metabolic, and functional roles in maintaining the health of bones and joints. Their disorders are prevalent in mammals and significantly reduce the quality of life. These abnormalities in companion animals, specifically cats and dogs, commonly lead to elective euthanasia due to the poor quality of life. Multiple disorders of bones and joints result from genetic predisposition and are heritable, but other factors such as nutrition, growth rate, trauma, and physical activity affect how the disorder manifests. Treatments for cats and dogs are primarily to slow the progression of these disorders and assist in pain management. Therapeutic supplements such as Cosequin and formulated diets rich in amino acids are used commonly as treatments for companion animals to reduce pain and slow the progression of those diseases. Also, amino acids (e.g., taurine, arginine, glycine, proline, and 4-hydroxyproline), and glucosamine reduce inflammation and pain in animals with bone and joint disorders. Gaining insight into how amino acids function in maintaining bone and joint health can aid in developing preventative diets and therapeutic supplementations of amino acids to improve the quality of life in companion animals.


Assuntos
Aminoácidos , Qualidade de Vida , Gatos , Cães , Animais , Articulações , Matriz Óssea , Prolina , Mamíferos
7.
Biochem Biophys Res Commun ; 709: 149725, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579617

RESUMO

Proteinoids are synthetic polymers that have structural similarities to natural proteins, and their formation is achieved through the application of heat to amino acid combinations in a dehydrated environment. The thermal proteins, initially synthesised by Sidney Fox during the 1960s, has the ability to undergo self-assembly, resulting in the formation of microspheres that resemble cells. These microspheres have fascinating biomimetic characteristics. In recent studies, substantial advancements have been made in elucidating the electrical signalling phenomena shown by proteinoids, hence showcasing their promising prospects in the field of neuro-inspired computing. This study demonstrates the advancement of experimental prototypes that employ proteinoids in the construction of fundamental neural network structures. The article provides an overview of significant achievements in proteinoid systems, such as the demonstration of electrical excitability, emulation of synaptic functions, capabilities in pattern recognition, and adaptability of network structures. This study examines the similarities and differences between proteinoid networks and spontaneous neural computation. We examine the persistent challenges associated with deciphering the underlying mechanisms of emergent proteinoid-based intelligence. Additionally, we explore the potential for developing bio-inspired computing systems using synthetic thermal proteins in forthcoming times. The results of this study offer a theoretical foundation for the advancement of adaptive, self-assembling electronic systems that operate using artificial bio-neural principles.


Assuntos
Aminoácidos , Proteínas , Proteínas/metabolismo , Temperatura Alta , Redes Neurais de Computação
8.
J Phys Chem B ; 128(15): 3563-3574, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38573978

RESUMO

Cas1 and Cas2 are highly conserved proteins among the clustered regularly interspaced short palindromic repeat Cas (CRISPR-Cas) systems and play a crucial role in protospacer selection and integration. According to the double-forked CRISPR Cas1-Cas2 complex, we conducted extensive all-atom molecular dynamics simulations to investigate the protospacer DNA binding and recognition. Our findings revealed that single-point amino acid mutations in Cas1 or in Cas2 had little impact on the binding of the protospacer, both in the binding and precatalytic states. In contrast, multiple-point amino acid mutations, particularly G74A, P80L, and V89A mutations on Cas2 and Cas2' proteins (m-multiple1 system), significantly affected the protospacer binding and selection. Notably, mutations on Cas2 and Cas2' led to an increased number of hydrogen bonds (#HBs) between Cas2&Cas2' and the dsDNA in the m-multiple1 system compared with the wild-type system. And the strong electrostatic interactions between Cas1-Cas2 and the protospacer DNA (psDNA) in the m-multiple1 system again suggested the increase in the binding affinity of protospacer acquisition. Specifically, mutations in Cas2 and Cas2' can remotely make the protospacer adjacent motif complementary (PAMc) sequences better in recognition by the two active sites, while multiple mutations K211E, P202Q, P212L, R138L, V134A, A286T, P282H, and P294H on Cas1a/Cas1b&Cas1a'/Cas1b' (m-multiple2 system) decrease the #HBs and the electrostatic interactions and make the PAMc worse in recognition compared with the wild-type system.


Assuntos
Proteínas Associadas a CRISPR , Escherichia coli , Escherichia coli/genética , Simulação de Dinâmica Molecular , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/química , Aminoácidos/metabolismo
9.
Vet Q ; 44(1): 1-17, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38557401

RESUMO

This study evaluates the effects of dietary Chinese herb ultrafine powder (CHUP) supplementation in late-phase laying hens on the quality and nutritional values of eggs. A total of 576 Xinyang black-feather laying hens (300-day-old) were randomly allocated into eight groups for a 120-day feeding trial. Each group contained eight replicates with nine hens per replicate. The experimental groups included the control (basal diet) and different levels of CHUP groups (details in 'Materials and methods'). The results showed that the eggshell strength was increased (p < 0.05) in the L, LF, L-LF, L-T, and LF-T groups on day 60 of the trial. In addition, the plasma estradiol level in the L-LF, LF-T, and L-LF-T groups and unsaturated fatty acids concentrations in egg yolk of the CHUP groups (except LF-T group) were increased, whereas total cholesterol (T, L-LF, L-T, and L-LF-T groups) in egg yolk and the atherogenicity (T, L-T, and L-LF-T groups) and thrombogenicity (T, L-LF, L-T, and L-LF-T groups) indexes were decreased (p < 0.05) on day 60 of the trial compared with the control group. Moreover, bitter amino acids in egg albumen were decreased (p < 0.05) in the L-LF group on day 60 and the L-LF-T group on day 120 of the trial. Collectively, these findings indicate that dietary CHUP supplementation could improve eggshell quality and increase plasma reproductive hormone, fatty acid and amino acid composition, and nutritional values of eggs, especially L-LF and L-LF-T.


Assuntos
Ração Animal , Galinhas , Animais , Feminino , Pós/análise , Pós/farmacologia , Ração Animal/análise , Óvulo , Gema de Ovo/química , Dieta/veterinária , Aminoácidos , Suplementos Nutricionais
10.
PLoS One ; 19(4): e0301205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625974

RESUMO

The present study investigated the potential role of different essential amino acids (AA) in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 17.91±0.27 g, n = 260) were fed with eight isonitrogenous (30%), and isolipidic diets (6%) formulated to include different combinations of tryptophan (Trp), methionine (Met), and lysine (Lys) (T0: Zero AA, T1: Trp, T2: Lys, T3: Met, T4: Trp+Met, T5: Lys+Trp, T6: Met+Lys, T7: Lys+Trp+Met) for eight weeks. The dose of amino acid supplementation, whether individually or in combination, was 5g of each amino acid per kg of diet. The trial comprised eight treatments, with each treatment consisted of three replicates (n = 10/replicate). At the end of the growth experiment, the highest total body weight, crude protein, digestive enzymatic activity, immune response, and amino acids level were observed in treatments supplemented with amino acids compared to T0. After the growth experiment, fish in all treatments were exposed to Staphylococcus aureus (5×105 CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). Following the S. aureus challenge, fish fed with amino acids showed a better response to reactive oxygen species and lipid peroxidation, as indicated by the increased levels of catalase and superoxide dismutase. Conversely, the concentration of malondialdehyde gradually decreased in all treatments compared to the +ve T0 treatment. It is concluded that supplementation of amino acids improved the growth, protein content, and immunocompetency against S. aureus in striped catfish. The most favorable outcomes in striped catfish were shown by fish supplemented with T7 diet. These essential amino acids hold potential as efficient supplements for use in the intensive aquaculture for striped catfish.


Assuntos
Peixes-Gato , Lisina , Animais , Aminoácidos , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Lisina/farmacologia , Metionina/farmacologia , Racemetionina , Staphylococcus aureus , Triptofano/farmacologia
11.
Trop Anim Health Prod ; 56(3): 123, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613703

RESUMO

Excess levels of free radicals cause oxidative damage to cells. Taurine is a rare amino acid with antioxidant effects whose dietary deficiency increases oxidative damage to the cell membrane. To investigate the effects of dietary taurine supplementation on performance, blood hematology, oxidative stress, and jejunum morphology in broilers, 300 broilers (Ras 308, 1D of age) were randomly allocated into 4 groups with 5 replicates of 15 birds. The experimental treatments included basic diet (control treatment) and basic diet with 1, 3, and 6 g/kg taurine amino acid. During 1 to 45 days, the inclusion of taurine supplementation in diets improved the body weight gain (BWG), feed consumption (FC), and feed conversion ratio (FCR) of broilers (P < 0.05). In CBC tests, the experimental treatments were significantly different concerning the red blood cell (RBC) count, the average hemoglobin in the cell, the RBC width in the curve, and the hematocrit (P < 0.05). Despite the significance of oxidative stress among the treatments, the control and fourth treatments showed the highest and the lowest oxidative stress, respectively (P < 0.05). Also, in jejunum morphology, the fourth treatment showed the best performance in terms of villus length and width and the villus length to crypt depth (V/C) ratio (P < 0.05). Overall, 6 g/kg taurine addition to the diet reduced oxidative stress and positive features in the jejunum morphology while improving the functional traits of broilers.


Assuntos
Galinhas , Hematologia , Animais , Taurina/farmacologia , Jejuno , Estresse Oxidativo , Aminoácidos , Suplementos Nutricionais
12.
Ecotoxicol Environ Saf ; 276: 116340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636261

RESUMO

Exposure to pesticides induces oxidative stress and deleterious effects on various tissues in non-target organisms. Numerous models investigating pesticide exposure have demonstrated metabolic disturbances such as imbalances in amino acid levels within the organism. One potentially effective strategy to mitigate pesticide toxicity involves dietary intervention by supplementing exogenous amino acids and their derivates to augment the body's antioxidant capacity and mitigate pesticide-induced oxidative harm, whose mechanism including bolstering glutathione synthesis, regulating arginine-NO metabolism, mitochondria-related oxidative stress, and the open of ion channels, as well as enhancing intestinal microecology. Enhancing glutathione synthesis through supplementation of substrates N-acetylcysteine and glycine is regarded as a potent mechanism to achieve this. Selection of appropriate amino acids or their derivates for supplementation, and determining an appropriate dosage, are of the utmost importance for effective mitigation of pesticide-induced oxidative harm. More experimentation is required that involves large population samples to validate the efficacy of dietary intervention strategies, as well as to determine the effects of amino acids and their derivates on long-term and low-dose pesticide exposure. This review provides insights to guide future research aimed at preventing and alleviating pesticide toxicity through dietary intervention of amino acids and their derivates.


Assuntos
Aminoácidos , Estresse Oxidativo , Praguicidas , Praguicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Glutationa/metabolismo , Suplementos Nutricionais , Humanos
13.
PLoS One ; 19(4): e0302403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662754

RESUMO

With aging, men develop testosterone-deficiency syndrome (TDS). The development is closely associated with age-related mitochondrial dysfunction of Leydig cell and oxidative stress-induced reactive oxygen species (ROS). Testosterone-replacement therapy (TRT) is used to improve the symptoms of TDS. However, due to its various side effects, research on functional ingredients derived from natural products that do not have side effects is urgently needed. In this study, using the mitochondrial dysfunction TM3 (mouse Leydig) cells, in which testosterone biosynthesis is reduced by H2O2, we evaluated the effects of elderberry extract and monosaccharide-amino acid (fructose-leucine; FL) on mRNA and protein levels related to steroidogenesis-related enzymes steroidogenic acute regulatory protein (StAR), cytochrome P450 11A1(CYP11A1, cytochrome P450 17A1(CYP17A1), cytochrome P450 19A1(CYP19A1, aromatase), 3ß-hydroxysteroid dehydrogenase (3ß-HSD), and 17ß-hydroxysteroid dehydrogenase(17ß-HSD). We analyzed elderberry extract and extract-derived FL for changes in ROS scavenging activity and testosterone secretion. Elderberry extract and FL significantly reduced H2O2-induced intracellular ROS levels, improved testosterone secretion, and increased the mRNA and protein expression levels of steroidogenesis-related enzymes (StAR, 3b-HSD, 17b-HSD, CYP11A1, CYp17A1). However, the conversion of testosterone to estradiol was inhibited by elderberry extract and extract-derived FL, which reduced the mRNA and protein expression of CYP19A1. In conclusion, elderberry extract and FL are predicted to have value as novel functional ingredients that may contribute to the prevention of TDS by ameliorating reduced steroidogenesis.


Assuntos
Peróxido de Hidrogênio , Células Intersticiais do Testículo , Extratos Vegetais , Testosterona , Animais , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Camundongos , Peróxido de Hidrogênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Masculino , Linhagem Celular , Aminoácidos/metabolismo , Monossacarídeos , Sambucus/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética
14.
Amino Acids ; 56(1): 29, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583116

RESUMO

L-theanine, an amino acid component of the tea leaves of Camellia sinensis, is sold in Japan as a supplement for good sleep. Although several studies in humans and mice have reported the effects of L-theanine on brain function, only a few reports have comprehensively clarified the disposition of theanine administered to mice and its effects on concentrations of other blood amino acids. In this study, we aimed to determine the changes in the blood levels of L-theanine administered to mice and amino acid composition of the serum. L-theanine were administered to four-week-old Std-ddY male mice orally or via tail vein injection. L-theanine and other amino acids in serum prepared from blood collected at different time points post-dose were labeled with phenylisothiocyanate and quantified. The serum concentration of orally administered L-theanine peaked 15 min after administration. The area under the curve for tail vein injection revealed the bioavailability of L- theanine to be approximately 70%. L-theanine administration did not affect any amino acid levels in the serum, but a significant increase in the peak area overlapping the Glycine (Gly) peak was observed 30 min after administration. L-theanine administered to mice was rapidly absorbed and eliminated, suggesting that taking L-theanine as a supplement is safe without affecting its own levels or serum levels of other amino acids. However, considering that Gly, similar to L-theanine, is used as a dietary supplement for its anxiolytic effects and to improve sleep, determining the effects of L-theanine administration on Gly is important and needs further research.


Assuntos
Aminoácidos , Fabaceae , Humanos , Camundongos , Masculino , Animais , Glicina , Glutamatos , Disponibilidade Biológica
15.
J Agric Food Chem ; 72(15): 8618-8631, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569082

RESUMO

Daidzein (DAN) is an isoflavone, and it is often found in its natural form in soybean and food supplements. DAN has poor bioavailability owing to its extremely low water solubility and first-pass metabolism. Herein, we hypothesized that a bioactivatable natural amino acid-bearing carbamate prodrug strategy could increase the water solubility and metabolic stability of DAN. To test our hypothesis, nine amino acid prodrugs of DAN were designed and synthesized. Compared with DAN, the optimal prodrug (daidzein-4'-O-CO-N-isoleucine, D-4'-I) demonstrated enhanced water solubility and improved phase II metabolic stability and activation to DAN in plasma. In addition, unlike the passive transport of DAN, D-4'-I maintained high permeability via organic anion-transporting polypeptide 2B1 (OATP2B1)-mediated transport. Importantly, D-4'-I increased the oral bioavailability by 15.5-fold, reduced the gender difference, and extended the linear absorption capacity in the pharmacokinetics of DAN in rats. Furthermore, D-4'-I exhibited dose-dependent protection against liver injury. Thus, the natural amino acid-bearing carbamate prodrug strategy shows potential in increasing water solubility and improving phase II metabolic stability to enhance the oral bioavailability of DAN.


Assuntos
Isoflavonas , Pró-Fármacos , Animais , Ratos , Administração Oral , Aminoácidos/química , Disponibilidade Biológica , Carbamatos/química , Pró-Fármacos/química , Solubilidade , Água
16.
J Colloid Interface Sci ; 663: 810-824, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447396

RESUMO

Nanozymes, as nanomaterials with natural enzyme activities, have been widely applied to deliver various therapeutic agents to synergistically combat the progression of malignant tumors. However, currently common inorganic nanozyme-based drug delivery systems still face challenges such as suboptimal biosafety, inadequate stability, and inferior tumor selectivity. Herein, a super-stable amino acid-based metallo-supramolecular nanoassembly (FPIC NPs) with peroxidase (POD)- and glutathione oxidase (GSHOx)-like activities was fabricated via Pt4+-driven coordination co-assembly of l-cysteine derivatives, the chemotherapeutic drug curcumin (Cur), and the photosensitizer indocyanine green (ICG). The superior POD- and GSHOx-like activities could not only catalyze the decomposition of endogenous hydrogen peroxide into massive hydroxyl radicals, but also deplete the overproduced glutathione (GSH) in cancer cells to weaken intracellular antioxidant defenses. Meanwhile, FPIC NPs would undergo degradation in response to GSH to specifically release Cur, causing efficient mitochondrial damage. In addition, FPIC NPs intrinsically enable fluorescence/photoacoustic imaging to visualize tumor accumulation of encapsulated ICG in real time, thereby determining an appropriate treatment time point for tumoricidal photothermal (PTT)/photodynamic therapy (PDT). In vitro and in vivo findings demonstrated the quadruple orchestration of catalytic therapy, chemotherapeutics, PTT, and PDT offers conspicuous antineoplastic effects with minimal side reactions. This work may provide novel ideas for designing supramolecular nanoassemblies with multiple enzymatic activities and therapeutic functions, allowing for wider applications of nanozymes and nanoassemblies in biomedicine.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Aminoácidos , Terapia Combinada , Verde de Indocianina/farmacologia , Neoplasias/tratamento farmacológico , Corantes , Oxirredução , Linhagem Celular Tumoral
17.
Amino Acids ; 56(1): 23, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506925

RESUMO

Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Humanos , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Aminoácidos/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico
18.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
19.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542390

RESUMO

In arterial hypertension, the dysregulation of several metabolic pathways is closely associated with chronic immune imbalance and inflammation progression. With time, these disturbances lead to the development of progressive disease and end-organ involvement. However, the influence of cholecalciferol on metabolic pathways as a possible mechanism of its immunomodulatory activity in obesity-related hypertension is not known. In a phase 2, randomized, single-center, 24-week trial, we evaluated, as a secondary outcome, the serum metabolome of 36 age- and gender-matched adults with obesity-related hypertension and vitamin D deficiency, before and after supplementation with cholecalciferol therapy along with routine medication. The defined endpoint was the assessment of circulating metabolites using a nuclear magnetic resonance-based metabolomics approach. Univariate and multivariate analyses were used to evaluate the systemic metabolic alterations caused by cholecalciferol. In comparison with normotensive controls, hypertensive patients presented overall decreased expression of several amino acids (p < 0.05), including amino acids with ketogenic and glucogenic properties as well as aromatic amino acids. Following cholecalciferol supplementation, increases were observed in glutamine (p < 0.001) and histidine levels (p < 0.05), with several other amino acids remaining unaffected. Glucose (p < 0.05) and acetate (p < 0.05) decreased after 24 weeks in the group taking the supplement, and changes in the saturation of fatty acids (p < 0.05) were also observed, suggesting a role of liposoluble vitamin D in lipid metabolism. Long-term cholecalciferol supplementation in chronically obese and overweight hypertensives induced changes in the blood serum metabolome, which reflected systemic metabolism and may have fostered a new microenvironment for cell proliferation and biology. Of note, the increased availability of glutamine may be relevant for the proliferation of different T-cell subsets.


Assuntos
Hipertensão , Deficiência de Vitamina D , Adulto , Humanos , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Glutamina/uso terapêutico , Glucose/uso terapêutico , Vitamina D/uso terapêutico , Obesidade/complicações , Obesidade/tratamento farmacológico , Suplementos Nutricionais , Deficiência de Vitamina D/complicações , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Aminoácidos/metabolismo , Método Duplo-Cego
20.
Food Chem ; 448: 139059, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531295

RESUMO

Plant-based (PB) food products have surged in popularity over the past decade. Available PB products in the UK market were extracted from NielsenIQ Brandbank and compared with animal-based (AB) counterparts in their nutrient contents and calculated Nutri-Scores. The amino acid contents of four beef products and their PB alternatives were analysed by LC-MS/MS. PB products consistently exhibited significantly higher fibre content across all food groups. Protein was significantly higher in AB products from all food groups except beef and ready meals. PB products were more likely to have higher Nutri-Scores compared to AB counterparts, albeit with greater score variability within each food group. Nutrient fortifications were primarily focused on dairy and ready meals; the most supplemented nutrient was vitamin B12 (found in 15% of all products). A higher proportion of EAAs in relation to total protein content was observed in all beef products.


Assuntos
Aminoácidos , Suplementos Nutricionais , Valor Nutritivo , Animais , Aminoácidos/análise , Reino Unido , Bovinos , Suplementos Nutricionais/análise , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA